CN104155620A - 磁传感装置及其感应方法、制备工艺 - Google Patents

磁传感装置及其感应方法、制备工艺 Download PDF

Info

Publication number
CN104155620A
CN104155620A CN201310175141.2A CN201310175141A CN104155620A CN 104155620 A CN104155620 A CN 104155620A CN 201310175141 A CN201310175141 A CN 201310175141A CN 104155620 A CN104155620 A CN 104155620A
Authority
CN
China
Prior art keywords
electrode
magnetic
layer
magnetic material
sensing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310175141.2A
Other languages
English (en)
Other versions
CN104155620B (zh
Inventor
万旭东
万虹
张挺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Sirui Technology Co.,Ltd.
Original Assignee
SHANGHAI XIRUI TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI XIRUI TECHNOLOGY Co Ltd filed Critical SHANGHAI XIRUI TECHNOLOGY Co Ltd
Priority to CN201310175141.2A priority Critical patent/CN104155620B/zh
Publication of CN104155620A publication Critical patent/CN104155620A/zh
Application granted granted Critical
Publication of CN104155620B publication Critical patent/CN104155620B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明揭示了一种磁传感装置及其感应方法、制备工艺,所述磁传感装置包括:基底、第一电极层、沟槽、磁性材料层、连接通孔、加压模块、磁场测量模块、SET/RESET模块。第一电极层设置于所述基底上,第二电极层,设置于所述磁性材料层上;磁性材料层沉积在所述沟槽的侧面,磁性材料层的底部与第一电极层连接。连接通孔,用以连接电极E1i、电极E2i,使得电极E1i、电极E2i短路连接,为等电位;加压模块用以向电极E10及电极E2n的加压;磁场测量模块,用以测量***磁场的强度和方向。本发明提出的磁传感装置,在单一的圆晶/芯片上同时具有X、Y和Z三轴方向的传感单元,具有良好的可制造性、优异的性能和明显的价格竞争力。

