CN104135305A - 测距和定位*** - Google Patents

测距和定位*** Download PDF

Info

Publication number
CN104135305A
CN104135305A CN201410051493.1A CN201410051493A CN104135305A CN 104135305 A CN104135305 A CN 104135305A CN 201410051493 A CN201410051493 A CN 201410051493A CN 104135305 A CN104135305 A CN 104135305A
Authority
CN
China
Prior art keywords
time
frequency
warbling
receiving equipment
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410051493.1A
Other languages
English (en)
Other versions
CN104135305B (zh
Inventor
O.B.A.塞勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shang Shengte Internaional Inc
Semtech International AG
Semtech Corp
Original Assignee
Shang Shengte Internaional Inc
Semtech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shang Shengte Internaional Inc, Semtech Corp filed Critical Shang Shengte Internaional Inc
Publication of CN104135305A publication Critical patent/CN104135305A/zh
Application granted granted Critical
Publication of CN104135305B publication Critical patent/CN104135305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/84Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/876Combination of several spaced transponders or reflectors of known location for determining the position of a receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/358Receivers using I/Q processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种包括发射器和接收器节点的测距和定位***,所述发射器和接收器节点通过啁啾调制的无线电信号一起通信,所述测距和定位***具有测距模式,在所述测距模式中信号的测距交换在主设备和从设备之间进行,其导致在其之间的距离的评估。所述从站被布置用于识别测距请求并且发射回包含在时间和频率上与测距请求中的啁啾所精确对准的啁啾的测距响应,于是所述主站能够接收测距响应、相对于其自己的时间参考来分析被包含在其中的啁啾的时间和频率并且估计到所述从站的距离。

