CN104020693A - 一种用于手持设备的实时数据采集*** - Google Patents

一种用于手持设备的实时数据采集*** Download PDF

Info

Publication number
CN104020693A
CN104020693A CN201410264705.4A CN201410264705A CN104020693A CN 104020693 A CN104020693 A CN 104020693A CN 201410264705 A CN201410264705 A CN 201410264705A CN 104020693 A CN104020693 A CN 104020693A
Authority
CN
China
Prior art keywords
voltage
chip
signal
module
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410264705.4A
Other languages
English (en)
Other versions
CN104020693B (zh
Inventor
徐云鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Zhonglan Electronic Manufacturing Co., Ltd
Original Assignee
徐云鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐云鹏 filed Critical 徐云鹏
Priority to CN201410264705.4A priority Critical patent/CN104020693B/zh
Publication of CN104020693A publication Critical patent/CN104020693A/zh
Application granted granted Critical
Publication of CN104020693B publication Critical patent/CN104020693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本发明公开了一种用于手持设备的实时数据采集***,包括数据采集模块、无线数据模块、数据通信模块、电源模块和计算机,该数据采集***以STM32F103,C8051F340为控制核心,完成数据采集和数据通信;所述的信号调理电路包括电压和电流信号调理电路,所述的无线数据模块采用CC1101无线射频芯片进行数据传输,所述的计算机通过USB接口与数据通信模块连接,所述的电源模块采用AMS1117芯片进行电压转换,产生3.3V电压为主控制器和其他芯片供电。该数据采集***具有成本低,无线数据传输,操作简单,数据采集接口丰富的特点,可广泛应用于手持设备的移动实时测试***中。