Description

磁传感装置及其感应方法、制备工艺
技术领域
本发明属于半导体技术领域,涉及一种磁传感装置,尤其涉及一种Z轴磁传感装置;本发明还涉及一种Z轴磁传感装置的感应方法,同时,本发明还涉及一种Z轴磁传感装置的制备工艺。
背景技术
磁传感器按照其原理,可以分为以下几类:霍尔元件,磁敏二极管,各项异性磁阻元件(AMR),隧道结磁阻(TMR)元件及巨磁阻(GMR)元件、感应线圈、超导量子干涉磁强计等。
电子罗盘是磁传感器的重要应用领域之一,随着近年来消费电子的迅猛发展,除了导航***之外,还有越来越多的智能手机和平板电脑也开始标配电子罗盘,给用户带来很大的应用便利,近年来,磁传感器的需求也开始从两轴向三轴发展。两轴的磁传感器,即平面磁传感器,可以用来测量平面上的磁场强度和方向,可以用X和Y轴两个方向来表示。
以下介绍现有磁传感器的工作原理。磁传感器采用各向异性磁致电阻(Anisotropic Magneto-Resistance)材料来检测空间中磁感应强度的大小。这种具有晶体结构的合金材料对外界的磁场很敏感,磁场的强弱变化会导致AMR自身电阻值发生变化。
在制造、应用过程中,将一个强磁场加在AMR单元上使其在某一方向上磁化,建立起一个主磁域,与主磁域垂直的轴被称为该AMR的敏感轴,如图1所示。为了使测量结果以线性的方式变化,AMR材料上的金属导线呈45°角倾斜排列,电流从这些导线和AMR材料上流过,如图2所示;由初始的强磁场在AMR材料上建立起来的主磁域和电流的方向有45°的夹角。
当存在外界磁场Ha时,AMR单元上主磁域方向就会发生变化而不再是初始的方向,那么磁场方向M和电流I的夹角θ也会发生变化,如图3所示。对于AMR材料来说,θ角的变化会引起AMR自身阻值的变化,如图4所示。
通过对AMR单元电阻变化的测量,可以得到外界磁场。在实际的应用中,为了提高器件的灵敏度等,磁传感器可利用惠斯通电桥检测AMR阻值的变化,如图5所示。R1/R2/R3/R4是初始状态相同的AMR电阻,当检测到外界磁场的时候,R1/R2阻值增加ΔR而R3/R4减少ΔR。这样在没有外界磁场的情况下,电桥的输出为零;而在有外界磁场时,电桥的输出为一个微小的电压ΔV。
目前的三轴传感器是将一个平面(X、Y两轴)传感部件与Z方向的磁传感部件进行***级封装组合在一起,以实现三轴传感的功能(可参考美国专利US5247278、US5952825、US6529114、US7126330、US7358722);也就是说需要将平面传感部件及Z方向磁传感部件分别设置于两个圆晶或芯片上,最后通过封装连接在一起。目前,在单圆晶/芯片上无法同时实现三轴传感器的制造。
有鉴于此,如今迫切需要设计一种新的磁传感装置及其制备方法,以使实现在单圆晶/芯片上进行三轴传感器的制造。
相比上述的三轴传感器,本发明的Z轴传感器能够用于制造单片集成的磁传感器,即在单芯片上的半导体制造就能够同时形成三轴磁传感器。
发明内容
本发明所要解决的技术问题是:提供一种磁传感装置,可在同一个圆晶或芯片上制备三轴磁感应器件。
同时,本发明提供一种磁传感装置的感应方法,可在同一个圆晶或芯片上制备三轴磁感应器件。
此外,本发明还提供一种磁传感装置的制备工艺,可在同一个圆晶或芯片上制备三轴磁感应器件。
为解决上述技术问题,本发明采用如下技术方案:
一种磁传感装置,所述装置包括:
基底;
第一电极层,设置于所述基底上,包括n个第一电极,n为整数;所述第一电极层依次为电极E10、电极E11、电极E12、…、电极E1n-1
沟槽,通过沉积介质材料层,并在介质材料层上形成沟槽;
磁性材料层,沉积在基底上方以及所述沟槽的侧面,磁性材料层的底部与第一电极连接;
第二电极层,设置于所述介质材料层与磁性材料层上,包括n个第二电极,n为整数;第二电极层依次为电极E21、电极E22、电极E23、…、电极E2n;电极E1i-1与电极E1i之间、电极E2i与电极E2i+1之间的距离分别大于电极E1i-1与电极E2i之间的距离,其中,1≤i≤n-1,i为整数;