Description

测距和定位***
技术领域
本发明在实施例中涉及在无线电信道上传输信息的方法,并且特别地涉及基于啁啾(chirp)扩频能够以低功率消耗跨越长距离的无线传输方案。本发明的实施例同样涉及根据发明的传输方案适合于无线传输的低复杂度的发射和接收设备。
背景技术
数字无线数据传输被用于在数据速率、传输距离和功率消耗中都呈现巨大可变性的各种***。然而存在对结合长传输距离与低功率消耗并且能够以简单接收器和发射器来实现的数字传输方案的需要。
许多***已知提供无线通信链路的端点之间的距离上的信息。可以引用例如GPS***和基于发出直接调制扩频信号的卫星的所有类似定位***。此类***已经示出长距离上的极好的测距精度,但是通常是非对称的并且是计算密集的。然而,这些技术的限制是相当高的接收器复杂度、对于弱信号可能是非常长的获取时间、其功率消耗和在室内环境中的操作困难。
UWB测距***已知可能能够提供高精度测距测量并且传输数据,但是只在受限的距离上。
已知在WiFi***中提取位置信息。然而,WiFi测距不能提供准确的位置信息。WiFi定位依靠监听接入点信标(beacon)并且使用接入点图/数据库。附加地可以使用RSSI,但是飞行时间不是可用的。同样,与GPS同样地,接收器得到定位信息,而不是网络。
US6940893描述基于在发出无线电啁啾的主站(master)和从站(slave)之间的双交换的测距***。该技术使用类似于UWB***的快速脉冲啁啾,并且由于非常大的带宽而难以扩展到长距离。距离计算基于测距信息的双交换,用以补偿在主站和从站中的时间参考不精确同步的事实。这需要收发器中相当大的复杂度。同样,因为距离估计显式地在空中传输,该技术本质上不安全。
欧洲专利申请EP2449690描述使用数字合成啁啾符号作为调制的通信***以及合适的基于FFT的接收器。
本发明的目的是提出一种能够以比本领域中已知***更简单和更少能源密集的方式而估计更长距离上的无线链路的端点之间距离的***。
发明内容
根据本发明,通过所附权利要求的对象来实现这些目的。
附图说明
借助于通过示例所给出并且由附图所图示的实施例描述,本发明将被更好地理解,其中:
图1以示意性简化方式示出根据本发明的一个方面的无线电调制解调器的结构。
图2a绘制根据本发明的一个方面的基础啁啾和经调制的啁啾的瞬时频率。相同信号的相位被表示在图2b中,并且图2c在时域上绘制基础啁啾的实数和复数分量。
图3示意性地表示在本发明的测距方法期间在两个设备之间被交换的数据帧的结构。
图4a和4b图示在本发明的测距过程中涉及的主和从设备之间的啁啾的时间对准,示出两个可能的定时误差和所涉及的未对准。
图5绘制根据本发明的一个方面的被用于估计距离的校正函数。
图6示意性地示出被用于本发明的可能的实施例中的步骤。
图7和8示意性地呈现根据本发明的定位***。
具体实施方式
在本发明中所采用的啁啾调制技术的若干方面在欧洲专利申请EP2449690中被描述,所述欧洲专利申请EP2449690由此通过引用被合并,并且将在此处被概要地提醒。在图1中被示意性表示的无线电收发器是本发明的可能的实施例。所述收发器包括基带部件200和射频部件100。集中在发射器部分上,基带调制器150基于存在于其输入处的数字数据152而生成基带信号,所述基带信号的I和Q分量被RF部件100转换至期望传输频率、被功率放大器120放大并且被天线传输。
在不背离本发明的框架的情况下,所提出的架构允许若干变形和修改,并且被提供作为非限制性示例。在可能的实施例中,极分量(振幅 和相位)而不是笛卡尔分量,可以被合成。
从基带到所意图的频率的信号转换在该示例中通过在混频器110中将由放大器154所提供的信号与由电路190所生成并且与参考时钟129有关联的本地载波的同相和正交分量混频而被完成。
一旦信号在无线电链路的另一端上被接收,则被图1的收发器的接收部分处理,所述接收部分包括随后为降频转换级170的低噪声放大器160,所述降频转换级170生成包括一系列啁啾的基带信号,所述基带信号然后由基带解调器180所处理,所述基带解调器180的函数是调制器150的函数的逆并且提供重构的数字信号182。
如在EP2449690中所讨论的,调制器150合成包括一系列啁啾的基带信号,所述一系列啁啾的频率沿预定时间间隔从初始瞬时值改变至最终瞬时频率。为了简化描述,将假定所有啁啾具有相同的持续时间,尽管这对于本发明不是绝对的要求。
在基带信号中的啁啾可以由其瞬时频率的时间分布或也可以由将信号的相位定义为时间的函数的函数描述。重要地,调制器150能够生成具有多个不同分布的啁啾,每个对应于预定调制符号集(alphabet)中的符号。
根据本发明的重要特征,调制器150可以生成具有特定和预定义频率分布的基础啁啾(在下文也被称为未经调制的啁啾)或出自通过对基础频率分布进行循环时间移位而从基础啁啾所得到的一组可能的经调制的啁啾中的一个。
图2a通过示例的方式图示在啁啾的开始处的时刻和在所述啁啾的结束处的时刻之间的基础啁啾和一个经调制的啁啾的可能的频率和相位分布,而图2b示出时域上对应的基带信号。水平尺度对应于例如符号并且虽然曲线被表示为连续的,其在具体实现方式中将由有限数目的离散样本所表示。关于垂直尺度,其被规范化至所意图的带宽或至对应的相位跨度。特别地,为了更好地示出其连续性,所述相位在图2b中被表示为好像其是无界变量,但是其在具体实现方式中事实上可以跨越若干转数(revolution)。
在所描绘的示例中,基础啁啾的频率从初始值线性增大到最终值,其中代表带宽扩展量,但是下降的啁啾或其它啁啾分布也是可能的。因而,以啁啾的形式对信息进行编码,所述啁啾具有出自相对于预定基础啁啾的多个可能的循环移位中之一,每个循环移位对应于可能的调制符号。
图2c是在时域中对应于基础啁啾的基带信号的实数和虚数分量I和Q的曲线图。
优选地,调制器也被布置以合成共轭啁啾并且在信号中***共轭啁啾,所述共轭啁啾是基础未经调制的啁啾的复共轭的啁啾。可以将这些看作降频啁啾(down-chirp),其中频率从的值下降至
优选地,啁啾的相位由连续函数描述,所述连续函数在啁啾的开始处和结束处具有相同的值:。由于如此,信号的相位跨越符号边界是连续的,这是在下文将被称作符号间相位连续性的特征。在图2a中所示出的示例中,函数是对称的,并且信号具有符号间相位连续性。如由EP2449690更详细解释的,上述信号结构允许接收器中的解调器单元180将其时间参考与发射器的时间参考对准,并且确定被赋予每个啁啾的循环移位量。评估所接收的啁啾相对于本地时间参考的时间移位的操作在下文可以被称作“去啁啾(dechirp)”,并且能够通过将所接收的啁啾与本地生成的基础啁啾的复共轭相乘并且执行FFT而被有利地实现。FFT的最大值的位置指示移位并且指示调制值。然而,去啁啾的其它方式是可能的。