Description

一种用于手持设备的实时数据采集***
技术领域
 本发明属于电力电子应用技术领域,尤其涉及一种用于手持设备的实时数据采集***。
背景技术
随着计算机的广泛应用和电子技术的发展,数字技术被广泛应用于国民经济、国防建设与科学实验等各个领域。和模拟***相比,数字***有精度高、稳定性好等一系列优点。外界被检测量如温度、压力、位置等,需要通过各种类型传感器转换成电压、电流等物理量。因为大部分传感器输出物理量为模拟量,因而需要转换为数字信号后,再由计算机进行存储、处理、显示或打印。 
随着工业现场控制对参数实时性要求的提高,人们对数据采集及存储***的精度、容量、功耗及抗干扰性等都有了更高的要求,因此各种高性能MCU及存储器纷纷出现。随着SOC(system on chip)技术的发展,越来越多地要求将各种功能集于一体,一些知名厂商纷纷推出嵌入式SOC芯片。将A/D,D/A等功能集成在MCU上,其最大优点是简化了******电路设计,降低***功耗,***体积大大缩小。同时随着微电子和计算机技术发展,逐渐形成了混合型基于计算机采集***,这种***结构在计算机应用领域中得到了广泛的应用和快速的发展。它由计算机与微控制器件组成,通过标准总线接口(例如RS232,RS485,CAN,USB等)相连。通过对数据采集***功能分析设计配置微控制器及其***电路和设备构成,主机则使用虚拟仪器技术开发上位机测试软件,这种数据采集***具有人机交互、复杂计算分析、数据存储记录、图形显示等任务。混合型计算机数据采集***具有***开发具有自主性、灵活的***配置、充分利用上位机资源等特点。 
目前,另一个重要的发展趋势在于使用无线通讯技术进行数据采集,高频射频识别技术是国际上最先进的***自动识别技术,是近几年刚刚开始兴起并得到迅速推广应用的一门新技术。NordicVLSIASA、Freascale、Atmel等具有国际影响力的IC生厂商都相继推出了新一代短距离无线数据通信收发芯片,以nRF905、CC1101为主流的无线芯片性能得到了很大提高。最新的无线收发芯片将全部无线通信需要的调制/解调芯片、高/低频放大器等全部集成在芯片中,使***器件大幅度减少,很容易与各种型号微控制器连接实现高可靠性无线通信,使开发无线产品成本大大降低,开发难度更简单,应用更广泛。总的来说高频射频识别技术具有距离远、识别准确率高、识别速度快、抗干扰能力强、使用寿命长、可穿透非金属材料、运用范围广等特点。因此基于UHF频段的无线数据传输已经广泛的应用到生活中的各个领域。
发明内容
针对上述现有技术存在的缺陷和不足,本发明的目的在于,提供一种用于手持设备的实时数据采集***,本发明的数据采集***具有成本低,无线数据传输,操作简单,数据采集接口丰富的特点,可广泛应用于手持设备的移动实时测试***中。 
为了实现上述任务,本发明采用如下的技术解决方案:
一种用于手持设备的实时数据采集***,其特征在于,包括数据采集模块、无线数据模块、数据通信模块、电源模块和计算机。所述的数据采集模块控制芯片采用型号为STM32F103的32位ARM微控制器,所述STM32F103型微控制器的A/D接口通过信号调理电路与被测信号连接,所述微控制器的USART接口通过串行接口与传感器相连,所述微控制器的GPIO接口用于记录开关及脉冲信号,所述微控制器的SPIx接口与无线数据模块中的发射电路相连;所述的无线数据模块基于无线射频芯片CC1101设计,所述的无线数据模块包括无线数据发射、接收电路;所述的数据通信模块选用Silicon Labs的专利C8051F340微控制器作为数据收发控制器,所述C8051F340微控制器的GPIO接口与无线数据接收电路相连,所述C8051F340微控制器的USB接口与计算机相连;所述的电源模块采用AMS1117-3.3芯片进行电压转换,产生3.3V电压为主控制器和其他芯片供电。