连接线和连接通孔,开在介质层中的通孔深度直到第一电极的上方,通孔中沉积第二电极的电极材料,用以连接电极E1i、电极E2i,使得电极E1i、电极E2i短路连接,为等电位;其中,1≤i≤n-1;
加压模块,用以向电极E10及电极E2n的加压;在电极E1j-1和电极E2j之间由于存在电势差形成电流,其中,1≤j≤n;而电极E1j和电极E2j之间等电位、无电流;
磁场测量模块,用以测量***磁场的强度和方向;在没有***环境磁场的情况下,电流与磁性材料层的磁材料自极化的方向具有设定夹角,在电极E1j-1和电极E2j之间存在一设定电阻值;在存在***磁场的情况下,电流与磁材料磁场的夹角发生偏转,对应着电极E1j-1和电极E2j之间电阻值的变化,即电极E10和电极E2j之间总电阻值也发生变化;通过测量电极E10和电极E2j之间总电阻值的变化,实现磁场强度和方向的测量。
作为本发明的一种优选方案,所述第一电极层与第二电极层的走向平行,依次错落排布。
作为本发明的一种优选方案,所述电极E1i-1与电极E1i之间、电极E2i与电极E2i+1之间的距离分别大于电极E1i-1与电极E2i之间距离的2倍。
作为本发明的一种优选方案,所述磁性材料层沉积在所述沟槽的一个侧面或两个侧面。
作为本发明的一种优选方案,所述磁性材料层与所述基底之间的夹角为75°~90°。
作为本发明的一种优选方案,所述电极E1j-1和电极E2j之间形成的电流方向与基底形成的夹角为30°~60°。
作为本发明的一种优选方案,所述电极E1j-1和电极E2j之间形成的电流方向与基底的夹角为45°。
一种上述磁传感装置的感应方法,所述方法包括如下步骤:
加压模块向电极E10及电极E2n的加压;在电极E1j-1和电极E2j之间由于存在电势差形成电流;其中,1≤j≤n;
磁场测量模块测量***磁场的强度和方向;在没有***环境磁场的情况下,电流与磁性材料层的磁材料自极化的方向具有设定夹角,在电极E1j-1和电极E2j之间存在一设定电阻值;在存在***磁场的情况下,电流与磁材料磁场的夹角发生偏转,对应着电极E1j-1和电极E2j之间电阻值的变化;通过测量电极E10和电极E2j之间总电阻值的变化,实现磁场强度和方向的测量。
一种上述磁传感装置的制备工艺,所述制备工艺包括如下步骤:
步骤S1、在具有绝缘层的基底上形成第一电极层,并采用半导体工艺实现图形化;
步骤S2、沉积第二介质材料,并在第二介质材料上形成沟槽,通过沟槽的形成将第一电极层/阵列部分的电极表面露出;
步骤S3、沉积磁性材料层;
步骤S4、采用刻蚀去除多余的磁性材料层,保留侧壁以及与第一电极和第二电极接触的磁性材料部分;
步骤S5、沉积第三介质材料;
步骤S6、开孔,用于连接特定的第一电极和第二电极;
步骤S7、沉积第二电极材料,并进行图形化,特定的第二电极与对应的第一电极进行连通。
作为本发明的一种优选方案,所述方法还包括步骤S8,进行后续的金属层以及介质层的制备,后续形成的金属层起到SET/RESET、自检测作用。
作为本发明的一种优选方案,所述步骤S1中,采用CMOS电路制造完成的顶层金属作为第一电极层/阵列。
作为本发明的一种优选方案,所述步骤S3中,还包括沉积对磁性材料起到保护作用的保护材料层,以及沉积提升磁性材料层性能的诱导层材料。
作为本发明的一种优选方案,所述步骤S4中,所述磁性材料层沉积在所述沟槽的一个侧面或两个侧面。
作为本发明的一种优选方案,所述步骤S5中,还包括化学机械抛光平坦化过程。
本发明的有益效果在于:本发明提出的磁传感装置及其感应方法,在单一的圆晶/芯片上同时具有X、Y和Z三轴方向的传感单元,单芯片上可选择性集成ASIC***电路,其制造工艺与标准的CMOS工艺完全兼容;具有良好的可制造性、优异的性能和明显的价格竞争力。
附图说明
图1为现有磁传感装置的磁性材料的示意图。
图2为现有磁传感装置的磁性材料及导线的结构示意图。
图3为磁场方向和电流方向的夹角示意图。
图4为磁性材料的θ-R特性曲线示意图。
图5为惠斯通电桥的连接图。
图6为本发明磁传感装置面朝沟槽侧壁的投影图。
图7为本发明磁传感装置的截面图。
图8为本发明磁传感装置制备工艺中步骤S1后的示意图。
图9为本发明磁传感装置制备工艺中步骤S2后的示意图。