因而,“循环移位值”在下文可以被用于在时域上指示调制,并且“调制位置”或“峰值位置”在频域上表示它。
我们将记为符号的长度或等价地记为扩频因子。为了允许使用FFT的容易接收,优选地被选择为是2的幂。奈奎斯特采样频率如果是,则符号的长度是。但在不将本发明限制于这些特定数值的情况下,为确定所述想法,在可能的应用中可以认为是1MHz,并且等于1024、512或256。载波频率可以在2.45GHz ISM带中。在该特定实施例中,本发明的调制方案可以与Bluetooth®收发器占用相同的RF带并且可能重用或共享Bluetooth®收发器的RF部分。
因此,经调制的符号是在0和N-1之间的任何数目的基础符号循环移位。0调制值等价于不存在调制。因为N是二的幂,循环移位的值可以被编码在个比特上。
优选地,通过本发明所发射和接收的信号被组织在包括被合适编码的前导码和数据段的帧中。所述前导码和数据段包括经调制和/或未经调制的一系列啁啾,其允许接收器将其时间参考与发射器的时间参考时间对准、检索信息、执行动作或运行命令。在本发明的帧中,对于数据帧来说多种结构是可能的,除其他外还依赖于信道条件、所传输的数据或命令。优选地,所述帧包括前导码以及表达所传输的数据或命令的有效负载,所述前导码的目的是允许在发射器和接收器之间在时间和频率上的同步。
根据本发明的方面,发射器和接收器节点优选地具有通信模式和/或测距模式,所述通信模式允许通过经调制的啁啾信号交换数据,在所述测距模式中信号的测距交换在主设备和从设备之间进行,这导致对它们之间距离的评估。从站被布置用于识别测距请求并且发射回包含在时间和频率上与测距请求中的啁啾所精确对准的啁啾的测距响应,于是主站能够接收测距响应、相对于其自己的时间参考来分析被包含在其中的啁啾的时间和频率并且估计到从站的距离。
图3示意性地表示包括测距请求的帧的可能结构。所述测距请求开始于前导码并且包括基础(即,未经调制或具有等于零的循环移位)符号的检测序列411,所述前导码可以具有与用于其它目的的发明的***中被交换的其它帧共同的结构。检测序列411被用于接收器中以检测信号的开始并且优选地执行其时间参考与发射器中时间参考的第一同步。通过对经解调的检测序列进行去啁啾,例如将它与本地合成的共轭啁啾相乘并且执行FFT操作,所述接收器能够确定移位量。
检测序列的长度可以任意长。这被用在以下应用中:其中通信是稀疏的并且由不活动的长间隔所分离,在所述不活动的长间隔期间,所述接收器处于低功率备用模式。在接收第一信号的情况下,所述接收器通常表现出空闲时间,用于从备用状态改换成完全唤醒状态。所述前导码优选地被选择为比接收器的空闲时间更长,其确保前导码检测的高概率。
检测序列的结束由一个或多个(优选地两个)帧同步符号412标记,所述帧同步符号412是以预定值调制的啁啾,例如以调制值4的第一啁啾和以相对的(opposite)调制的第二啁啾。这些经调制的符号被用于得到帧同步。在所示出的示例中,接收器寻找3个连续的符号的存在:未经调制、以第一值被调制的、以第二值被调制的。因为接收误差主要是±1偏移,选择这些值用于帧同步符号412将不是合理的。优选地,帧同步符号的调制在绝对移位上大于3个单位,使得误差的似然性最小化。
使用单个经调制的符号作为帧同步标记是可能的,但是对于低信噪比不是最优的,其中一出现从0到比方说4的解调误差,就可能导致错误的帧同步事件。使用相同调制值用于若干符号也是可能的(虽然较不健壮),因为单个解调误差能够将帧同步偏移一个符号。
帧同步符号412的预定调制值也能够被用作网络签名,在不接收彼此的分组的情况下允许若干网络的共存。当接收器试图使用与其正接收的帧相比不同的预定值来实现帧同步时,由于所预期的序列将不出现,帧同步将失败。当为了该目的而被使用时,帧同步符号调制值对于网络应当是唯一的。对于2个符号,所述集对于第一网络可以例如是{3,N-3},然后{6,N-6},然后{9,N-9}等等。同样地,3个值的分离是重要的,因为最可能的解调误差是调制值上的±1偏移。
根据本发明的另一个方面,所述前导码优选地包括频率同步符号413,所述频率同步符号413在于是基础未经调制啁啾的复共轭的一个或多个(优选地两个)啁啾。在基带表示中可以将这些视为降频啁啾,其中频率从的值下降至。一旦实现帧同步,接收器能够使用经修改的处理序列来解调这些:所述基带信号与被用于解调前导码和数据中所有其它符号的序列的复共轭相乘,并且然后进行FFT变换。
虽然用于频率同步的共轭符号是有效的,但这不是仅有的可能性,并且本发明不必被这样限制。所述共轭符号事实上可以由具有与基础啁啾相比不同的带宽或持续时间的啁啾所代替,因而表现出比基础啁啾的频率变化更快或更慢的频率变化。该变形将需要更复杂的接收器,但是另一方面使共轭啁啾自由地用于数据传输。
由于啁啾的时间-频率等价属性,调制的视在值(apparent value)将给出频率误差。为了让接收器在时间上对准,在符号413之后***静默(silence)420。
两个符号比一个更好,因为某一重复对于不产生解调误差是必要的。同样,因为所述两个符号是利用相同的开始相位被调制的,所以可以提取精细频率误差。
可选地,报头进一步包括精细同步符号414并且允许简单地实施完全一致的接收器以及数据符号中更紧密的报头和等价地更高比特速率,所述精细同步符号414例如是未经调制的基础啁啾并且给出精细时间和频率同步的时机。可能的是,如以上所述地处理这些符号,将它们与共轭符号相乘、提取FFT并且确定对应于精细时间移位的峰值位置。此类精细时间移位不受制于漂移,因为一旦粗糙同步已经被实现,由于晶体参考中偏移的***采样漂移被适当地考虑。比较不同符号中的该峰值的相对相位允许精细地同步在发射器和接收器之间的频率。
如果频率同步只依靠频率同步符号413,则一些频率偏移可能导致一个调制位置的误差:这些频率偏移是这样的使得降频啁啾的解调给出两个同样可能的值(这些是相邻值)。简单接收器不能够辨别所述两个值,并且可能采取错误的决定,产生小的残余频率偏移和一半的调制位置定时误差。依赖于噪声,此类误差能够给出全位置调制误差。就在频率同步之后给予接收器更好健壮性的可替换方式是以较低数据速率为代价的调制值缩减集。
