CN104052051A - 直流传输和配送***以及操作该***的方法 - Google Patents

直流传输和配送***以及操作该***的方法 Download PDF

Info

Publication number
CN104052051A
CN104052051A CN201410017730.2A CN201410017730A CN104052051A CN 104052051 A CN104052051 A CN 104052051A CN 201410017730 A CN201410017730 A CN 201410017730A CN 104052051 A CN104052051 A CN 104052051A
Authority
CN
China
Prior art keywords
converter apparatus
current
hvdc
mechanical isolation
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410017730.2A
Other languages
English (en)
Other versions
CN104052051B (zh
Inventor
N.R.乔扈里
R.达塔
R.K.古普塔
R.N.拉朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN104052051A publication Critical patent/CN104052051A/zh
Application granted granted Critical
Publication of CN104052051B publication Critical patent/CN104052051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本发明名称为“直流传输和配送***以及操作该***的方法”一种直流(DC)传输和配送(T&D)***,包括多个DC至DC转换器装置,这些多个DC至DC转换器装置定义DCT&D***的多个可隔离部分。该DCT&D***还包括耦合到这些DC至DC转换器装置的DCT&D控制***。该DCT&D控制***包括多个电流传感器。将这些电流传感器的至少一个设在这些DC至DC转换器装置的其中之一处。将电流传感器配置成传送表示经由DC至DC转换器装置的DC电流传输的值的信号。该DCT&D控制***还包括多个处理器。将至少一个处理器耦合到电流传感器和DC至DC转换器装置。该处理器配置成作为经由DC至DC转换器装置的DC电流传输的值的函数来调节经由该DC至DC转换器装置的DC电流传输。