图10为本发明磁传感装置制备工艺中步骤S3后的示意图。
图11为本发明磁传感装置制备工艺中步骤S4后的示意图。
图12为本发明磁传感装置制备工艺中步骤S5后的示意图。
图13为本发明磁传感装置制备工艺中步骤S6后的示意图。
图14为本发明磁传感装置制备工艺中步骤S8后的示意图。
图15为实施例二中沟槽的示意图。
图16为实施例二中沟槽两侧均设置磁性材料层的示意图。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
实施例一
请参阅图6、图7,本发明揭示一种磁传感装置,磁性材料垂直于基底的表面(与基底之间的夹角或非严格的90度,可以在60度到90度之间),因此,可以感应Z轴方向的磁场,所述磁传感装置包括:基底100、第一电极层、沟槽130、磁性材料层120、连接通孔、连接线、加压模块、磁场测量模块。
第一电极层设置于所述基底100上,包括n个第一电极,n为整数;所述第一电极层依次为电极E10、电极E11、电极E12、…、电极E1n-1。本实施例中,n=3,第一电极层包括等间距设置的第一电极101、102、103;当然,相邻第一电极间的距离也可以不同。
磁性材料层120沉积在所述沟槽130的侧面,磁性材料层120的底部与第一电极层连接。所述磁性材料层与所述基底之间的夹角为75°~90°。磁性材料层的表面可以包含保护层。磁性材料为各项异性磁阻材料,如NiFe,也可以是其他类型的磁阻材料,如TMR和GMR。
第二电极层设置于所述磁性材料层120上,包括n个第二电极,n为整数;第二电极层依次为电极E21、电极E22、电极E23、…、电极E2n;电极E1i-1与电极E1i之间、电极E2i与电极E2i+1之间的距离分别大于电极E1i-1与电极E2i之间的距离,其中,1≤i≤n-1,i为整数。优选地,电极E1i-1与电极E1i之间、电极E2i与电极E2i+1之间的距离分别大于电极E1i-1与电极E2i之间距离的2倍(或者说,相邻两个第一电极之间、相邻两个第二电极之间的距离大于最近的第一电极与第二电极之间距离的2倍),以此保证电极E1i和电极E2i-1之间的电阻小于相邻第一电极之间或者相邻第二电极之间的电阻,进而使电流大部分在电极E1i和电极E2i-1之间流通,相邻第一电极之间、相邻第二电极之间的距离、最近的第一电极与第二电极之间距离的比例可以根据实际的需求进行调整。针对同一沟槽,所述第一电极层与第二电极层的走向平行,依次错落排布。本实施例中,第二电极层包括电极111、112、113。
结构具有连接通孔和连接导线用以连接电极E1i、电极E2i,通孔和导线没有在图中显示,它们能使电极E1i、电极E2i短路连接,电路施加电压之后也是等电位,各连接线相互平行;其中,1≤i≤n-1。本实施例中,电极E11、电极E21短路连接,电极E12、电极E22短路连接。
加压模块用以向电极E10及电极E2n的加压;在电极E1j-1和电极E2j之间由于存在电势差形成电流;其中,1≤j≤n。所述电极E1j-1和电极E2j之间形成的电流方向与基底形成的夹角优选为30°~60°。更佳地,所述电极E1j-1和电极E2j之间形成的电流方向与基底的夹角为45°。
磁场测量模块用以测量***磁场的强度和方向;在没有***环境磁场的情况下,电流与磁性材料层的磁材料自极化的方向具有设定夹角,在电极E1j-1和电极E2j之间存在一电阻值;在存在***磁场的情况下,电流与磁材料磁场的夹角发生偏转,对应着电极E1j-1和电极E2j之间电阻值的变化;通过电阻值的变化,实现磁场强度和方向的测量。
具体请参阅图6,从图6中可以看到基底100上排布有第一电极层/阵列,第一电极101、102、103之间为等间距排列。在沟槽130的侧壁上设有磁性材料层120,磁性材料层120的底部与第一电极层连接,而磁性材料层120的上方则与第二电极层连接。第二电极层(包括第二电极111、112、113)与第一电极层(包括第一电极101、102、103)在俯视图上错落排布,第一电极102与第二电极111、第一电极103与第二电极112之间短路连接(通过图中未示的通孔连接),因此是等电位。