除执行精细时间对准之外,这些符号还能够给出另一个精细频率误差估计。这允许实施简单一致的接收器,其继而使得除循环移位作为调制方法之外符号的相位调制是可能的。
帧的报头部分是数据字段415,其包括帧意图用于测距的指示和需要测距的特定设备的识别码。只有具有等于在报头中所指定的识别码的识别码的该特定设备应当对所述测距请求进行响应。
测距符号416是具有预定时间结构的一连串未经调制的啁啾。优选地,所述测距符号416是一连串未经调制的啁啾,即基础啁啾。
图6示意性地图示在测距交换期间在主和从设备中可能的步骤序列。所述交换由主站发起,所述主站发射指明特定从设备的测距请求(步骤201),并且然后等待(步骤230)适当的响应。所述从站接收请求(步骤300)并且起先如同正常传输那样对它进行处理。其运行检测、时间和频率同步(步骤350)和报头解码的通常步骤。然后其发现所述帧是测距请求并且将所述测距请求ID与其自己的ID比较(步骤352)。如果它们匹配,则其将继续进行紧接的步骤。在该第一阶段期间,所述从站已经估计在主站和其本身之间的频率偏移。该频率偏移被用于计算(步骤356)在其之间的定时漂移(timing drift),假定定时和频率得自相同的时间参考。然后所述从站执行测距特定步骤:
a- 测距同步(步骤357):这是用于与由主站所发射的测距符号在时间上对准。的确,就在报头之后可能有时间偏移,因为所述报头对于小时间偏移是健壮的。
b- 测距计算(步骤359)。对于每个符号,执行经调整的去啁啾操作。不同的本地啁啾被合成用于对每个符号进行去啁啾,以便针对定时漂移而调整:首先,所述啁啾的斜率被修改与晶体偏移对应的非常小的部分。其次,所述啁啾的开始频率被修改以适应自测距同步时刻以后所累积的定时误差,该值等于符号索引(symbol index)乘以所评估的每符号定时漂移。此处我们使用啁啾的完全频率-时间等价,以及这些补偿是非常小的事实。在可替换方案中,接收器可以在时间上内插,但是这将比频率移位复杂得多。所述补偿是小的,一些PPM的频率移位将不使信号偏离信道。啁啾的频率-时间等价意味着在某些方面上,时间偏移等价于频率偏移。
在FFT之后,在预期位置(频段(bin)0,没有调制)处的输出的相对值与其邻居相比较。然后内插被执行以找到精细定时(步骤362)。这相当于(amount to)根据没有被确切置于期望频率上的FFT值的离散观测来评估正弦曲线的频率,并且能够以各种方式来执行。
对若干符号一起求平均以得到精细定时估计。这允许从站确定确切定时时刻,在所述确切定时时刻通过把从报头所确定(步骤350)的粗糙定时移位和精细定时移位、由表达式Ranging_symbols_numbers x(symbol_duration+timing_drift_per_symbol)所给出的测距序列的持续时间和预定测距响应偏移加在一起来发射响应。所述从站因而等待直到定时时刻为止(步骤364)并且发射测距响应(步骤367)。
所述测距响应偏移是预定时间间隔,所述预定时间间隔适应处理时间并且使用在从站的接收和发射无线电内部的延迟。假定所述估计是正确的,则在天线处的信号的测距响应开始时间应当等于所接收请求的开始时间加上固定偏移,所述固定偏移优选地对应于整数数目的符号。所述测距响应偏移可以是恒定的或被自适应地调整以便补偿温度改变或其它漂移源。
重要地,通过确定粗糙和精细时间移位估计和定时漂移,由于包括如以上所解释的啁啾调制信号的测距请求的特殊属性,本发明的从设备能够基于被包含在测距请求中的啁啾的时间和频率来确定其自己的时间参考相对于主站的时间参考的时间和频率移位。
所述测距响应由若干未经调制的啁啾构成。优选地,在测距计算中,与经调整的去啁啾步骤359期间相比,相同的补偿被使用:斜率补偿加上定时漂移累积补偿。根据所估计的频率,这附加于发射频率的补偿而发生。以这种方式,所述测距响应在时间和频率上与所述主站的时间参考精确对准。
此处,重要的是注意到,所述***对于频率偏移估计中的小误差是健壮的。如果小误差出现,则接收频率和发射频率将是略微错误的,然而定时漂移估计将几乎是正确的。这是因为,定时漂移估计是将所估计的频率除以载波频率。例如在868MHz处,120Hz的误差(其是使用4096的扩频因子和500KHz的带宽的全FFT频段的不太可能的误差)导致仅仅0.13ppm的误差:这将给出仅1.5米测距误差。其次,由于所述响应与所述请求是时间对准的,如果在所估计的频率中有误差,则其将由时间同步中成比例的误差所补偿,使得接收信号和解调信号的frequency(频率)=f(time(时间))的函数是对准的。未同步的影响于是只是所接收能量的微小降级。
这两个效应在图4a和4b中被图示,所述图4a和4b绘制在主站中和在从站中一系列啁啾的瞬时频率。在主设备中所生成的啁啾由双线表示,而关于从设备的那些由单线描绘。实线指示在主站和从站之间所传输的信号,而虚线代表用于去啁啾的本地信号,例如:
图4a示出所述方案对于来自从站的小频率估计误差是健壮的,图4b示出定时补偿是强制性的。
现在回到图6,在主站侧上,测距响应的接收(步骤231)不需要同步步骤。主站假定频率和定时是完美对准的。测距响应不需要嵌入频率估计符号。主站仅估计定时,在没有补偿的测距计算中确切地执行与从站相同的步骤(236和240)。这简化调制解调器,因为测距核对主站和从站这两者是共同的。
优选地,本发明包括分集合并(diversity combining)以改进距离估计的可靠性和精度。通过分集,此处意图的是在相同设备之间执行若干测距测量。这些测量可以用不同的交换接连进行、在相同交换期间并行进行或这两者。
优选地,分集合并基于接收信号强度指示。与低于给定阈值的RSSI对应的测量被舍弃。然后,对剩余的测量求平均以得到初始距离估计。在线性尺度中使用RSSI作为权重来对估计求加权平均也是可能的。
在可能的实现方式中,所应用的阈值大约6dB:具有比测量集的最大RSSI低6dB的关联的RSSI 的测距测量被舍弃。该阈值来自实验数据。
如果空间(即天线分集)和频率分集这两者都被使用,则优选地针对每个天线来计算阈值。
一旦所选择的测量的平均值是可用的,则距离估计被补偿用于多径。视线情况下,与单径相比,多径的平均效应是会增大所测量的飞行时间(time of flight)。因为由直接路径的测量来表示距离更好,该补偿是重要的。因为由于本发明的***的窄带,本发明的***通常不能够解析信道的时间结构(即,解析单独回声(echo)),适当的补偿能够相当大地改进距离估计的可靠性。