Description

直流传输和配送***以及操作该***的方法
有关美国联邦政府资助的研究和开发的声明
本发明是依据美国能源部高级研究计划局(ARPA-E)授予的合同号DE-AR0000224的政府支持完成的。政府可能在本发明中拥有某些权利。
技术领域
本发明披露的领域一般涉及高电压直流(HVDC)传输和配送(T&D)***,更具体地来说,涉及其运行的***和方法。
背景技术
至少一些公知发电设施在物理位置上位于物理上接近有困难的区域或偏远地理区中。一个示例包括地理上位于远离消费者的崎岖和/或偏远的地形(例如山区山腹)以及近海(例如近海风力涡轮设备)的发电设施。更确切地来说,这些风力涡轮可能在共有地理区中在物理上嵌套在一起,以形成风力涡轮厂,并电耦合到共有交流(AC)收集器***。许多这些公知的风力涡轮厂包括电耦合到AC收集器***的分开的功率变换组装件,或***。此类公知的分开的功率变换组装件包括整流器部分和逆变器部分,整流器部分将发电设施产生的AC转换成直流(DC),逆变器部分将DC转换成预定频率和电压振幅的AC。分开的功率变换组装件的整流器部分设在紧靠关联的发电设施的附近,而分开的全功率变换组装件的逆变器部分设在如路基设施的远端设施中。此类整流器和逆变器部分典型地通过水下HVDC电力线缆来电连接,这些水下HVDC电力线缆至少部分地定义HVDC T&D***。再有,至少一些公知的HVDC T&D***耦合到无需AC变换的逆变器部分的DC负载。
许多公知的HVDC T&D***包括设为定义***的可隔离部分的机械隔离装置,例如,断路器和自动开关。可以将此类机械隔离装置开路以隔离电故障和可能地,一旦故障被隔离时,将其闭合以使尽可能多的***恢复服务。此外,许多公知HVDC T&D***包括监督控制和数据采集(SCADA)***或某种等效装置,该SCADA***内设有电流和电压传感器以利于隔离和恢复操作。但是,与AC T&D***对比,由于DC的特性,即,作为时间的函数的DC电压和电流的振幅没过零,该机械隔离装置的此类开路需要在负载下将装置开路,从而增加该机械隔离装置的触点部分处产生电弧的风险,与此同时触点部分的使用寿命潜在地缩短。再有,在向上DC电流漂移的情况下,一般认为操作员有大约5毫秒(ms)来隔离关联的故障以避免电流路径中的组件的使用寿命的潜在缩短。
发明内容
在一个方面中,提供一种直流(DC)传输和配送(T&D)***。该***包括多个DC至DC转换器装置,所述多个DC至DC转换器装置至少部分地定义所述DC T&D***的多个可隔离部分。DC T&D***还包括耦合到多个DC至DC转换器装置的DC T&D控制***。该DC T&D控制***包括多个电流传感器。将多个电流传感器的至少一个设在多个DC至DC转换器装置的至少一个DC至DC转换器装置处。将多个电流传感器的至少一个电流传感器配置成传送表示经至少一个DC至DC转换器装置的DC电流传输的值的至少一个信号。DC T&D控制***还包括多个处理器。将多个处理器的至少一个处理器耦合到至少一个电流传感器和至少一个DC至DC转换器装置。将至少一个处理器配置成作为经由至少一个DC至DC转换器装置的DC电流传输的值的函数来调节至少包括经由至少一个DC至DC转换器装置的DC电流传输的电参数。
在进一步的方面中,提供一种用于DC T&D***的直流(DC)传输和配送(T&D)控制***。该DC T&D***包括多个DC至DC转换器装置。该DC T&D控制***包括多个电流传感器。将多个电流传感器的至少一个电流传感器设在多个DC至DC转换器装置的每个DC至DC转换器装置处。每个电流传感器配置成传送表示经由其中的DC电流传输的值的至少一个信号。该DC T&D控制***还包括耦合到多个电流传感器和多个DC至DC转换器装置的多个处理器。将多个处理器配置成确定DC T&D***上的电故障,并作为电故障的结果,至少部分地作为经由多个DC至DC转换器装置的每个的DC电流传输的值的函数来调节经由多个DC至DC转换器装置的至少一部分的DC电流传输。多个处理器还配置成确定经由DC T&D***的沿着第一方向的和沿着与第一方向相反的第二方向的DC电流传输。
在另一个方面中,提供一种操作直流(DC)传输和配送(T&D)***的方法。该DC T&D***包括多个DC至DC转换器装置和各包括至少一个机械隔离装置的多个节点。该DC T&D***还包括DC T&D***的在这些节点之间定义的多个可隔离部分。该方法包括减少经由电故障处的多个可隔离部分的至少一部分的DC电流传输,并调节至少一个DC至DC转换器装置。该方法还包括确定经由多个节点的每个节点的DC电流传输的方向。该方法还包括至少部分地作为经由多个节点的每个节点的DC电流传输的方向的函数来确定该DC T&D***上的电故障的位置。该方法还包括隔离多个可隔离部分的至少其中一部分,其包括将至少一个机械隔离装置开路。
根据第一实施例,提供了一种直流(DC)传输和配送(T&D)***,包括:多个DC至DC转换器装置,所述多个DC至DC转换器装置至少部分地定义所述DC T&D***的多个可隔离部分;以及耦合到所述多个DC至DC转换器装置的DC T&D控制***,所述DC T&D控制***包括:多个电流传感器,其中将所述多个电流传感器的至少一个设在所述多个DC至DC转换器装置的至少一个DC至DC转换器装置处,其中所述多个电流传感器的所述至少一个电流传感器配置成传送表示经所述至少一个DC至DC转换器装置的DC电流传输的值的至少一个信号;以及多个处理器,其中所述多个处理器的至少一个处理器耦合到所述至少一个电流传感器和所述至少一个DC至DC转换器装置,所述至少一个处理器配置成作为经由所述至少一个DC至DC转换器装置的DC电流传输的值的函数来调节至少包括经由所述至少一个DC至DC转换器装置的DC电流传输的电参数。
优选地,根据第一实施例的***还包括至少一个发电装置,其中所述多个DC至DC转换器装置经由多个电通道耦合到所述至少一个发电装置。进一步地,所述至少一个发电装置包括至少一个可再生能源装置。更进一步地,所述至少一个可再生能源装置包括至少一个风力涡轮发电机。
优选地,所述多个DC至DC转换器装置包括设在近海DC站内的至少一个DC至DC转换器装置。
优选地,根据第一实施例的***还包括多个机械隔离装置,所述多个机械隔离装置配置成将所述DC T&D***的至少一部分移出服务,其中所述多个DC至DC转换器装置还配置成在促动所述多个机械隔离装置的至少一个机械隔离装置之前,减少经由所述DC T&D***的所述至少一部分的DC电流传输。进一步地,所述多个处理器还配置成至少部分地作为所述至少一个机械隔离装置的状态的函数来经由所述多个DC至DC转换器装置恢复所述DC T&D***的部分。更进一步地,所述多个DC至DC转换器装置还配置成增加经由未经由所述至少一个机械隔离装置隔离的所述DC T&D***的至少一部分的DC电流传输。进一步地,所述多个电流传感器和所述多个机械隔离装置设在所述DC T&D***内以在其中定义多个节点,从而与所述多个DC至DC转换器装置结合进一步至少部分地定义所述DC T&D***的所述多个可隔离部分。更进一步地,所述至少一个处理器还配置成:生成包括所述多个节点的每个节点的数字矩阵;对通过所述多个电流传感器的第一部分检测的、经由所述多个节点的至少第一部分沿着所述第一方向传送的DC电流传输指配正1的数值;以及对通过所述多个电流传感器的第二部分检测的、经由所述多个节点的至少第二部分沿着所述第二方向传送的DC电流传输指配负1的数值。再进一步地,所述多个处理器还配置成:减少经由所述至少一个DC至DC转换器装置的DC电流传输,以减少经由所述多个可隔离部分的所述至少一个的DC电流传输;以及作为所述数值的指配的函数来促动所述至少一个机械隔离装置以隔离所述多个可隔离部分的所述至少一个。又更进一步地,所述至少一个处理器还配置成:经由促动所述至少一个机械隔离装置来取消对所述多个可隔离部分的所述至少一个的隔离;以及增加经由未经由所述至少一个DC至DC转换器装置隔离的所述DC T&D***的至少一部分的DC电流传输。再又更进一步地,所述多个处理器还配置成至少部分地作为经由所述多个节点的DC功率传输的方向的函数,隔离和恢复所述多个可隔离部分的所述至少一个。