以三对电极对为例说明(依次类推到多个电极对),当在第一电极101和第二电极113之间施加电压的时候,假设第一电极101上的电压为V0,第二电极113上的电压为V3第二电极111与第一电极102上的电压为V1,第二电极112与第一电极103之间的电压为V2。当第一电极101是高电压的时候,磁性材料层中的电流流向就如图6的箭头所示,当然前提是第一电极101与第二电极111之间的距离要小于第一电极101与第一电极102之间的距离,通常对于第一电极和第二电极的距离与相邻第一电极之间的距离相比至少小于1:2。
图6所示电流的流向与基底之间具有一个夹角,在30-60°之间,优选为45°。图6中所示磁场的方向与电流的方向也存在一夹角θ,当外界存在一个磁场的时候,磁材料内部的磁场发生变化,θ角发生变化,因此第一电极101与第二电极113之间的电阻发生变化(各项异性磁阻的原理),截面图如图7所示。
本发明还揭示上述磁传感装置的感应方法,所述方法包括如下步骤:加压模块向电极E10及电极E2n的加压;在电极E1j-1和电极E2j之间由于存在电势差形成电流;其中,1≤j≤n。磁场测量模块测量***磁场的强度和方向;在没有***环境磁场的情况下,电流与磁性材料层的磁材料自极化的方向具有设定夹角,在电极E1j-1和电极E2j之间存在一设定电阻值;在存在***磁场的情况下,电流与磁材料磁场的夹角发生偏转,对应着电极E1j-1和电极E2j之间电阻值的变化;通过电阻值的变化,实现磁场强度和方向的测量。
以上介绍了本发明磁传感装置的组成及感应方法,本发明在揭示上述内容的同时,还揭示一种上述磁传感装置的制备工艺,所述制备工艺包括如下步骤:
【步骤S1】在具有绝缘层的基底201上沉积电极层,通过半导体工艺图形化,形成第一电极阵列202,如图8所示。在实际的应用中,也可以采用CMOS电路的顶层金属层作为本案所述的第一电极阵列202。
【步骤S2】沉积介质材料203,必要的时候采用化学机械抛光进行平坦化,材料为单层或者多层,介质材料203的总厚度为0.1微米到5微米之间,见图9。
【步骤S3】制造沟槽204,沟槽204的侧壁要设在第一电极的上方,要将第一电极的顶部露出,如图10所示。
【步骤S4】沉积磁性材料层205,为各项异性磁阻材料,也可以是TMR,GMR材料等;通常在磁性材料层沉积完成后,可以继续在磁性材料层的上方沉积保护材料层206。同时,在沉积磁性材料层205之前可以沉积一层有助于提升磁材料性能的缓冲层,本图11没有标出。
【步骤S5】通过刻蚀去除多余部分的磁材料,保留侧壁(单面或者双面)和与第一电极和第二电极接触的磁性材料部分;如图12所示。
【步骤S6】如图13所示,填充介质层208,必要时采用回刻工艺以及化学机械抛光,以及可能的抛光后薄膜沉积工艺。
【步骤S7】开孔,打开部分的介质层208形成通孔,用于连接第一电极和第二电极。
【步骤S8】如图14所示,沉积第二电极层,包括若干第二电极209,在通孔中连接第一电极,随后通过曝光和刻蚀,形成第二电极阵列。
【步骤S9】制造形成后续的介质层和电极层,用于磁传感器的SET/RESET和自检测等目的。
实施例二
请参阅图15、图16,本实施例与实施例一的区别在于,本实施例中,磁性材料层沉积在所述一个沟槽的两个侧面。
本实施例的好处在于,将沟槽的两面都利用起来,提高了基底的使用效率,提升了器件的密度,有利于降低单位面积的成本。
综上所述,本发明提出的磁传感装置及其感应方法,在单一的圆晶/芯片上同时具有X、Y和Z三轴方向的传感单元,单芯片上可选择性集成ASIC***电路,其制造工艺与标准的CMOS工艺完全兼容;具有良好的可制造性、优异的性能和明显的价格竞争力。
这里本发明的描述和应用是说明性的,并非想将本发明的范围限制在上述实施例中。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本发明的精神或本质特征的情况下,本发明可以以其它形式、结构、布置、比例,以及用其它组件、材料和部件来实现。在不脱离本发明范围和精神的情况下,可以对这里所披露的实施例进行其它变形和改变。