在设备之间的距离越长,则传播信道的延迟扩展(delay spread)越大。然而,延迟扩展的影响被限制:在比***的时间分辨率更长的延迟之后发生的回声不修改距离估计。
在非常短的距离处(在几米以下),信道的功率分布快速衰减。我们观测到,距离越短,多径的影响越低。实际上对于在设备之间零距离的限制情况来说,直接路径非常多地支配回声,以便其影响是非常小的。
该行为已经从实验数据确定;图5图示被用于从由多径所影响的距离估计提取真实距离的可能的补偿曲线。使用各种长度的RF电缆的测量证实,空中的无线电传播是该依赖距离的测距偏置的来源。
本发明优选地包括自动自适应测量,例如速率自适应、用于分集的自适应跳频和对在“找到我的物品”应用中的一对设备的执行自动校准的能力。
自适应速率被用于最大化网络容量或链路容量。本发明的***优选地能够基于信道状态而适配信号的频率和/或带宽和/或扩频因子。
通过进行速率自适应,如果信噪比足够好,则测量速率可以被增大。与传输***相比,利用相同的方案来完成速率自适应:改变扩频因子,使用通信路径来交换扩频因子的值。由于更平均,更短的测量能够提供更高的准确度、追踪更多项目或节省功率。
自适应跳频是特别是在2.4GHz ISM带中非常有用的特征,因为2.4GHz ISM带被许多其它应用挤满。因为本发明的***是窄带,其甚至当大多数带被使用时也可以提供测距服务。这不能通过较小灵活的较宽带***完成。可以通过各种已知方法确定最佳频率,并且使用通信路径来传输关于跳频序列的足够的信息。
本发明的***优选地被布置以使用依赖距离的测距误差来自动校准测距测量。如在图5中所示出的,随着距离减小,所估计的距离对距离的斜率增大直到对于例如小于15米的非常接近的距离为5的斜率。在典型点对点应用中,以步行速度的用户瞄准所搜寻的人或物,因而可以假定,真实距离的改变速率或多或少是恒定的并且被限制于例如1.5m/s。一旦在未被补偿的距离估计(在2中所描述的偏置补偿之前)中有突变并且如果对应的速度太高了以致不能是行人速度,则***可以推断,到所搜索对象的真实距离小于15米。这能够被用于修改主设备的校准,以补偿主站的、或更可能为从站(所搜索设备)的校准误差。所修改的主站校准实际上改进所述对的校准。相反地,如果距离估计低于15米,但是如果同时未被补偿的距离估计以行人速度变化,那么***可以检测误差并且增大所估计的距离,因为对于短距离来说,估计应当更快速地变化。该自动校准仅当设备是接近的时发生,这正是当它被需要的时候。具有该自动校准(其中所估计距离的改变速率被用作真实距离的指示),改进***中的置信度,其中可以让设备长时段内没有测距活动。
由于***提供的长距离,本发明能够操作于高度阻塞的条件中。在这些情形中,测距估计将仍然是几乎准确的,因为其是基于飞行时间测量。然后,比较距离估计与平均接收信号强度,本发明能够建立并显示阻碍指示。计算该指示的一种方式是首先计算路径损耗指数,其在视线的情况下应当等于2。路径损耗指数是这样的使得接收功率与距离乘指数幂成反比。为此,需要知道发射功率,但是该信息不需要是高度准确的,因为阻碍效应通常是占优势的。可能的阻碍指示通过从路径损耗指数减2并且将该数目报告给用户而得到。
对于其中用户具有手持设备的应用,阻碍指示可以是随着阻碍增加而在大小上增长和/或改变颜色的条(bar)。这样,手持设备能够同时报告所估计的距离和所估计的阻碍。阻碍级别可以被用作方向提示:室外,当阻碍高时,其经常指示用户的身体正阻碍信号,并且面向不同方向能够确认这点。室内,高阻碍级别指示用户正瞄准的项目不在相同房间/楼层中。这对于该应用是非常方便的信息,如由若干测试所证明的。
图7表示根据本发明的方面的定位***,所述定位***允许确定移动设备510的位置。设备510能够通过包括如以上所解释的一系列啁啾的无线电信号来与多个定位设备521-524进行通信。
定位设备521-524充当信标并且能够通过适合的数据链路540进行通信。数据链路540可以是例如也基于啁啾调制无线电信号或基于任何适合的通信标准的无线无线电链路,或基于电缆、电纤维(electric fibre)或任何其它适当数据传输装置的有线链路。重要地,数据链路540允许使设备521-524的相应时间参考同步,如在本领域中所已知的。所述图表示其间互连并且互相同步其时钟的定位设备521-524,但是在未表示的变形中,它们可以代替地将其时间参考与共同主参考同步。
定位设备521-524优选地是固定的或至少缓慢移动,并且其位置或至少其相对于彼此的相对位置是精确已知的。
定位***也包括至少一个解算器(solver)设备560,所述解算器设备560知道定位设备521-524的位置并且能够与其交换数据,以便计算移动设备510的位置,如将被进一步解释的。即使概括地讲,解算器设备560在此处被表示为与定位设备521-524是物理上不同的,但这并不是本发明的限制特征,并且事实上每个定位设备521-524或同时它们所有可以充当解算器,在这种情况下,链路540可以被用于时钟同步和数据交换这两者。
优选地,移动设备向所有定位设备发射测距请求535,例如如在图3中所格式化的。每个定位设备接收测距请求535并且以相同方式(应用图6的步骤350-362)来对所述测距请求535进行解码,但是每个定位设备将确定不同的测距响应偏移,因为每个离移动设备510都具有不同的距离。
在该点处,所述定位方法偏离先前的实施例,在于代替生成测距响应,偏移被传输到解算器设备560,所述解算器设备560计算移动设备560相对于定位设备521-524的位置。为此,需要的是,足够数目的定位设备确定偏移。在通常情况下,解算器将必须求解包括四个未知量的***:移动设备510的坐标和其时钟的偏移,因此来自四个独立定位设备的至少四个偏移需要被确定。求解这种***的方法在本领域中是已知的。
根据在图8中所表示的另一个实施例,移动节点的位置可以在节点自身中被确定。在这种情况下,多个固定的定位信标521-524如以上所提及的使其时间参考由链路540同步并且同时或以预定时间间隔发出包括例如如在图3中的啁啾的测距序列。如参考图6所解释的,移动设备510能够估计相对时间偏移。因为定位节点的时间参考是同步的,假如移动设备510至少确定来自四个独立定位设备的延迟并且知道其位置,则所述移动设备510能够确定其自己的坐标和其时钟的偏移
重要地,在最后两个实施例中,移动节点510的位置从未被传输并且其仅被解算器560或在后者中被移动设备510已知。