根据第二实施例,提供了一种用于DC T&D***的直流(DC)传输和配送(T&D)控制***,所述DC T&D***包括多个DC至DC转换器装置,所述DC T&D控制***包括:多个电流传感器,其中将所述多个电流传感器的至少一个电流传感器设在所述多个DC至DC转换器装置的每个DC至DC转换器装置处,其中每个所述电流传感器配置成传送表示经由其中的DC电流传输的值的至少一个信号;以及耦合到所述多个电流传感器和所述多个DC至DC转换器装置的多个处理器,所述多个处理器配置成:确定所述DC T&D***上的电故障;作为所述电故障的结果,至少部分地作为经由所述多个DC至DC转换器装置的每一个的DC电流传输的值的函数来调节经由所述多个DC至DC转换器装置的至少其中一部分的DC电流传输;以及确定经由所述DC T&D***的沿着第一方向的和沿着与所述第一方向相反的第二方向的DC电流传输。
根据第三实施例,提供了一种操作直流(DC)传输和配送(T&D)***的方法,所述直流(DC)传输和配送(T&D)***包括多个DC至DC转换器装置和各包括至少一个机械隔离装置的多个节点,以及在所述节点之间定义的所述DC T&D***的多个可隔离部分,所述方法包括:减少经由所述电故障处的所述多个可隔离部分的至少一部分的DC电流传输,包括调节所述至少一个DC至DC转换器装置;确定经由所述多个节点的每个节点的DC电流传输的方向;至少部分地作为经由所述多个节点的每个节点的DC电流传输的方向的函数来确定所述DC T&D***上的电故障的位置;以及隔离所述多个可隔离部分的至少其中一部分包括将所述至少一个机械隔离装置开路。
优选地,减少经由所述多个可隔离部分的至少一部分的DC电流传输包括,在促动所述至少一个机械隔离装置之前,减少经由所述至少一个机械隔离装置的DC电流传输。
进一步地,减少经由所述多个可隔离部分的至少一部分的DC电流传输还包括,当经由所述至少一个机械隔离装置传送的电流为大约零时,将所述至少一个机械隔离装置开路。
优选地,调节所述至少一个DC至DC转换器装置包括:调节可再生能源处的第一DC至DC转换器装置;以及调节近海DC站处的第二DC至DC转换器装置。
优选地,根据第三实施例的方法还包括:经由至少一个处理器生成数字矩阵,其中所述数字矩阵包括所述多个节点的每个节点;经由所述至少一个处理器在所述数字矩阵中指配正1的数值,其中正1的所述数值表示沿着向前方向经由所述多个节点的至少一个节点的DC电流传输;以及经由所述至少一个处理器在所述数字矩阵中指配负1的数值,其中负1的所述数值表示沿着逆向方向经由所述多个节点的至少一个节点的DC电流传输。
优选地,根据第三实施例的方法还包括:通过将所述至少一个机械隔离装置闭合,至少部分地恢复所述多个可隔离部分的至少一部分;以及增加经由所述多个可隔离部分的所述至少一部分的DC电流传输包括调节至少一个DC至DC转换器装置。
附图说明
当参考附图阅读下文详细描述时,将更好地理解本发明的这些和其他特征、方面和优点,在这些附图中相似的符号表示相似的部件,其中:
图1是示范计算装置的框图;
图2是可以包括图1所示的计算装置的示范监视和控制***的一部分的框图;
图3是可以使用图2所示的***来监视和控制的示范高电压直流(HVDC)传输和配送(T&D)***的示意图;
图4是可以使用图2所示的***来监视和控制的备选示范HVDC T&D***的示意图;
图5是可以使用图2所示的***来监视和控制的另一个备选示范HVDC T&D***的示意图;
图6是可以与图5所示的***一起使用的示范节点的示意图;以及
图7是可以与图5所示的***一起使用的、作为故障位置的函数的电流方向的表格视图。
除非另行说明,否则本文提供的附图意味着图示本发明披露的实施例的特征。确信这些特征可应用于包括本发明披露的一个或多个实施例的范围广泛的***。因此,这些附图不意味着包含本领域普通技术人员公知实现本文披露的实施例所需的所有常规特征。
具体实施方式
在下文说明书和权利要求中,将引用多个术语,这些术语应定义为具有如下含义。
除非上下文明确地另行说明,否则单数形式“一”和“该”包含多个引用项。
“可选”或“可选地”表示后面描述的事件或情况可能出现或可能不出现,以及该描述包含此事件出现的实例以及此事件未出现的实例。
如本说明书和权利要求所使用的,可能使用近似语言来修饰在不导致与其相关的基本功能改变的前提下可允许变化的任何数量表示。相应地,如“大约”和“基本上”的一个或多个术语修饰的值不应限于所指定的精确值。在至少一些实例中,近似语言可以对应于测量该值的仪器的精度。此处以及整个说明书和权利要求中,可以组合和/或互换范围限制,除非上下文或语言另行说明,否则可以标识此类范围以及此类范围包括本文包含的所有从属范围。
本文描述的HVDC传输和配送(T&D)***提供一种用于传输HVDC功率的成本有效的方法。本文描述的实施例利于跨相对较长距离传送HVDC功率,同时利于快速地检测和选择性隔离***上的电故障。本文描述的实施例还利于快速地恢复***中故障部分以外的的那些部分。确切地来说,本文描述的装置、***和方法包括多个DC至DC转换器装置和定义HVDC T&D***中的节点的机械隔离装置。再有,DC至DC转换器装置利于在经由其中传送而感测到的DC电流超过参数的情况下实时地减少经由其中的DC电流。再者,将每个节点处测量的DC电流的极性实时地传送给监督控制和数据采集(SCADA)***。确切地来说,在感测到一个或多个节点中逆向极性的DC电流的情况下,DC至DC转换器装置以将逼近0安培的大大地降低的负载启动与机械隔离装置关联的操作。
本文描述的装置、***和方法利于***恢复。一旦清除电故障,则SCADA***将启动故障后复原动作。确切地来说,清除的机械隔离装置将在接近0的负载下重新闭合,关联的DC至DC转换器装置将增加经由这些转换器和机械隔离装置传送的电流以迅速地恢复至受影响部分的DC功率传输。
图1是可以使用来执行高电压直流(HVDC)传输和配送(T&D)***(图1中未示出)的监视的示范计算装置105的框图。更确切地来说,任何设备、***和过程,即,HVDC T&D***的组件,例如且不限于,DC至DC转换器装置(图1中未示出)、机械隔离装置和监视装置(图1中未示出)。计算装置105包括存储器装置110和可操作地耦合到存储器装置110以用于执行指令的处理器115。处理器115可以包括例如且不限于多核配置中的一个或多个处理单元。在一些实施例中,将可执行指令存储在存储器装置110中。计算装置105可配置成由编程处理器115执行本文描述的一个或多个操作。例如,可以通过将操作编码为一个或多个可执行指令并在存储器装置110中提供这些可执行指令来对处理器115编程。在该示范实施例中,存储器装置110是能够实现如可执行指令和/或其他数据的信息的存储和检索的一个或多个装置。存储器装置110可以包括一个或多个计算机可读介质,如且不限于,随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、固态硬盘、硬盘、只读存储器(ROM)、可擦写可编程ROM(EPROM)、电可擦写可编程ROM(EEPROM)和/或非易失性RAM(NVRAM)存储器。上面的存储器类型仅是示范性的,因此不是有关可用于计算机程序存储的存储器类型的限制。
正如本文所使用的,术语“计算机”及相关术语,例如“计算装置”不限于本领域中称为计算机的集成电路,而是广义地指微控制器、微计算机、可编程逻辑控制器(PLC)、专用集成电路和其他可编程电路(图1中未示出),以及这些术语在本文中可互换地使用。
再者,正如本文所使用的,术语“软件”和“固件”是可互换的,并且包括存储在存储器中以供个人计算机、工作站、客户机和服务器执行的任何计算机程序。
再者,正如本文所使用的,术语“非临时性计算机可读介质”包括所有有形计算机可读介质,如固件、软盘、CD-ROM、DVD和如网络或因特网的另一种数字源,以及尚待开发的数字装置,唯一除外是临时性传播信号。
存储器装置110可以配置成存储运行测量,包括且不限于实时和历史振动值和/或任何其他类型数据。在一些实施例中,处理器115基于数据的新旧从存储器装置110移除或“清除”数据。例如,处理器115可以盖写与后续时间和/或事件关联的先前记录和存储的数据。作为附加或备选,处理器115可以移除超出预定时间间隔的数据。再有,存储器装置110包括且不限于用于帮助监视和控制HVDC T&D***内的组件的足够数据、算法和命令。
正如本文所使用的,术语“实时”是指关联的事件发生的时间、测量和收集预定数据的时间、处理数据的时间和***响应事件和环境的时间的至少其中之一。在本文描述的实施例中,这些活动和事件基本瞬间发生。
在一些实施例中,计算装置105包括耦合到处理器115的呈示接口120。呈示接口120将如用户界面和/或报警的信息呈示给用户125。在一个实施例中,呈示接口120包括显示器适配器(未示出),如阴极射线管(CRT)、液晶显示器(LCD)、有机LED(OLED)显示器和/或“电子墨水”显示器。在一些实施例中,呈示接口120包括一个或多个显示装置。作为附加或备选,呈示接口120包括音频输出装置(未示出)(例如,音频适配器和/或扬声器)和/或打印机(未示出)。在一些实施例中,呈示接口120通过使用例如人机接口(HMI)(图1中未示出)呈示与正在被监视的HVDC T&D***关联的报警。