Claims (14)

1.一种磁传感装置,其特征在于,所述装置包括:
基底;
第一电极层,设置于所述基底上,包括n个第一电极,n为整数;所述第一电极层依次为电极E10、电极E11、电极E12、…、电极E1n-1
沟槽,通过沉积介质材料层,并在介质材料层上形成沟槽;
磁性材料层,沉积在基底上方以及所述沟槽的侧面,磁性材料层的底部与第一电极连接;
第二电极层,设置于所述介质材料层与磁性材料层上,包括n个第二电极,n为整数;第二电极层依次为电极E21、电极E22、电极E23、…、电极E2n;电极E1i-1与电极E1i之间、电极E2i与电极E2i+1之间的距离分别大于电极E1i-1与电极E2i之间的距离,其中,1≤i≤n-1,i为整数;
连接线和连接通孔,开在介质层中的通孔深度直到第一电极的上方,通孔中沉积第二电极的电极材料,用以连接电极E1i、电极E2i,使得电极E1i、电极E2i短路连接,为等电位;其中,1≤i≤n-1;
加压模块,用以向电极E10及电极E2n的加压;在电极E1j-1和电极E2j之间由于存在电势差形成电流,其中,1≤j≤n;而电极E1j和电极E2j之间等电位、无电流;
磁场测量模块,用以测量***磁场的强度和方向;在没有***环境磁场的情况下,电流与磁性材料层的磁材料自极化的方向具有设定夹角,在电极E1j-1和电极E2j之间存在一设定电阻值;在存在***磁场的情况下,电流与磁材料磁场的夹角发生偏转,对应着电极E1j-1和电极E2j之间电阻值的变化,即电极E10和电极E2j之间总电阻值也发生变化;通过测量电极E10和电极E2j之间总电阻值的变化,实现磁场强度和方向的测量。
2.根据权利要求1所述的磁传感装置,其特征在于:
所述第一电极层与第二电极层的走向平行,依次错落排布。
3.根据权利要求1所述的磁传感装置,其特征在于:
所述电极E1i-1与电极E1i之间、电极E2i与电极E2i+1之间的距离分别大于电极E1i-1与电极E2i之间距离的2倍。
4.根据权利要求1所述的磁传感装置,其特征在于:
所述磁性材料层沉积在所述沟槽的一个侧面或两个侧面。
5.根据权利要求1至4之一所述的磁传感装置,其特征在于:
所述磁性材料层与所述基底之间的夹角为75°~90°。
6.根据权利要求1至4之一所述的磁传感装置,其特征在于:
所述电极E1j-1和电极E2j之间形成的电流方向与基底形成的夹角为30°~60°。
7.根据权利要求6所述的磁传感装置,其特征在于:
所述电极E1j-1和电极E2j之间形成的电流方向与基底的夹角为45°。
8.一种权利要求1至7之一所述磁传感装置的感应方法,其特征在于,所述方法包括如下步骤:
加压模块向电极E10及电极E2n的加压;在电极E1j-1和电极E2j之间由于存在电势差形成电流;其中,1≤j≤n;
磁场测量模块测量***磁场的强度和方向;在没有***环境磁场的情况下,电流与磁性材料层的磁材料自极化的方向具有设定夹角,在电极E1j-1和电极E2j之间存在一设定电阻值;在存在***磁场的情况下,电流与磁材料磁场的夹角发生偏转,对应着电极E1j-1和电极E2j之间电阻值的变化;通过测量电极E10和电极E2j之间总电阻值的变化,实现磁场强度和方向的测量。
9.一种权利要求1至7之一所述磁传感装置的制备工艺,其特征在于,所述制备工艺包括如下步骤:
步骤S1、在具有绝缘层的基底上形成第一电极层,并采用半导体工艺实现图形化;
步骤S2、沉积第二介质材料,并在第二介质材料上形成沟槽,通过沟槽的形成将第一电极层/阵列部分的电极表面露出;
步骤S3、沉积磁性材料层;
步骤S4、采用刻蚀去除多余的磁性材料层,保留侧壁以及与第一电极和第二电极接触的磁性材料部分;
步骤S5、沉积第三介质材料;
步骤S6、开孔,用于连接特定的第一电极和第二电极;
步骤S7、沉积第二电极材料,并进行图形化,特定的第二电极与对应的第一电极进行连通。
10.根据权利要求9所述的制备工艺,其特征在于:
所述方法还包括步骤S8,进行后续的金属层以及介质层的制备,后续形成的金属层起到SET/RESET、自检测作用。
11.根据权利要求9所述的制备工艺,其特征在于:
所述步骤S1中,采用CMOS电路制造完成的顶层金属作为第一电极层/阵列。
12.根据权利要求9所述的制备工艺,其特征在于:
所述步骤S3中,还包括沉积对磁性材料起到保护作用的保护材料层,以及沉积提升磁性材料层性能的诱导层材料。
13.根据权利要求9所述的制备工艺,其特征在于:
所述步骤S4中,所述磁性材料层沉积在所述沟槽的一个侧面或两个侧面。
14.根据权利要求9所述的制备工艺,其特征在于:
所述步骤S5中,还包括化学机械抛光平坦化过程。
CN201310175141.2A 2013-05-13 2013-05-13 磁传感装置及其感应方法、制备工艺 Active CN104155620B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310175141.2A CN104155620B (zh) 2013-05-13 2013-05-13 磁传感装置及其感应方法、制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310175141.2A CN104155620B (zh) 2013-05-13 2013-05-13 磁传感装置及其感应方法、制备工艺