Claims (14)

1.一种包括至少发射设备和接收设备的***,每个设备包括时间参考并且被布置用于发射和接收包括多个啁啾的无线电信号,其中每个啁啾在时间上被限制在初始时刻(T0 )和最终时刻(T1 )之间,在所述初始时刻(T0 )处信号具有初始瞬时频率(f0),并且在所述最终时刻(T1 )处信号具有最终瞬时频率(f1),所述初始和最终时刻以及所述初始和最终频率由时间参考确定,所述设备具有测距模式,在所述测距模式中测距请求从发射设备被发射(201)到接收设备,并且其中接收设备被布置用于接收(300)所述测距请求并且用于基于被包含在测距请求中的啁啾的时间和频率来确定接收设备的时间参考相对于发射设备的时间参考的时间和频率移位(350、359、362)。
2.根据权利要求1所述的***,其中接收设备被布置用于发射回(367)测距响应,所述测距响应包含在时间和频率上与发射设备的时间参考对准的啁啾,并且主设备被布置用于接收(231)测距响应,并且用于基于被包含在测距响应中的啁啾的时间和频率来估计(240)到从节点的距离。
3.根据权利要求1所述的***,进一步包括具有共同时间参考的多个接收设备(521-524)和计算装置(560),所述接收设备(521-524)被布置用于接收测距请求(535)并且用于确定依赖于在发射设备(510)和每个接收设备之间的距离的多个时间偏移,所述计算装置(560)被布置用于基于所述时间偏移来确定发射设备的位置。
4.根据权利要求1所述的***,包括具有共同时间参考的多个发射设备(521-524)和接收设备(510),所述发射设备(521-524)被布置用于发射所述测距请求(535),所述接收设备(510)被布置用于接收测距请求和用于确定依赖于在接收设备(510)和每个发射设备之间的距离的多个时间偏移,并且用于基于所述时间偏移来确定接收设备(510)的位置。
5.根据权利要求1所述的***,其中每个啁啾被数字合成并且在时间上被限制在初始时刻(T0 )和最终时刻(T1 )之间,在所述初始时刻(T0 )处信号具有初始瞬时频率(f0)和初始相位( ),并且在所述最终时刻(T1 )处信号具有最终瞬时频率(f1)和最终相位(),所述信号相位基本上是连续的。
6.根据权利要求1所述的***,其中测距请求包括一系列相同的啁啾(416),并且接收设备被布置用于执行去啁啾操作(357),其中每个所接收的啁啾与本地生成的共轭啁啾相乘,并且在结果上执行FFT,于是FFT的峰值是在所接收的啁啾和本地生成的啁啾之间的时间移位的指示。
7.根据权利要求6所述的***,其中接收设备被布置用于执行经调整的去啁啾(357),其中不同的本地生成的啁啾被用在每个所接收的啁啾处,以便针对定时和频率移位调整。
8.根据前述权利要求中任何一项所述的***,其中测距响应包括一系列相同的啁啾(416),所述啁啾(416)是对每个啁啾应用不同参数而在接收设备中被合成的(367),使得其在时间和频率上与发射设备的时间参考对准。
9.根据权利要求1所述的***,其中接收和/或发射设备被布置成执行若干测距测量并且用于基于关联的信号强度来合并它们。
10.根据权利要求1所述的***,其中基于信道状态来适配无线电信号的频率和/或带宽和/或扩频因子。
11.根据权利要求1至7中任何一项所述的***,其中接收设备被布置成通过应用补偿曲线来补偿被多径所影响的距离估计。
12.根据权利要求11所述的***,被布置成执行补偿曲线的自动校准,其中所估计距离的改变速率被用作真实距离的指示。
13.根据权利要求11所述的***,进一步被布置成基于距离估计和接收信号强度来计算阻碍指示。
14.根据权利要求1至7中任何一项所述的***,其中发射设备和接收设备具有通信模式,所述通信模式允许它们通过啁啾调制的无线电信号来交换数字数据。
CN201410051493.1A 2013-02-14 2014-02-14 测距和定位*** Active CN104135305B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13155220.0A EP2767847B1 (en) 2013-02-14 2013-02-14 Ranging and positioning system
EP20130155220 2013-02-14