在一些实施例中,计算装置105包括用户输入接口130。在该示范实施例中,用户输入接口130耦合到处理器115以及从用户125接收输入。用户输入接口130可以包括例如键盘、指向装置、鼠标、触控笔、触敏板,例如且不限于,触摸板或触摸屏、和/或音频输入接口(例如且不限于麦克风)。如触摸屏的单个组件可以兼用作呈示接口120的显示装置和用户输入接口130。
通信接口135耦合到处理器115且配置成与一个或多个其他装置通信耦合(一个或多个其他装置例如传感器或另一个计算装置105),以及执行相对于此类装置的输入和输出操作同时作为输入通道执行。例如,通信接口135可以包括且不限于有线网络适配器、无线网络适配器、移动电信适配器、串行通信适配器和/或并行通信适配器。通信接口135可以从一个或多个远程装置接收数据和/或将数据传送到一个或多个远程装置。例如,一个计算装置105的通信接口135可以向另一个计算装置105的通信接口135传送警报。
呈示接口120和/或通信接口135均能够(例如,向用户125或另一个装置)提供适于与本文描述的方法一起使用的信息。相应地,呈示接口120和通信接口135可以称为输出装置。相似地,用户输入接口130和通信接口135能够接收适于与本文描述的方法一起使用的信息并且可以称为输入装置。
图2是可以使用来监视和控制HVDC T&D***300的至少一部分的监视和控制***、即在示范实施例中监督控制和数据采集(SCADA)***200的一部分的框图。正如本文所使用的,术语“SCADA***”是指可以跨多个地点和长距离监视和控制HVDC T&D***300的任何控制和监视***。
在该示范实施例中,SCADA***200包括配置成执行监视算法和监视逻辑的至少一个中央处理单元(CPU)215。CPU 215可以经由通信网络225耦合到其他装置220。CPU 215可以是且不限于设备级集中式CPU、工厂级集中式CPU、多个分布式CPU的其中之一和便携式CPU。作为备选,SCADA***200包括配置成执行控制算法和控制逻辑的至少一个中央处理单元(CPU)215。CPU 215可以是且不限于设备级集中式控制器、多个分布式控制器的其中之一和便携式控制器。再有,作为备选,SCADA***200仅向单独CPU或控制器提供数据输入。
网络225的实施例可以包括与不限于因特网、局域网(LAN)、广域网(WAN)、无线LAN(WLAN)和/或虚拟专用网络(VPN)的操作耦合。虽然某些操作是在下文中结合特定计算装置105来描述的,但是可设想任何计算装置105可以执行所描述的操作的其中一个或多个操作。例如,CPU 215可以执行全部如下操作。
参考图1和图2,CPU 215是计算装置105。在该示范实施例中,计算装置105经由通信接口135耦合到网络225。在备选实施例中,将CPU 215与其他装置220集成。
正如本文所使用的,术语“控制器”、“控制***”、“数据采集***”和“处理器”包括任何可编程***,其包括***和微控制器、精简指令集电路、专用集成电路、可编程逻辑电路和能够执行本文描述的功能的任何其他电路。上文的示例仅是示范性的,并且因此不应以任何方式限制术语处理器的定义和/或含义。而且,在一些实施例中,可以在能够实现如本文描述的发电单元(图2中未示出)的操作的更宽泛控制***(未示出)内实现SCADA***200的至少一部分和附加部分(未示出),更宽泛控制***包括且不限于个人计算机、远程服务器、可编程逻辑控制器(PLC)、分布式控制***(DCS)机柜和手持启用因特网的装置内驻存的那些处理器。
CPU 215例如且不限于经由用户输入接口130和/或呈示接口120与第一操作员230交互。在一个实施例中,CPU 215向操作员呈示有关HVDC T&D***300的信息(如报警)。其他装置220例如且不限于经由用户输入接口130和/或呈示接口120与第二操作员235交互。例如,其他装置220向第二操作员235呈示报警和/或其他运行信息。正如本文所使用的,术语“操作员”包括具备与操作和维护HVDC T&D***300关联的任何能力的任何人员,包括且不限于轮班操作人员、维护技工和设备管理员。
在该示范实施例中,HVDC T&D***300包括经由至少一个输入通道245耦合到CPU 215的一个或多个监视传感器240。监视传感器240收集运行测量,包括且不限于,HVDC T&D***300内生成的DC电压和电流。监视传感器240重复(例如周期性地)持续地和/或在请求时传送测量时的运行测量读数。CPU 215接收并处理运行测量读数。此类数据跨网络225传送,并且可以被能够访问网络225的任何装置访问,能够访问网络225的任何装置包括且不限于桌上型计算机、膝上型计算机和个人数字助理(PDA)(二者均未示出)。在备选实施例中,CPU 215包括且不限于用于帮助控制经由HVDC T&D***300的DC电流传输的足够数据、算法和命令。
在该示范实施例中,监视传感器240可以生成大量数据。因此,其他装置220包括具有能够实现如本文描述的HVDC T&D***300和SCADA***200的操作的数据库和存储***的至少一个数据服务器。
图3是可以使用SCADA***200来监视和控制的示范高电压直流(HVDC)传输和配送(T&D)***300的示意图。在该示范实施例中,HVDC T&D***300将多个交流(AC)发电装置302耦合到可能设在远离装置302数百或数千公里的电功率传输和配电电网304。
再有,在该示范实施例中,每个发电装置302是永磁(PM)风力涡轮发电机(WTG)。可以将发电装置302至少部分地在地理上和/或在电气上分组以定义可再生能源发电设施,即,风电厂306。风电厂306由特定地理区域中的多个风力涡轮发电机定义,或作为备选,由每个风力涡轮发电机至共有配电站的电连接定义。风电厂306可能在物理上位于偏远地理区或难以物理上接近的区域中。例如且不限于,风电厂306可能在地理上位于远离消费者的崎岖和/或偏远的地形(例如山区山腹)中。
在该示范实施例中,包括发电装置302的风电厂306位于近海,即装置302是近海PM WTG安装设备。作为备选,发电装置302可以包括任何类型的可再生发电***,包括例如且不限于,太阳能发电***、燃料电池、热功率发电机、地热发电机、水力发电机、柴油发电机、汽油发电机和/或从可再生能源发电的任何其他装置。再有,作为备选,发电装置302可以包括任何类型的不可再生发电***,包括例如且不限于,燃煤或燃油点燃的设施、燃气涡轮引擎、核能发电设施和/或从不可再生能源发电的任何其他装置。而且,可以使用任何数量的发电装置302,从1到n个装置。
每个发电装置302耦合到AC至DC整流器装置308。AC至DC整流器装置308从发电装置302接收三相正弦交流(AC)功率,并将三相正弦AC功率整流成预定电压下的直流(DC)功率。
再有,在该示范实施例中,发电装置302的每一个和AC至DC整流器装置308的每一个是相似的。而且,发电装置302的每一个和AC至DC整流器装置308的每一个配置成向SCADA***200传送实时运行状态和反馈信息以便从SCADA***200接收命令。作为备选,使用能够实现HVDC T&D***300和SCADA***200的操作的任何控制***体系结构。
在该示范实施例中,HVDC T&D***300包括耦合到每个AC至DC整流器装置308的一个DC至DC转换器装置310。DC至DC转换器装置310接收从AC至DC整流器装置308传送的DC功率,并将具有第一电压VDC-1的DC功率转换成具有利于长距离传输到电网304的具有第二预定电压VDC-2的DC功率。HVDC T&D***300还包括耦合到所有DC至DC转换器装置310的DC至DC转换器装置312。DC至DC转换器装置312与DC至DC转换器装置310相似,所例外的是装置312较装置310具有更大铭牌电流(nameplate current)和额定功率范围。
DC至DC转换器装置312接收从DC至DC转换器装置310传送的DC功率。DC至DC转换器装置312处接收的DC功率是基本表示第二预定电压VDC-2减线路损耗的第三DC电压VDC-3。DC至DC转换器装置312将具有第三电压VDC-3的DC功率转换成具有第四预定电压VDC-4的DC功率,第四预定电压VDC-4利于至电网304的短距离传输。如图所示,DC至DC转换器装置312是近海HVDC站313的一部分。