***中的信号调理电路由电压、电流信号调理电路组成;所述的电压信号调理电路包括电压基准源电路、反向加法单元、高频滤波单元和电压跟随单元,所述的反向加法单元进行输入信号的幅值转换,所述的电压跟随单元安装在输入和输出端,起隔离和缓冲作用,所述的高频滤波单元使用运算放大器构成压控电压源低通滤波器来减少信号中的高频干扰;所述的电流信号调理单元选用精度为0.1%的电阻分压的方法得到电压信号,并且通过二极管进行输入电压保护。
***中的电压基准源电路基于可控精密稳压源芯片TL431芯片(U1)设计,包括5k欧姆电阻(R1)、1k欧姆电阻(R2)、500欧姆电阻(R3)、10K欧姆电阻(R4、R5、R6)、运算放大器LM324(A1)、10uF电容(C5)和0.1uF电容(C6),所述稳压源芯片(U1)的阳极(A)通过5k欧姆电阻(R1)与参考极(VREF)相连,所述稳压源芯片(U1)的阴极(K)通过1k欧姆电阻(R2)与参考极(VREF)相连,所稳压源芯片(U1)的阴极(K)通过500欧姆电阻(R3)与5V电源(VCC)相连;产生的参考电压(Uref)通过电阻(R5)与运算放大器(A1)的反相输入端相连,所述运算放大器(A1)的正相输入端通过电阻(R6)与地(AGND)相连,所述运算放大器(A1)的输出端通过电阻(R4)与其反相输入端相连;所述的电容(C5)和电容(C6)一起并联在参考电压(Uref)与地(AGND)之间;所述的开关及脉冲频率信号采集电路使用RENESAS(瑞萨)公司生产的PS2801光电耦合芯片进行采集信号的隔离,防止外部电压超出芯片管脚耐压值。
本发明的有益效果是:
电子设备的电源***是整个***的基础,这部分的稳定工作对整个数据采集***的稳定工作起着至关重要的作用。供电方面,各部分甚至是同一部分各引脚的电平值都有可能不同,因此必须清楚***各部分的电源需求。数据采集板卡的输入电源为直流5V,供电需求为STM32F103VE工作电压3.3V,RS232,RS485芯片供电3.3V,无线模块供电3.3V等,需要经过电压转换芯片进行电源转换。5V的输入电压通过AMS1117-3.3芯片进行电压转换,产生3.3V电压为主控制器和其他芯片供电。AMS1117是目前应用广泛的低压线性稳压器,它成本低,电路简单,能够提供1A的电流。在芯片引脚处使用10uF电容用来滤去纹波,0.1uF的电容滤去电路中的高频杂波,这样减小了对数字电路的干扰,提高了电源的效率。
数据采集主控制芯片选取了基于ARM Cortex-M3内核的STM32F103VE微控制器,STM32F103VE是意法半导体公司生产的32位微控制器STM32系列的增强型产品。ARM Cortex-M3是ARM公司面向低成本、低功耗、高性能的嵌入式应用而设计的产品,采用了ARM公司很多最新的技术,与同类微处理器相比,具有显著的优势,STM32F103VE通过外接8M高速晶振,工作频率可达72 MHz,在此工作频率下的执行速度为1.25DMIPS/MHz,内置512 K字节的闪存存储器和64 K字节的SRAM,具有80个增强的通用I/O口和多种外设。
无线数据采集***的数据发射与接收功能通过TI公司生产的CC1101无线射频芯片实现,CC1101是一款低于1GHz高性能射频收发器,目前已经广泛应用在桥梁检测***和工业现场监测***中。CC1101无线射频芯片主要有以下特点。在无线数据采集***中,CC1101 无线射频芯片连接数据采集端与PC机端,完成两端的数据通信,包括上位机采集命令,采集参数的发送以及采集数据的回传。 基于STM32F103VE控制器的数据采集板卡通过GPIO端口和SPI总线接口与CC1101相连,完成对CC1101射频芯片寄存器的读写和工作状态监测,实现采集数据的发送。
PC机数据通信模块选用了Silicon Labs的专利CIP-51微控制器C8051F340作为数据收发控制器,C8051F340采用流水线结构,大大提升了CISC结构运行速度,最大运行速度可达48MHz。随着传感器以及电子通信技术的发展,传感器内部可以集成微处理单元将测得的模拟信号转换为数字信号,通过标准通信协议接口发出,这样可以减少模拟信号在传输过程中混入干扰,提高信号转换精度。因此数据采集板卡设计了RS232接口和RS485接口,串行数据接口主要完成3种功能:采集传感器输出数据;与无人机串行数据通信接口相连,获取无人机地面测试过程中,机载传感器的测量数据,也可以接收无人机飞行控制***中的控制参数数据,并绘制出控制曲线,验证控制算法是否可行;在数据采集板卡的初期调试中,通过串行数据通信接口与计算机相连,利用上位机串口调试助手与数据采集板卡完成数据通信,验证数据采集板卡各采集模块是否正常工作。 
本发明的数据采集***具有成本低,无线数据传输,操作简单,数据采集接口丰富的特点,可广泛应用于手持设备的移动实时测试***中。
附图说明
以下结合附图和具体实施方式对本发明作进一步的解释说明。
图1是该手持设备的实时数据采集***框图;
图2是该***信号调理电路的电压基准源电路;