Publications (2)

Publication Number Publication Date
CN104155620A true CN104155620A (zh) 2014-11-19
CN104155620B CN104155620B (zh) 2017-05-31

Family

ID=51881172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310175141.2A Active CN104155620B (zh) 2013-05-13 2013-05-13 磁传感装置及其感应方法、制备工艺

Country Status (1)

Country Link
CN (1) CN104155620B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548920A (zh) * 2015-12-08 2016-05-04 苏州工业园区纳米产业技术研究院有限公司 一种自重置amr传感器
CN105911490A (zh) * 2016-05-12 2016-08-31 美新半导体(无锡)有限公司 具有自检重置导线的磁场传感器
CN110841729A (zh) * 2019-10-11 2020-02-28 上海小海龟科技有限公司 一种检测装置制备方法及检测装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518734B2 (en) * 2010-03-31 2013-08-27 Everspin Technologies, Inc. Process integration of a single chip three axis magnetic field sensor
CN202149936U (zh) * 2011-02-14 2012-02-22 美新半导体(无锡)有限公司 单芯片三轴amr传感器
CN102385043B (zh) * 2011-08-30 2013-08-21 江苏多维科技有限公司 Mtj三轴磁场传感器及其封装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭家玉 等: "三维方向磁传感器的电路设计", 《仪表技术》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548920A (zh) * 2015-12-08 2016-05-04 苏州工业园区纳米产业技术研究院有限公司 一种自重置amr传感器
CN105911490A (zh) * 2016-05-12 2016-08-31 美新半导体(无锡)有限公司 具有自检重置导线的磁场传感器
CN105911490B (zh) * 2016-05-12 2018-06-15 美新半导体(无锡)有限公司 具有自检重置导线的磁场传感器
CN110841729A (zh) * 2019-10-11 2020-02-28 上海小海龟科技有限公司 一种检测装置制备方法及检测装置
CN110841729B (zh) * 2019-10-11 2021-11-19 上海小海龟科技有限公司 一种检测装置制备方法及检测装置

Also Published As

Publication number Publication date
CN104155620B (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN103885005B (zh) 磁传感装置及其磁感应方法
CN103885004A (zh) 一种磁传感装置及其磁感应方法、制备工艺
CN103887428A (zh) 一种磁传感装置的制备工艺
CN104218147B (zh) 磁传感器的制备方法以及磁传感器
CN104122513A (zh) 高密度磁传感装置及其磁感应方法、制备工艺
US9581661B2 (en) XMR-sensor and method for manufacturing the XMR-sensor
CN104793153A (zh) 磁传感装置的制备方法
CN104155620A (zh) 磁传感装置及其感应方法、制备工艺
CN104183696A (zh) 一种磁传感装置的制备工艺
CN103887427A (zh) 磁传感装置的制造工艺
CN104422905A (zh) 磁传感器及其制备工艺
CN103942872A (zh) 一种低飞移高度面内磁性图像识别传感器芯片
CN104422908A (zh) 一种磁传感装置的制备工艺
CN203858698U (zh) 一种低飞移高度面内磁性图像识别传感器芯片
CN104459576B (zh) 磁传感装置及其磁感应方法、磁传感装置的制备工艺
CN104793155A (zh) 一种磁传感装置及该装置的制备工艺
CN104459574B (zh) 一种磁传感装置的制备工艺
CN104793156B (zh) 磁传感装置的制备方法
CN104347798A (zh) 一种磁传感器及其制备方法
CN104515957B (zh) 磁传感装置及其制备方法
CN104793150A (zh) 一种磁传感器及该磁传感器的制备方法
CN104422906A (zh) 一种磁传感器及其制备工艺
CN104483637B (zh) 提高第三轴感应能力的磁传感器及其制备工艺
CN104868051A (zh) 高灵敏度磁传感装置及其制备方法
CN104218149B (zh) 磁传感器的制备方法以及磁传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Room 307, 3rd floor, 1328 Dingxi Road, Changning District, Shanghai 200050

Patentee after: Shanghai Sirui Technology Co.,Ltd.

Address before: 201815 No. 3157, building 3, No. 1368, Xingxian Road, Jiading District, Shanghai

Patentee before: Shanghai Silicon Technology Co.,Ltd.