再有,在该示范实施例中,DC至DC转换器装置310和DC至DC转换器装置312的每一个是相似的,所例外的是能够实现如本文所描述的HVDC T&D***300和SCADA 200的操作所需的铭牌额定。而且,DC至DC转换器装置310和DC至DC转换器装置312的每一个包括至少一个DC电流感测装置334(示出两个)。每个DC电流感测装置334是监视传感器240(图2中示出)的一部分且设在关联的DC至DC转换器装置310和312内。作为备选,将DC电流感测装置334设为尽可能靠近关联的DC至DC转换器装置310和312,包括且不限于设在DC开关柜(未示出)内和设在DC至DC转换器控制柜(未示出)内。DC电流感测装置334配置成向SCADA***200传送实时运行状态和反馈信息。节点404至420还可以包括能够实现可与如本文描述的HVDC T&D***400一起使用的节点404至420的操作的任何其他感测装置。作为备选,使用能够实现HVDC T&D***300和SCADA***200的操作的任何控制***体系结构。
再者,在该示范实施例中,DC至DC转换器装置310和DC至DC转换器装置312的每一个包括至少一个控制器336,至少一个控制器336包括至少一个处理器(未示出)。正如本文所使用的,术语“控制器”、“控制***”和“处理器”包括任何可编程***,其包括***和微控制器、精简指令集电路、专用集成电路、可编程逻辑电路和能够执行本文描述的功能的任何其他电路。上文的示例仅是示范性的,并且因此不应以任何方式限制术语处理器的定义和/或含义。而且,控制器336可以包括执行支持应用,包括且不限于用于SCADA***200的那些支持应用的足够处理能力。在DC至DC转换器装置310和312的每一个中,关联的控制器336耦合到关联的DC电流感测装置334。每个控制器336还耦合到和/或SCADA***200的一部分因此,DC至DC转换器装置310和312的每一个配置成经由控制器336从SCADA***200的其他部分接收命令。
而且,在该示范实施例中,HVDC T&D***300包括多个HVDC传输通道314,即具有约50米(m)和约100 m之间的范围中的短长度的海底线缆。HVDC T&D***300还包括HVDC传输通道316,即作为每个HVDC传输通道314的HVDC总线的海底线缆。HVDC T&D***300还包括HVDC传输通道318,即具有约10公里(km)的延长长度的海底线缆。作为备选,HVDC传输通道314、316和318具有能够实现如本文描述的HVDC T&D***300和SCADA***200的操作的任何配置和长度。而且,作为备选,HVDC传输通道314、316和318包括任何数量和配置的导体,例如但不限于,任何材料制造能够实现如本文描述的HVDC T&D***300和SCADA***200的操作的线缆、管道***和总线。
在操作中,每个AC发电装置302,即风电厂306中的每个PM WTG生成三相正弦AC功率。AC至DC整流器装置308接收该三相正弦AC功率,并将其整流成预定第一电压VDC-1下的DC功率。DC至DC转换器装置310接收从AC至DC整流器装置308传送的DC功率,并将具有第一电压VDC-1的DC功率转换成具有利于跨HVDC传输通道314、316和318至近海HCDC站313的、具有第二预定电压VDC-2的DC功率。DC至DC转换器装置312接收以第三DC电压VDC-3跨HVDC传输通道314、316和318传送的DC功率,第三DC电压VDC-3大致表示第二预定电压VDC-2减线路损耗。DC至DC转换器装置312将具有第三电压VDC-3的DC功率转换成具有第四预定电压VDC-4的DC功率,第四预定电压VDC-4利于至电网304的短距离传输。
图4是可以使用(图2所示的)SCADA***200来监视和控制的备选示范HVDC T&D***350的示意图。HVDC T&D***350与HVDC T&D***300相似,所例外的是发电装置302和关联的AC至DC整流器装置308和DC至DC转换器装置310以集群(cluster)来布置,集群例如集群#1、集群#2、直至集群#m。
图5是可以使用(图2和图3所示的)SCADA***200来监视和控制的另一个备选示范HVDC T&D***400的示意图。在该示范实施例中,HVDC T&D***400与HVDC T&D***300相似,其第一例外的是***400包括多个海底HVDC通道318以及将集群 #1至集群#m耦合到DC至DC转换器装置312的DC总线402。再有,HVDC T&D***与HVDC T&D***300和350不同在于第二例外:***400包括多个节点404、406、408、410、412、414、416、418和420。
图6是可以与(图5所示的)HVDC T&D***400一起使用的示范节点404至420的示意图。在该示范实施例中,由机械隔离装置432和至少一个DC电流感测装置434(示出两个)定义节点404至420。每个DC电流感测装置434是(图2中示出的)监视传感器240的一部分且设在关联的机械隔离装置432处,即尽可能地靠近,包括且不限于设在DC开关柜(未示出)内和设在DC电路控制柜内。节点404至420还可以包括能够实现可与如本文描述的HVDC T&D***400一起使用的节点404至420的操作的任何其他感测装置。
节点404至420是相似的,所例外的是能够实现本文描述的HVDC T&D***400和SCADA 200的操作所需的DC电流和功率铭牌额定。DC电流感测装置434配置成向SCADA***200传送实时DC电流信息。而且,机械隔离装置432配置成从SCADA***200接收命令以及向SCADA***200传送状态和反馈信息。
再次参考图5,节点404至420定义每对节点之间的HVDC T&D***400的多个可隔离部分。此类可隔离部分包括且不限于发电装置302、整流器装置308和通道314、316和318。图5中示出多个示范电故障位置,即故障位置a、b、c、d和e。下文对每个故障位置进一步描述。
图7是表格视图,即表500表示可以与(图5所示的)HVDC T&D***400一起使用的SCADA***200内定义的数字矩阵。表500示出作为故障位置a、b、c、d和e的函数的电流方向I1、I2、I3、I4和I5。I1是指在节点404处测量的DC电流,I2是指在节点406处测量的DC电流,I3是指在节点412处测量的DC电流,I4是指在节点414处测量的DC电流,以及I5是指在节点420处测量的DC电流。数字1表示无逆向沿着定义的向前方向流动的DC电流(图5中示出所有节点)。数字-1表示沿着与定义的向前方向的反方向,即有逆向流动的DC电流。
参考图5、图6和图7,将第一故障位置a定义为位于风力涡轮1(WT1)发电装置302(具有关联的AC至DC整流器装置308)与节点404之间的集群#1中。经由DC至DC转换器装置310和312中的电流传感器测量这些电流。当DC至DC转换器装置310和312中的电流上升达到或超过预定阈值或该电流超过预定阈值时,控制器336阻断本地或最靠近的DC至DC转换器装置310和312,即控制器336减缓受影响的装置310和312内的电流上升,将电流平准,然后在大致100                                                以下,即,在传感器334检测到故障的约20微秒()内将电流降低到约0安培。因此,在任何机械隔离装置操作之前,将故障a快速地与电网304和集群#1中的其余线缆314隔离。故障隔离比减少对受影响的组件部分减少使用寿命缩减所需的典型5毫秒(ms)更快约三个数量级地发生。这种快速故障隔离主要是因为非电流传感器334与SCADA***200的远程部分之间,而是电流传感器334与控制器336之间的本地化通信。
在转换器装置310和312被阻断时,图5中HVDC T&D***300至转换器装置312的左边的多个部分表现为无源网络,其中的电流根据登录自然响应表现而无控制装置,例如转换器装置310和312的影响,并且由此,电流将通过过零振荡,类似于AC电流的情况。
经由DC电流传感器434分别在节点404、406、412、414和420处测量DC电流I1、I2、I3、I4和I5。在该示范实施例中,将DC电流I1、I2、I3和I4全部逆向,如表500所示。由于大致瞬间实时地接收到流经***400的DC电流的方向,包括快速变化和极性,所以SCADA***200作出有关故障位于位置a处的确定。作为响应,SCADA***200指令节点404处的机械隔离装置432以在小于100毫秒(ms)内以约零安培开路。SCADA***200指令节点404处的机械隔离装置432再次闭合,作为节点404处的机械隔离装置432的状态的函数来取消被阻断的转换器装置310的阻断。SCADA***200还配置成阻断转换器装置310。但是,与使用经由控制器336的本地控制的情况下预期的小于100 相比,此类阻断命令将在小于100 ms内传送。