图3是该***信号调理电路的反向加法电路;
图4是该***信号调理电路的压控电压源低通滤波器;
图5是该***开关及脉冲信号电路的隔离电路。
具体实施方式
图1是用于手持设备的实时数据采集***框图,图中***包括数据采集模块、无线数据模块、数据通信模块、电源模块和计算机。所述的数据采集模块控制芯片采用型号为STM32F103的32位ARM微控制器,所述STM32F103型微控制器的A/D接口通过信号调理电路与被测信号连接,所述微控制器的USART接口通过串行接口与传感器相连,所述微控制器的GPIO接口用于记录开关及脉冲信号,所述微控制器的SPIx接口与无线数据模块中的发射电路相连;所述的无线数据模块基于无线射频芯片CC1101设计,所述的无线数据模块包括无线数据发射、接收电路;所述的数据通信模块选用Silicon Labs的专利C8051F340微控制器作为数据收发控制器,所述C8051F340微控制器的GPIO接口与无线数据接收电路相连,所述C8051F340微控制器的USB接口与计算机相连;所述的电源模块采用AMS1117-3.3芯片进行电压转换,产生3.3V电压为主控制器和其他芯片供电。
数据采集卡允许输入的电压范围-10V~+10V,因此需要对输入信号进行平移和衰减。信号调理通道中运算放大器采用LM324,LM324是内部集成四个带有差动输入运放放大器的芯片,该放大器可以单电源工作在低到3V或者高到32V的电源下,也可以双电源工作在±1.5V~±16V范围内,课题设计中采用双电源供电,使用DC-DC电源模块MDB12-12D12提供±12V电压,电压信号在进行平移和衰减转换时通常需要基准源,基准源的选取可以使用芯片内置的基准源和外部基准源,但是芯部自带的基准源驱动能力比较小而且提供的电压是恒定的,因此选择TL431产生电压基准源,TL431是可控精密稳压源,电压精度可达0.5%,可以为电压调理通道提供高精度的电压基准,实际应用中使用TL431提供3V电压并转换为-3V,作为后续电压平移和衰减电路的输入电压,电压基准源电路图如图2所示。 
信号调理通道的功能是将输入为-10V~10V电压信号转换为0~3V,设信号调理通道输入电压为VIN,由于使用同相加法器电路计算比较麻烦,因此选用反向加法电路,实现电压的转换,实际设计中由于电阻阻值精度不够,使用滑动变阻器进行电阻值的微调,实现运算关系的电路图如图3。根据采样定理,采样频率应至少为被采样信号频率的2倍,通常为了良好的显示测试数据波形,一般采样频率应是被采样信号频率的5~10倍。STM32F103的ADC采样频率最高为1MHz,这样数据采集卡能够采集的有效频率在200KHz一下,为了减小被采集信号中高频信号的干扰以及抗混叠,对信号调理通道中加入一个低通滤波器,使用运放构成一个压控电压源低通滤波器如图4所示。 
对于电流信号的信号调理,选用精度为0.1%的电阻分压的方法得到电压信号,并且通过二极管进行输入电压保护。电流输出型传感器输出信号一般为4~20mA,因此选取了150欧姆的精密电阻将电流信号转换为0.6V~3V的电压信号,通过STM32F103VE的ADC进行采集。信号调理板卡设计有2个电流信号采集通道。 
无人机测试***中需要测量转速信号和表示工作状态的开关量信号,通常转速的测量使用霍尔传感器或者光电传感器配合光电或齿轮码盘使用,测得的信号通常为5V~15V的方波信号。使用STM32F103VE微控制器的通用定时器可以测量矩形波脉冲信号,STM32F103VE有八个16位定时器,最大频率为72MHz,可以工作在计数器模式,输入捕获模式,输出比较模式等,其中可以使用输入捕获模式测量外部脉冲信号频率。STM32F103VE的GPIO管脚可以测量外部开关量信号,无人机测试***产生的开关量信号幅值为5~24V,STM32F103VE的管脚的输入最高电压约为3.6V左右,部分管脚具有5V电压容忍特性,由于外部电压超出芯片管脚耐压值,课题设计中选取了RENESAS(瑞萨)公司生产的PS2801光电耦合芯片进行采集信号的隔离,电路如图5所示。 PS2801是一种高速光电隔离芯片,开关速度可以达到100KHz以上,PS2801的二极管最小输入电流为3~5mA,最大电流为50mA,因此选取输入电阻为1K。使输入外部电压为5~24V时,芯片能够正常工作。 
虽然本发明是就其较佳实施例予以示图说明的,但是熟悉本技术的人都可理解到,在所述权利要求书中所限定的本发明的精神和范围内,还可对本发明作出种种改动和变动。