Publications (2)

Publication Number Publication Date
CN104135305A true CN104135305A (zh) 2014-11-05
CN104135305B CN104135305B (zh) 2018-05-15

Family

ID=47900509

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480008935.2A Active CN105122080B (zh) 2013-02-14 2014-01-22 测距和定位***
CN201410051493.1A Active CN104135305B (zh) 2013-02-14 2014-02-14 测距和定位***

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480008935.2A Active CN105122080B (zh) 2013-02-14 2014-01-22 测距和定位***

Country Status (6)

Country Link
US (3) US10001555B2 (zh)
EP (3) EP2767847B1 (zh)
CN (2) CN105122080B (zh)
BR (1) BR112015019436B1 (zh)
SG (1) SG11201506246WA (zh)
WO (1) WO2014124785A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453839A (zh) * 2016-05-20 2017-12-08 商升特公司 利用宏分集的无线通信***
CN108474831A (zh) * 2015-11-18 2018-08-31 斯沃奇集团研究和开发有限公司 通过到达角度定位信标的方法
CN108512792A (zh) * 2017-02-27 2018-09-07 恩智浦有限公司 用于无线电装置的设备
CN109752699A (zh) * 2017-11-03 2019-05-14 通用汽车环球科技运作有限责任公司 基于距离-啁啾图中曲线检测的目标检测
CN110933604A (zh) * 2019-10-30 2020-03-27 田泽越 基于位置指纹时序特征的knn室内定位方法
CN111459086A (zh) * 2020-03-30 2020-07-28 深圳市科楠科技开发有限公司 实现定标器控制及数据处理的***及方法
CN113167880A (zh) * 2018-12-11 2021-07-23 法国大陆汽车公司 用于确定认证装置与车辆之间的距离的方法
CN113447917A (zh) * 2020-03-27 2021-09-28 苹果公司 使用物理响应器和虚拟响应器的无线测距
CN113167880B (zh) * 2018-12-11 2024-07-09 法国大陆汽车公司 用于确定认证装置与车辆之间的距离的方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215950A (zh) * 2014-09-19 2014-12-17 北京仿真中心 一种红外与微波波束合成的方法、装置及其***
EP3002896B1 (en) 2014-09-30 2018-05-30 Semtech Corporation Synchronization apparatus and method
EP3065302B1 (en) 2015-03-03 2019-05-08 Semtech Corporation Communication device and method in the cellular band
CN105323029B (zh) * 2015-11-12 2017-11-21 哈尔滨工程大学 基于声链路测距、测速的水声通信动态时钟同步方法
EP3173809B1 (en) 2015-11-30 2023-06-28 Semtech Corporation System and method for robust and efficient tdoa based location estimation in the presence of various multipath delay
WO2017105154A1 (ko) * 2015-12-17 2017-06-22 엘지전자 주식회사 무선 통신 시스템에서 nan 단말이 레인징 오퍼레이션을 수행하는 방법 및 장치
JP7284979B2 (ja) * 2015-12-23 2023-06-01 アセンティア イメージング, インコーポレイテッド 位置決めシステムおよび関連方法
DE102016119484A1 (de) * 2015-12-31 2017-07-06 Hochschule Trier Positionsermittlungseinrichtung
EP3226020A1 (en) 2016-03-31 2017-10-04 Konica Minolta Business Solutions Europe GmbH Indoor location system
CN106969733B (zh) 2016-05-20 2021-05-14 美国西北仪器公司 在目标空间中对目标物体进行定位的方法及测距装置
EP3264622B1 (en) 2016-07-01 2019-03-27 Semtech Corporation Low complexity, low power and long range radio receiver
EP3273607B1 (en) * 2016-07-20 2023-01-18 Semtech Corporation Method and system of timing and localizing a radio signal
US10444350B2 (en) * 2016-07-26 2019-10-15 Semiconductor Components Industries, Llc Obstacle monitoring using motion-compensated distance
US11061103B1 (en) * 2017-02-10 2021-07-13 Iseeloc, Inc. Navigation system, device and method using unsynchronized nodes
WO2018186663A1 (ko) * 2017-04-04 2018-10-11 엘지전자 주식회사 무선 통신 시스템에서 거리 측정을 위한 방법 및 이를 위한 장치
DE102017111367A1 (de) * 2017-05-24 2018-11-29 Abb Schweiz Ag Abstandsmesssystem, -verfahren und diese verwendendes Robotersystem
US10897771B2 (en) * 2017-08-04 2021-01-19 Hall Labs, Llc Wireless stream broadcast system using spectrum-impact-smoothed channel sequencing and deferred acknowledgments
US11101845B2 (en) 2017-09-18 2021-08-24 Semtech Corporation System for wireless power transmission and communication
EP3502736B1 (en) * 2017-12-20 2023-01-25 Stichting IMEC Nederland Method for distance determination
US11276938B2 (en) 2018-01-11 2022-03-15 Semtech Corporation Single layer antenna
US10408929B2 (en) * 2018-01-12 2019-09-10 Intel Corporation Non-synchronized RF ranging
EP3591853B1 (en) * 2018-07-02 2021-09-01 Semtech Corporation Low-power, frequency-hopping, wide-area network with random medium access
FR3086444B1 (fr) * 2018-09-21 2020-08-28 Continental Automotive France Procede et dispositif pour determiner un instant d'arrivee d'un signal radio
CN113273277A (zh) * 2019-01-25 2021-08-17 联想(北京)有限公司 资源配置
US11041948B2 (en) 2019-04-08 2021-06-22 Apple Inc. Channel estimation combining for secure time of flight applications
CN110430156B (zh) * 2019-08-14 2021-06-01 北京智芯微电子科技有限公司 突发ofdm数据传输的帧同步方法及***
CN110824981A (zh) * 2019-10-23 2020-02-21 天津七六四通信导航技术有限公司 一种精密dme距离解算数字处理单元板及解算方法
CN111080998B (zh) * 2019-12-11 2021-10-15 广西电网有限责任公司 一种基于LoRa技术的多表集抄的控制方法及***
US11310085B2 (en) 2019-12-11 2022-04-19 Semtech Corporation LoRa advanced receiver
KR20210082946A (ko) * 2019-12-26 2021-07-06 삼성전자주식회사 레이더 신호 처리 장치 및 방법
CN112040393B (zh) * 2020-08-03 2023-03-31 成都四相致新科技有限公司 Tof测距调度方法
WO2022117523A2 (en) * 2020-12-01 2022-06-09 Nordic Semiconductor Asa Ranging between radio devices
EP4012933A1 (en) 2020-12-10 2022-06-15 Semtech Corporation Lora advanced receiver
EP4012448A1 (en) 2020-12-11 2022-06-15 Semtech Corporation Doppler ranging system
US11736142B2 (en) * 2020-12-31 2023-08-22 Sure-Fi, Inc. Single chirp data alignment for chirp spread spectrum
WO2022099225A1 (en) * 2021-12-29 2022-05-12 Innopeak Technology, Inc. Methods and systems for generating point clouds
US20230291434A1 (en) 2022-03-10 2023-09-14 Semtech Corporation Spread spectrum receiver and testing method
CN118075800A (zh) * 2022-11-22 2024-05-24 华为技术有限公司 通信方法与通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550549A (en) * 1995-02-28 1996-08-27 Harris Corporation Transponder system and method
US20060232463A1 (en) * 2005-04-19 2006-10-19 Northrop Grumman Corporation Joint stars embedded data link
CN102474297A (zh) * 2009-07-02 2012-05-23 纳米实验室 通信***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940893B1 (en) 1999-09-27 2005-09-06 Telecommunications Research Laboratories High-speed indoor wireless chirp spread spectrum data link
DE10310157B4 (de) * 2003-03-07 2008-07-31 Siemens Ag Verfahren und Einrichtung zur Elimination der Oszillator-Drift in einem Zugangskontrollsystem
KR100579515B1 (ko) * 2004-10-08 2006-05-15 삼성전자주식회사 브로드캐스트 암호화를 위한 키 생성 장치 및 방법
WO2006051119A1 (de) * 2004-11-15 2006-05-18 Nanotron Technologies Gmbh Symmetrisches mehrwegverfahren zur bestimmung des abstandes zweier senderempfänger
US8711038B2 (en) * 2006-10-05 2014-04-29 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry, Through The Communications Research Centre Canada High-resolution ranging and location finding using multicarrier signals
US8441391B2 (en) * 2010-05-05 2013-05-14 Roundtrip Llc Ultra-secure communication methods and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550549A (en) * 1995-02-28 1996-08-27 Harris Corporation Transponder system and method
US20060232463A1 (en) * 2005-04-19 2006-10-19 Northrop Grumman Corporation Joint stars embedded data link
CN102474297A (zh) * 2009-07-02 2012-05-23 纳米实验室 通信***