第二故障位置b定义为位于集群#1中节点404和节点406之间的HVDC传输通道314上。转换器装置310和312如上文对应于故障位置a所描述的操作。经由DC电流传感器434分别在节点404、406、412、414和420处测量电流I1、I2、I3、I4和I5。DC电流I2、I3和I4全部逆向,如表500所示,而DC电流I1不逆向。由于大致瞬间实时地接收到流经***400的DC电流的方向,包括快速变化和极性,所以SCADA***200作出有关故障位于位置b处的确定。作为响应,SCADA***200指令节点404和406处的机械隔离装置432开路,然后指令恢复服务,正如上文对应于故障位置a所描述的。
第三故障位置c定义为位于集群#1中节点410和节点412之间的HVDC传输通道316上。转换器装置310和312如上文对应于故障位置a所描述的操作。经由DC电流传感器434分别在节点404、406、412、414和420处测量电流I1、I2、I3、I4和I5。DC电流I3和I4均逆向,如表500所示,而DC电流I1和I2不逆向。由于大致瞬间实时地接收到流经***400的DC电流的方向,包括快速变化和极性,所以SCADA***200作出有关故障位于位置c处的确定。作为响应,SCADA***200指令节点406、410和412处的机械隔离装置432开路,然后指令恢复服务,正如上文对应于故障位置a所描述的。
第四故障位置d定义为位于集群#1的下游节点412和节点414之间的HVDC传输通道318上。转换器装置310和312如上文对应于故障位置a所描述的操作。经由DC电流传感器434分别在节点404、406、412、414和420处测量电流I1、I2、I3、I4和I5。DC电流I4均逆向,如表500所示,而DC电流I1、I2和I3不逆向。由于大致瞬间实时地接收到流经***400的DC电流的方向,包括快速变化和极性,所以SCADA***200作出有关故障位于位置d处的确定。作为响应,SCADA***200指令节点412和414处的机械隔离装置432开路,然后指令恢复服务,正如上文对应于故障位置a所描述的。
第五故障位置d定义为位于节点414、418和420的下游DC总线402上。转换器装置310和312如上文对应于故障位置a所描述的操作。经由DC电流传感器434分别在节点404、406、412、414和420处测量电流I1、I2、I3、I4和I5。无DC电流被逆向,正如表500中所示。由于大致瞬间实时地接收到流经***400的DC电流的方向,包括快速变化和极性无改变,所以SCADA***200作出有关故障位于位置e处的确定。作为响应,SCADA***200指令节点414和418处的机械隔离装置432开路,然后指令恢复服务,正如上文对应于故障位置a所描述的。
上文描述的HVDC传输和配送(T&D)***提供一种用于传输HVDC功率的成本有效的方法。本文描述的实施例利于跨相对较长距离传送HVDC功率,同时利于快速地检测和选择性隔离***上的电故障。本文描述的实施例还利于快速地恢复***中故障部分以外的那些部分。确切地来说,本文描述的装置、***和方法包括多个DC至DC转换器装置和定义HVDC T&D***中的节点的机械隔离装置。再有,DC至DC转换器装置利于在经由其中传送而感测到的DC电流超过参数的情况下实时地减少经由其中的DC电流。再者,将每个节点处测试的多个DC电流的极性实时地传送到监督控制和数据采集(SCADA)***。确切地来说,在感测到一个或多个节点中逆向极性的DC电流的情况下,DC至DC转换器装置以将逼近0安培的极大降低的负载启动与机械隔离装置关联的操作。
本文描述的装置、***和方法利于***恢复。一旦清除电故障,则SCADA***将启动故障后复原动作。确切地来说,清除的机械隔离装置将在接近0的负载下重新闭合,关联的DC至DC转换器装置将增加经由这些转换器和机械隔离装置传送的电流以迅速地恢复至受影响部分的DC功率传输。
本文描述的方法、***和设备的一个示范技术效果包括至少如下一项:(a)将HVDC T&D***上经由机械隔离装置的故障监视和隔离的时间期间缩短到小于100 ms;(b)在小于100 内以及在许多情况中约为20 内,即比经由机械隔离装置隔离的时间小约3个数量级,将经由DC至DC转换器装置至故障的DC电流的传输降低到接近零的值;(c)将经由DC机械隔离装置的DC电流传输降低到接近零的值以利于快速开路以清除电故障状况并重新闭合以恢复功率传输;(d)通过确定经由本文定义的预定节点传送的DC电流的极性来确定,即定点查找HVDC T&D***上的电故障的位置;以及(e)实质性地减小使用较慢动作的DC断路器来隔离故障的需求。
故障隔离比减少对受影响的组件部分减少使用寿命缩减所需的典型5毫秒(ms)更快约三个数量级地发生。这种快速故障隔离主要是因为电流传感器334与控制器336之间的本地化通信。
上文详细地描述了用于耦合发电设施与电网的HVDC传输和配送(T&D)***以及操作该***的方法的示范实施例。这些HVDC T&D***、DC至DC转换器装置和操作此类***和装置的方法不限于本文描述的特定实施例,相反,***组件和/或这些方法的步骤可以独立地且与本文描述的其他组件和/或步骤分开地来予以利用。例如,还可以将这些方法与需要HVDC传输的其他***和方法组合来使用,并且这些方法不限于仅与本文描述的HVDC T&D***、DC至DC转换器装置和方法一起实施。相反,该示范实施例可以与目前配置成接收和接受DC至DC转换器装置(例如且不限于偏远区域和工业设施中的DC配电***)的许多其他DC传输应用结合来实现和利用。
虽然一些附图中可能示出本发明的多种实施例的特定特征而另一些附图中可能未示出,但是这仅是为了方便。根据本发明的原理,可以将附图的任何特征与任何其他附图的任何特征组合来引述和/或要求权利。
一些实施例包括使用一个或多个电子或计算装置。此类装置典型地包括处理器或控制器,如通用中央处理单元(CPU)、图形处理单元(GPU)、微控制器、精简指令集计算机(RISC)处理器、专用集成电路(ASIC)、可编程逻辑电路(PLC)和/或能够执行本文描述的功能的任何其他电路或处理器。本文描述的方法可以作为包含在计算机可读介质中的可执行指令来编码,该计算机可读介质包括且不限于存储装置和/或存储器装置。此类指令在被处理器执行时促使处理器执行本文描述的方法的至少一部分。上文的示例仅是示范性的,并且因此不应以任何方式限制术语处理器的定义和/或含义。
本文书写的描述使用示例来披露包括最佳模式的本发明,并且使得本领域技术人员能够实施本发明,包括制作和使用任何装置或***和执行任何并入的方法。本发明的可专利范围由权利要求定义,并且可以包括本领域技术人员设想到的其他示例。如果此类其他示例具有与本发明权利要求的字面语言并无不同的结构要素,或如果它们包括与本发明权利要求的字母语言无实质性差异的等效结构要素,则此类其他示例理应在权利要求的范围内。
部件列表
105 计算装置
110 存储器装置
115 处理器
120 呈示接口
125 用户
130 用户输入接口
135 通信接口
200 监督控制和数据采集(SCADA)***
215 中央处理单元(CPU)
220 其他装置
225 通信网络
230 第一操作员
235 第二操作员
240 监视传感器
245 输入通道
300 高电压直流(HVDC)传输和配送(T&D)***
302 交流(AC)发电装置
304 电功率传输和配送电网
306 风电厂
308 AC至DC整流器装置
310 DC至DC转换器装置
312 DC至DC转换器装置
VDC-1 第一DC电压
VDC-2 第二DC电压
VDC-3 第三DC电压
VDC-4 第四DC电压
313 近海HVDC站
314 HVDC传输通道
316 HVDC传输通道
318 HVDC传输通道
334 DC电流传感器
336 控制器
350 备选HVDC T&D***
Cluster #1 集群#1
Cluster #2 集群#2
Cluster #m 集群#m
400 备选HVDC T&D***
402 DC总线
404、406、408、410、412、414、416、418、420 节点
430 DC至DC转换器装置
432 机械隔离装置
434 DC电流传感器
500
I1、I2、I3、I4、I5 DC电流
a、b、c、d、e 故障位置

Claims (10)

1. 一种直流(DC)传输和配送(T&D)***,包括:
多个DC至DC转换器装置,所述多个DC至DC转换器装置至少部分地定义所述DC T&D***的多个可隔离部分;以及
耦合到所述多个DC至DC转换器装置的DC T&D控制***,所述DC T&D控制***包括:
  多个电流传感器,其中将所述多个电流传感器的至少一个设在所述多个DC至DC转换器装置的至少一个DC至DC转换器装置处,其中所述多个电流传感器的所述至少一个电流传感器配置成传送表示经所述至少一个DC至DC转换器装置的DC电流传输的值的至少一个信号;以及
  多个处理器,其中所述多个处理器的至少一个处理器耦合到所述至少一个电流传感器和所述至少一个DC至DC转换器装置,所述至少一个处理器配置成作为经由所述至少一个DC至DC转换器装置的DC电流传输的值的函数来调节至少包括经由所述至少一个DC至DC转换器装置的DC电流传输的电参数。
2. 如权利要求1所述的DC T&D***,还包括至少一个发电装置,其中所述多个DC至DC转换器装置经由多个电通道耦合到所述至少一个发电装置。
3. 如权利要求2所述的DC T&D***,其中所述至少一个发电装置包括至少一个可再生能源装置。
4. 如权利要求3所述的DC T&D***,其中所述至少一个可再生能源装置包括至少一个风力涡轮发电机。
5. 如权利要求1所述的DC T&D***,其中所述多个DC至DC转换器装置包括设在近海DC站内的至少一个DC至DC转换器装置。
6. 如权利要求1所述的DC T&D***,还包括多个机械隔离装置,所述多个机械隔离装置配置成将所述DC T&D***的至少一部分移出服务,其中所述多个DC至DC转换器装置还配置成在促动所述多个机械隔离装置的至少一个机械隔离装置之前,减少经由所述DC T&D***的所述至少一部分的DC电流传输。
7. 如权利要求6所述的DC T&D***,其中所述多个处理器还配置成至少部分地作为所述至少一个机械隔离装置的状态的函数来经由所述多个DC至DC转换器装置恢复所述DC T&D***的部分。
8. 如权利要求7所述的DC T&D***,其中所述多个DC至DC转换器装置还配置成增加经由未经由所述至少一个机械隔离装置隔离的所述DC T&D***的至少一部分的DC电流传输。
9. 如权利要求6所述的DC T&D***,其中所述多个电流传感器和所述多个机械隔离装置设在所述DC T&D***内以在其中定义多个节点,从而与所述多个DC至DC转换器装置结合进一步至少部分地定义所述DC T&D***的所述多个可隔离部分。
10. 如权利要求9所述的DC T&D***,其中所述至少一个处理器还配置成:
生成包括所述多个节点的每个节点的数字矩阵;
对通过所述多个电流传感器的第一部分检测的、经由所述多个节点的至少第一部分沿着所述第一方向传送的DC电流传输指配正1的数值;以及
对通过所述多个电流传感器的第二部分检测的、经由所述多个节点的至少第二部分沿着所述第二方向传送的DC电流传输指配负1的数值。
CN201410017730.2A 2013-03-15 2014-01-15 直流传输和配送***以及操作该***的方法 Active CN104052051B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/842844 2013-03-15
US13/842,844 US9306391B2 (en) 2013-03-15 2013-03-15 Direct current transmission and distribution system and method of operating the same

Publications (2)

Publication Number Publication Date
CN104052051A true CN104052051A (zh) 2014-09-17
CN104052051B CN104052051B (zh) 2018-05-25

Family

ID=49999725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410017730.2A Active CN104052051B (zh) 2013-03-15 2014-01-15 直流传输和配送***以及操作该***的方法

Country Status (5)

Country Link
US (1) US9306391B2 (zh)
EP (1) EP2779350B1 (zh)
CN (1) CN104052051B (zh)
BR (1) BR102014000422A8 (zh)
CA (1) CA2838724A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394815A (zh) * 2017-07-19 2017-11-24 洛阳理工学院 一种多能源混合发电***
CN111409621A (zh) * 2019-01-04 2020-07-14 德尔福技术知识产权有限公司 用于扭矩分配仲裁的***和方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014082642A1 (en) * 2012-11-30 2014-06-05 Vestas Wind Systems A/S Power plant generation system, method for controlling wind turbine generators, power plant controller and wind turbine generator
EP3070799B1 (en) * 2015-03-16 2018-11-21 General Electric Technology GmbH Start-up of hvdc networks
DE102015212562A1 (de) * 2015-07-06 2017-01-12 Siemens Aktiengesellschaft Energieerzeugungsanlage und Verfahren zu deren Betrieb
US10256732B2 (en) 2015-10-16 2019-04-09 General Electric Company Power conversion system and method of operating the same
US9973092B2 (en) 2016-04-22 2018-05-15 General Electric Company Gas tube-switched high voltage DC power converter
US10396695B2 (en) * 2017-04-18 2019-08-27 General Electric Company Method for protecting an electrical power system
EP3729580B9 (en) * 2017-12-20 2022-12-21 Vestas Wind Systems A/S Recurring fault protection for wind power plants
JP6962441B2 (ja) * 2018-02-20 2021-11-05 日本電気株式会社 海底ケーブルシステム、分岐装置及びその状態応答方法
WO2019212562A1 (en) * 2018-05-04 2019-11-07 General Electric Company Method for protecting an electrical power system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052379A2 (en) * 1999-12-23 2001-07-19 Abb Ab Electric power system based on renewable energy sources
JP2005312287A (ja) * 2004-03-25 2005-11-04 Sharp Corp 電源装置
CN102269067A (zh) * 2010-05-13 2011-12-07 通用汽车环球科技运作有限责任公司 改进发动机停止-起动响应时间的控制***和方法
US20110301772A1 (en) * 2010-06-07 2011-12-08 Zuercher Joseph C Protection, monitoring or indication apparatus for a direct current electrical generating apparatus or a plurality of strings
CN102292894A (zh) * 2008-12-18 2011-12-21 Abb研究有限公司 用于配电***的馈电线自动化
CN102474097A (zh) * 2009-08-06 2012-05-23 艾思玛太阳能技术股份公司 用于向电网供应来自多个光伏模块串列的电能的设备
US20120175962A1 (en) * 2011-01-11 2012-07-12 Converteam Technology Ltd. Power Collection and Transmission Systems

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274043A (en) 1978-12-21 1981-06-16 The Dow Chemical Company Efficient, high power battery module; D.C. transformers and multi-terminal D.C. power networks utilizing same
US6496342B1 (en) 1999-02-12 2002-12-17 Bitronics Inc. Distributed monitoring and protection system for a distributed power network
US7110231B1 (en) 2002-08-30 2006-09-19 Abb Inc. Adaptive protection system for a power-distribution network
CA2804423C (en) 2004-09-03 2015-10-20 Watlow Electric Manufacturing Company Power control system
CN1992493B (zh) 2005-12-30 2011-05-18 艾默生网络能源***北美公司 一种谐振直流/直流变换器及其控制方法
US7751166B2 (en) 2007-03-16 2010-07-06 Abb Technology Ag Advanced feeder architecture with automated power restoration
US8180481B2 (en) 2008-08-06 2012-05-15 Consolidated Edison Company Of New York, Inc. Autoloop system and method of operation
JP4783453B2 (ja) 2009-09-10 2011-09-28 力也 阿部 多端子型非同期連系装置、電力機器制御端末装置と電力ネットワークシステムおよびその制御方法
IT1397013B1 (it) 2009-11-03 2012-12-20 Trevi Energy S P A Sistema di controllo di centrali eoliche con aerogeneratori equipaggiati con convertitori modulari a corrente continua.
ES2578712T3 (es) 2010-10-18 2016-07-29 Siemens Aktiengesellschaft Un sistema de protección para un sistema de distribución de potencia eléctrica usando detección de corriente direccional y lógica dentro de relevos de protección
EP2469552B1 (en) 2010-12-23 2014-02-26 ABB Technology AG Method, circuit breaker and switching unit for switching off high-voltage DC currents
US20130193766A1 (en) * 2012-01-31 2013-08-01 Atlantic Grid Operations A., Llc Control and protection of a dc power grid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052379A2 (en) * 1999-12-23 2001-07-19 Abb Ab Electric power system based on renewable energy sources
JP2005312287A (ja) * 2004-03-25 2005-11-04 Sharp Corp 電源装置
CN102292894A (zh) * 2008-12-18 2011-12-21 Abb研究有限公司 用于配电***的馈电线自动化
CN102474097A (zh) * 2009-08-06 2012-05-23 艾思玛太阳能技术股份公司 用于向电网供应来自多个光伏模块串列的电能的设备
CN102269067A (zh) * 2010-05-13 2011-12-07 通用汽车环球科技运作有限责任公司 改进发动机停止-起动响应时间的控制***和方法
US20110301772A1 (en) * 2010-06-07 2011-12-08 Zuercher Joseph C Protection, monitoring or indication apparatus for a direct current electrical generating apparatus or a plurality of strings
US20120175962A1 (en) * 2011-01-11 2012-07-12 Converteam Technology Ltd. Power Collection and Transmission Systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394815A (zh) * 2017-07-19 2017-11-24 洛阳理工学院 一种多能源混合发电***
CN111409621A (zh) * 2019-01-04 2020-07-14 德尔福技术知识产权有限公司 用于扭矩分配仲裁的***和方法

Also Published As

Publication number Publication date
BR102014000422A8 (pt) 2015-11-24
EP2779350B1 (en) 2016-10-19
BR102014000422A2 (pt) 2015-10-20
CN104052051B (zh) 2018-05-25
EP2779350A1 (en) 2014-09-17
US20140265583A1 (en) 2014-09-18
CA2838724A1 (en) 2014-09-15
US9306391B2 (en) 2016-04-05

Similar Documents

Publication Publication Date Title
CN104052051A (zh) 直流传输和配送***以及操作该***的方法
CN105706325A (zh) 电网频率响应
CN104426400A (zh) 电力变换***和操作该电力变换***的方法
WO2020162937A1 (en) Automated model validation system for electrical grid
CN109086518A (zh) 一种智能变电站输变电一次设备状态评估的方法
Zhan et al. Non‐technical loss and power blackout detection under advanced metering infrastructure using a cooperative game based inference mechanism
WO2020171814A1 (en) Event selection for power grid disturbance
JP2016054584A (ja) 系統安定度監視装置および系統安定度監視システム
CN106482844A (zh) 一种基于温度测量与季候温差的设备预警方法及***
Boardman The role of integrated distribution management systems in smart grid implementations
Amini et al. Electrical energy systems resilience: A comprehensive review on definitions, challenges, enhancements and future proceedings
US20230082184A1 (en) Two-step oscillation source locator
CA3134615A1 (en) Systems and methods for event assignment of dynamically changing islands
Zheng et al. Wide area frequency based generation trip event location estimation
US20220284156A1 (en) Real-time update of power system models for dynamic security assessment
Janssen et al. Monitoring, protection and fault location in power distribution networks using system-wide measurements
CN109633381A (zh) 一种电网故障诊断智能分析方法
Tang Anomaly inference based on heterogeneous data sources in an electrical distribution system
JP6009369B2 (ja) 系統設備計画支援装置及び方法
Behera et al. Brief study on applications of phasor measurement units in smartgrid technology
Lu et al. Smart power systems and smart grids: toward multi-objective optimization in dispatching
Agarwal et al. Application of PMU-based information in the Indian power system
Haidar et al. A framework for placement assessment of synchrophasor measurement in practical power grid: a case study from Borneo
Abas et al. Optimizing Grid With Dynamic Line Rating of Conductors: A Comprehensive Review
Arghandeh et al. Synchronized measurements and their applications in distribution systems: An update

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240104

Address after: Swiss Baden

Patentee after: GENERAL ELECTRIC CO. LTD.

Address before: New York State, USA

Patentee before: General Electric Co.

TR01 Transfer of patent right