Claims (4)

1.一种用于手持设备的实时数据采集***,其特征在于,包括数据采集模块、无线数据模块、数据通信模块、电源模块和计算机;所述的数据采集模块控制芯片采用型号为STM32F103的32位ARM微控制器,所述STM32F103型微控制器的A/D接口通过信号调理电路与被测信号连接,所述微控制器的USART接口通过串行接口与传感器相连,所述微控制器的GPIO接口用于记录开关及脉冲信号,所述微控制器的SPIx接口与无线数据模块中的发射电路相连;所述的无线数据模块基于无线射频芯片CC1101设计,所述的无线数据模块包括无线数据发射、接收电路;所述的数据通信模块选用Silicon Labs的专利C8051F340微控制器作为数据收发控制器,所述C8051F340微控制器的GPIO接口与无线数据接收电路相连,所述C8051F340微控制器的USB接口与计算机相连;所述的电源模块采用AMS1117-3.3芯片进行电压转换,产生3.3V电压为主控制器和其他芯片供电。
2.如权利要求1所述的一种用于手持设备的实时数据采集***,其特征在于,所述的信号调理电路由电压、电流信号调理电路组成;所述的电压信号调理电路包括电压基准源电路、反向加法单元、高频滤波单元和电压跟随单元,所述的反向加法单元进行输入信号的幅值转换,所述的电压跟随单元安装在输入和输出端,起隔离和缓冲作用,所述的高频滤波单元使用运算放大器构成压控电压源低通滤波器来减少信号中的高频干扰;所述的电流信号调理单元选用精度为0.1%的电阻分压的方法得到电压信号,并且通过二极管进行输入电压保护。
3.如权利要求2所述的电压信号调理电路,其特征在于,所述电压基准源电路基于可控精密稳压源芯片TL431芯片(U1)设计,包括5k欧姆电阻(R1)、1k欧姆电阻(R2)、500欧姆电阻(R3)、10K欧姆电阻(R4、R5、R6)、运算放大器LM324(A1)、10uF电容(C5)和0.1uF电容(C6),所述稳压源芯片(U1)的阳极(A)通过5k欧姆电阻(R1)与参考极(VREF)相连,所述稳压源芯片(U1)的阴极(K)通过1k欧姆电阻(R2)与参考极(VREF)相连,所述稳压源芯片(U1)的阴极(K)通过500欧姆电阻(R3)与5V电源(VCC)相连;产生的参考电压(Uref)通过电阻(R5)与运算放大器(A1)的反相输入端相连,所述运算放大器(A1)的正相输入端通过电阻(R6)与地(AGND)相连,所述运算放大器(A1)的输出端通过电阻(R4)与其反相输入端相连;所述的电容(C5)和电容(C6)一起并联在参考电压(Uref)与地(AGND)之间。
4.如权利要求1所述的一种用于手持设备的实时数据采集***,其特征在于,所述的开关及脉冲频率信号采集电路使用RENESAS(瑞萨)公司生产的PS2801光电耦合芯片进行采集信号的隔离,防止外部电压超出芯片管脚耐压值。
CN201410264705.4A 2014-06-16 2014-06-16 一种用于手持设备的实时数据采集*** Active CN104020693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410264705.4A CN104020693B (zh) 2014-06-16 2014-06-16 一种用于手持设备的实时数据采集***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410264705.4A CN104020693B (zh) 2014-06-16 2014-06-16 一种用于手持设备的实时数据采集***

Publications (2)

Publication Number Publication Date
CN104020693A true CN104020693A (zh) 2014-09-03
CN104020693B CN104020693B (zh) 2017-11-07

Family

ID=51437507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410264705.4A Active CN104020693B (zh) 2014-06-16 2014-06-16 一种用于手持设备的实时数据采集***

Country Status (1)

Country Link
CN (1) CN104020693B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045180A (zh) * 2015-07-21 2015-11-11 中国航天科工集团第三研究院第八三五七研究所 一种电子设备健康状态采集***
CN106197474A (zh) * 2016-08-26 2016-12-07 云南电网有限责任公司 一种高海拔地区直升机飞行状态检测装置
CN104298160B (zh) * 2014-10-27 2017-03-15 北京必创科技股份有限公司 一种无线双核数据采集装置及采集方法
CN108181491A (zh) * 2018-01-03 2018-06-19 江苏林洋能源股份有限公司 一种提高电能表计量精度及计量可靠性的方法
CN108683419A (zh) * 2018-05-14 2018-10-19 河北惠仁医疗设备科技有限公司 基于ad4020的高精度ad采集***
CN110262310A (zh) * 2019-05-09 2019-09-20 国网吉林省电力有限公司长春供电公司 无人机自平衡起降平台控制器
CN110275457A (zh) * 2018-03-15 2019-09-24 沈阳唯实软件有限公司 一种卫星***数据巡查实时采集器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745049A (en) * 1995-07-20 1998-04-28 Yokogawa Electric Corporation Wireless equipment diagnosis system
CN200947211Y (zh) * 2005-06-20 2007-09-12 沈阳嘉诚科技有限公司 一种生产现场数据采集rfid射频手持终端
CN101309289A (zh) * 2008-06-27 2008-11-19 浙江大学 手持无线数据采集终端
CN201331774Y (zh) * 2009-01-13 2009-10-21 珠海优特电力科技股份有限公司 一种电力巡视手持设备
JP2013105301A (ja) * 2011-11-14 2013-05-30 Hitachi Industrial Equipment Systems Co Ltd 産業機器制御システム
CN203520139U (zh) * 2013-10-12 2014-04-02 西安工程大学 基于ZigBee的集群电机故障智能诊断***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745049A (en) * 1995-07-20 1998-04-28 Yokogawa Electric Corporation Wireless equipment diagnosis system
CN200947211Y (zh) * 2005-06-20 2007-09-12 沈阳嘉诚科技有限公司 一种生产现场数据采集rfid射频手持终端
CN101309289A (zh) * 2008-06-27 2008-11-19 浙江大学 手持无线数据采集终端
CN201331774Y (zh) * 2009-01-13 2009-10-21 珠海优特电力科技股份有限公司 一种电力巡视手持设备
JP2013105301A (ja) * 2011-11-14 2013-05-30 Hitachi Industrial Equipment Systems Co Ltd 産業機器制御システム
CN203520139U (zh) * 2013-10-12 2014-04-02 西安工程大学 基于ZigBee的集群电机故障智能诊断***

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104298160B (zh) * 2014-10-27 2017-03-15 北京必创科技股份有限公司 一种无线双核数据采集装置及采集方法
CN105045180A (zh) * 2015-07-21 2015-11-11 中国航天科工集团第三研究院第八三五七研究所 一种电子设备健康状态采集***
CN106197474A (zh) * 2016-08-26 2016-12-07 云南电网有限责任公司 一种高海拔地区直升机飞行状态检测装置
CN108181491A (zh) * 2018-01-03 2018-06-19 江苏林洋能源股份有限公司 一种提高电能表计量精度及计量可靠性的方法
CN110275457A (zh) * 2018-03-15 2019-09-24 沈阳唯实软件有限公司 一种卫星***数据巡查实时采集器
CN108683419A (zh) * 2018-05-14 2018-10-19 河北惠仁医疗设备科技有限公司 基于ad4020的高精度ad采集***
CN110262310A (zh) * 2019-05-09 2019-09-20 国网吉林省电力有限公司长春供电公司 无人机自平衡起降平台控制器

Also Published As

Publication number Publication date
CN104020693B (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
CN104020693A (zh) 一种用于手持设备的实时数据采集***
CN103776366B (zh) 一种正余弦旋转变压器的励磁与解算一体化装置
CN204302840U (zh) 一种无尘室监测装置
CN204595515U (zh) 无线多功能转换器
CN203870199U (zh) 基于全寿命管理的gis无损监测装置
CN202676932U (zh) 一种多通道气象观测装置
CN203414433U (zh) 一种烘干过程的温湿度检测***
CN203069733U (zh) 基于振动检测的用于gis型式试验时局部放电点定位装置
CN201368776Y (zh) 一种超低功耗无线数字式温度传感器
Ji et al. GPRS-based data real-time transmission system of water-quality monitoring
CN203405284U (zh) 多功能无线土壤环境监测仪
CN102299720A (zh) 一种基于cc2530的无线射频模块
CN204010057U (zh) 定向运动用计时装置
CN105590439A (zh) 一种小容量电池电量无线管理预测装置及控制方法
CN202815101U (zh) 一种检测***
CN202127395U (zh) 基于cc2530的无线射频模块
CN204854807U (zh) 温湿度采集显示模块
CN203300111U (zh) 无线液晶温湿度监测仪
CN204944606U (zh) 液位检测***
CN206161041U (zh) 一种基于蓝牙技术的局域工业环境气体监测节点
CN204895352U (zh) 一种obd集成装置
CN205016101U (zh) 一种低功耗无线传感器网络实验平台
Guanni Design and Implementation of a High-Performance and Low-Power Programmable Embedded Weak Signal Processing Platform
CN103095856A (zh) 基于Zigbee的USB接口的适配器
CN220041216U (zh) 一种基于蓝牙soc的水表数据采集器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201130

Address after: 330000 south of 5th floor, building 15, No. 346, xiaolanzhong Avenue, Xiaolan economic and Technological Development Zone, Nanchang County, Nanchang City, Jiangxi Province

Patentee after: Jiangxi Zhonglan Electronic Manufacturing Co., Ltd

Address before: 330096, Jiangxi, Nanchang hi tech Zone, innovation, road, Chang Ruifeng, room 717

Patentee before: Xu Yunpeng