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474831A (zh) * 2015-11-18 2018-08-31 斯沃奇集团研究和开发有限公司 通过到达角度定位信标的方法
CN107453839A (zh) * 2016-05-20 2017-12-08 商升特公司 利用宏分集的无线通信***
CN107453839B (zh) * 2016-05-20 2020-07-14 商升特公司 利用宏分集的无线通信***
CN108512792A (zh) * 2017-02-27 2018-09-07 恩智浦有限公司 用于无线电装置的设备
CN108512792B (zh) * 2017-02-27 2022-10-25 恩智浦有限公司 用于无线电装置的设备
CN109752699A (zh) * 2017-11-03 2019-05-14 通用汽车环球科技运作有限责任公司 基于距离-啁啾图中曲线检测的目标检测
CN113167880B (zh) * 2018-12-11 2024-07-09 法国大陆汽车公司 用于确定认证装置与车辆之间的距离的方法
CN113167880A (zh) * 2018-12-11 2021-07-23 法国大陆汽车公司 用于确定认证装置与车辆之间的距离的方法
CN110933604B (zh) * 2019-10-30 2022-07-12 田泽越 基于位置指纹时序特征的knn室内定位方法
CN110933604A (zh) * 2019-10-30 2020-03-27 田泽越 基于位置指纹时序特征的knn室内定位方法
CN113447917A (zh) * 2020-03-27 2021-09-28 苹果公司 使用物理响应器和虚拟响应器的无线测距
CN111459086A (zh) * 2020-03-30 2020-07-28 深圳市科楠科技开发有限公司 实现定标器控制及数据处理的***及方法
CN111459086B (zh) * 2020-03-30 2023-08-29 深圳市科楠科技开发有限公司 实现定标器控制及数据处理的***及方法

Also Published As

Publication number Publication date
US10001555B2 (en) 2018-06-19
EP2767848B1 (en) 2017-04-26
US10823834B2 (en) 2020-11-03
EP2767848A3 (en) 2014-10-29
CN105122080B (zh) 2017-07-21
CN105122080A (zh) 2015-12-02
SG11201506246WA (en) 2015-09-29
EP3187898A1 (en) 2017-07-05
US20140225762A1 (en) 2014-08-14
EP2767847B1 (en) 2016-04-20
CN104135305B (zh) 2018-05-15
US9551786B2 (en) 2017-01-24
EP2767848A1 (en) 2014-08-20
US20170276779A1 (en) 2017-09-28
US20160003940A1 (en) 2016-01-07
WO2014124785A1 (en) 2014-08-21
EP3187898B1 (en) 2018-08-15
BR112015019436A2 (pt) 2017-07-18
EP2767847A1 (en) 2014-08-20
BR112015019436B1 (pt) 2022-06-21

Similar Documents

Publication Publication Date Title
CN104135305A (zh) 测距和定位***
JP6876794B2 (ja) テレグラム分割に基づく測位
CN106154222A (zh) 一种利用无线电射频信号检测人的行走方向的方法
CN104115025A (zh) 在用于地理定位目的的无线通信网络中执行的同步时间测量的方法
US20210286043A1 (en) System, apparatus, and/or method for determining a time of flight for one or more receivers and transmitters
KR20080062202A (ko) 광대역 무선통신 시스템에서 단말의 위치를 추정하기 위한장치 및 방법
US9146300B2 (en) Location-determining system for radio clients within local-area spaces
WO2018153836A1 (en) Orthogonal correlation signals for detection and synchronization at low snr
US11079463B2 (en) Method and device for position determination
US20220187443A1 (en) Doppler ranging system
CN108120964B (zh) 动态测试二次雷达本机时延数据提高测距精度的方法
AU2022257308A1 (en) Method and arrangement for determining a clock offset between at least two radio units
CN101566690B (zh) 一种无线自组网测距方法及实现该方法的测距***
Hach et al. Wireless synchronization in time difference of arrival based real time locating systems
JP6253856B1 (ja) 分散アンテナ基地局、移動局および距離測定方法
Morano et al. Distance-and Angle-Based Hybrid Localization Integrated in the IEEE 802.15. 4 TSCH Communication Protocol
US20120262341A1 (en) Method for identifying transmitters by a terminal in a single-frequency network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant