CN103984355B - 一种巡检飞行机器人与架空电力线路距离预测和保持方法 - Google Patents

一种巡检飞行机器人与架空电力线路距离预测和保持方法 Download PDF

Info

Publication number
CN103984355B
CN103984355B CN201410211164.9A CN201410211164A CN103984355B CN 103984355 B CN103984355 B CN 103984355B CN 201410211164 A CN201410211164 A CN 201410211164A CN 103984355 B CN103984355 B CN 103984355B
Authority
CN
China
Prior art keywords
flying robot
power line
distance
overhead power
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410211164.9A
Other languages
English (en)
Other versions
CN103984355A (zh
Inventor
吴华
柳长安
张晟
杨国田
刘春阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201410211164.9A priority Critical patent/CN103984355B/zh
Publication of CN103984355A publication Critical patent/CN103984355A/zh
Application granted granted Critical
Publication of CN103984355B publication Critical patent/CN103984355B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了属于电力线路检测技术领域的一种巡检飞行机器人与架空电力线路距离预测和保持方法。该方法包括距离预测方法:确定目前飞行机器人的地理位置坐标,计算飞行机器人与架空电力线路的实际距离;距离保持方法:1)利用线路故障模型对架空电力线路进行实时故障检测,智能确定距离保持方式;2)考虑飞行机器人的安全状况,利用安全评估模型判断飞行机器人当前安全状况;3)安全自适应动态路径规划。该方法结合传感器数据和三维走廊模型数据,精确计算飞行机器人与架空电力线路的距离;考虑各类安全因素,评估飞行机器人的安全性;针对架空电力线路巡检标准,实时规划飞行巡检路径,实现飞行机器人对架空电力线路的距离保持。

Description

一种巡检飞行机器人与架空电力线路距离预测和保持方法
技术领域
本发明属于电力巡检技术领域,尤其涉及一种巡检飞行机器人与架空电力线路距离预测和保持方法。
背景技术
飞行机器人在对偏远地区进行电力线路巡检时,会面临巡检效率与飞行机器人自身安全两大问题。巡检飞行机器人与架空电力线路距离过远会导致巡检消耗时间过长、精度偏低等问题,过近则会对飞行机器人自身安全构成严重威胁。
目前已有的距离预测与保持技术大致分为以下三个方面,均存在严重不足
1.人工预测与控制的方法。该方法的效果取决于驾驶员的技术和经验,存在很大风险。
2.提前规划路径的方法。该方法必须预先制定,无法针对具体的实时环境做出灵活调整。
3.基于机器视觉和全球定位***GPS的定位方法。该方法无法高效精准地获取和利用当前电力线路状况与空间位置等信息,也没有充分考虑飞行机器人安全问题。
发明内容
针对上述现有技术存在的问题,本发明提出一种巡检飞行机器人与架空电力线路距离预测和保持方法,其特征在于,该方法包括距离预测方法和距离保持方法,所述距离预测方法为:
11)确定当前飞行机器人的地理位置坐标,将其映射到已有的三维走廊模型中,获取当前巡检范围内架空电力线路走势,计算三维走廊模型中的飞行机器人与架空电力线路的最小距离,并将其乘以比例因子转化为实际距离;
所述距离保持方法为:
21)针对相关架空电力线路巡检标准,利用机载高清摄像头采集巡检目标图像,计算机视觉和模式识别方法和已有的常见故障图像进行离线训练,获得架空电力线路的故障诊断模型;
22)将飞行机器人机身电位水平、电磁场场强、风速、湿度和步骤11)中获取的实际距离,作为安全评估模型的输入,分析当前飞行机器人的安全状况;
23)进行安全自适应动态路径规划。
所述安全自适应动态路径规划包括:
(1)以三维走廊模型,飞行机器人在三维走廊模型中的位置坐标和预设的安全距离为基础,自动规划计算全局安全巡检飞行路径;
(2)若安全评估模型报告不安全状态而飞行机器人仍处于全局安全巡检飞行路径时,加大安全距离的阈值,根据(1)中的方法重新规划全局安全巡检飞行路径;
(3)若安全评估模型报告不安全状态,并且飞行机器人在全局安全巡检飞行路径以外,对飞行机器人进行局部安全巡检飞行路径规划,及时飞离危险区域,实现安全距离的保持。
发明的有益效果:该方法结合传感器数据和架空电力线路的三维走廊模型,精确计算飞行机器人相对于架空电力线路的距离,并在考虑各类安全因素基础上实时评估飞行机器人的安全性。与此同时,全面针对架空电力线路巡检标准,实时规划飞行巡检路径,实现飞行机器人对架空电力线路的距离保持。
附图说明
图1为巡检飞行机器人与架空电力线路距离预测和保持方法的流程图;
图2为架空电力线路的三维走廊模型图;
图3为架空电力线路和飞行机器人的坐标投影图;
图4为全局安全巡检飞行路径规划图;
图5为局部安全巡检飞行路径规划图;
图6为本发明方法具体实施所依赖的飞行机器人平台上的***架构图。
具体实施方式
下面结合附图对本发明方法作进一步的说明。
图1为本发明方法的流程图,该方法包括距离预测方法和距离保持方法,距离预测方法为:
首先,确定当前飞行机器人的地理位置坐标:地理位置坐标通过机载全球定位***(Global Positioning System,GPS)天线和地面GPS基站所提供的飞行机器人的地理空间坐标数据获取。
然后,设定三维走廊模型的三维坐标系XYZ,将当前飞行机器人的地理位置坐标映射到已有的三维走廊模型中,获取飞行机器人在三维走廊模型中的坐标PF(x0,y0,z0),三维走廊模型示意图如图2所示。
最后,在三维走廊模型中,获取飞行机器人当前巡检范围内架空电力线路走势,将架空电力线路数据和飞行机器人的坐标PF(x0,y0,z0)垂直投影到水平地面XY上,如图3所示,记飞行机器人的二维投影坐标为PF'(x0,y0),以PF'(x0,y0)为中心,构建一个矩形A={(x,y)|a<x<b,m<y<n},其中,(x,y)为当前巡检范围内架空电力线路上的一点坐标;a,b,m,n都为常量值,根据巡检时架空电力线路所在的具体地理环境由人工设置;该矩形满足一个原则:必须与架空电力线路有交集,一般情况下|b-a|和|m-n|所代表的真实距离均大于10米。计算此范围内所有架空电力线路上的点到PF'(x0,y0)的距离值,求得最小距离值d,则飞行机器人距离架空电力线路的实际距离D为最小距离值d乘以比例因子X。
所述距离保持方法为:
21)针对相关架空电力线路巡检标准(杆塔安全性评估原则和标准、架线强度安全性评估标准和疲劳判别标准),利用机载高清摄像头采集巡检目标图像,计算机视觉和模式识别方法和已有常见故障图像进行离线训练,获得架空电力线路的故障诊断模型。将巡检目标图像作为故障诊断模型的输入,对架空电力线路进行实时故障检测,智能确定巡检飞行距离保持方式;若架空电力线路出现故障迹象,则飞行机器人以悬停的检测方式保持距离;若无故障迹象,则飞行机器人继续向前飞行。
22)将飞行机器人机身电位水平E、电磁场场强M、风速W、湿度H和实际距离D,组成向量(E,M,W,H,D)作为安全评估模型的输入,由其分析当前飞行机器人的安全状况,输出结果为1(安全)与0(不安全)。
安全评估模型主要由深度学***E、电磁场场强M、风速W、湿度H等数据。在区间[5m,15m]中每0.5米选择一个距离值组成距离样本SD。依据巡检技术规范和飞行机器人相关部件表现性能,评估在条件(E,M,W,H,SD)下飞行机器人的安全性,输出结果S,即“安全”(S=1)和“不安全”(S=0)。其次,将(E,M,W,H,SD,S)作为深度神经网络的训练数据,自底向上学习特征,并在网络顶层设置一个分类器,自顶向下调整参数,计算获取完整的安全评估模型SDNN。对于训练数据(E,M,W,H,SD,S)而言,该模型满足SDNN(E,M,W,H,SD)的输出结果与实际S之间的错误率最小。
23)安全自适应动态路径规划,包括:
(1)以三维走廊模型,飞行机器人在三维走廊模型中的位置坐标和预设的安全距离Pd为基础,自动规划全局安全巡检飞行路径,具体方法为:
首先,在三维走廊模型中,对架空电力线路按一定比率采样,得到采样点PL(i),将其投影到水平地面XY上,设为PL_XY(i),计算每个采样点PL_XY(i)的切线斜率K(i),以预设安全距离Pd为半径作圆,使得该圆与该斜率代表的直线相切,得到该二维圆的圆心坐标CC(i),如图4所示。
其次,在三维走廊模型中,获得采样点PL(i)对应的高度坐标值PL_Z(i),计算得到一个三维点V(i)=(CC(i),PL_Z(i)+L),其中,L为常量,表示飞行机器人与架空电力线路的恒定高度差;
最后,将所有的点V(i)通过插值运算连接起来,得到一条完整的曲线,将该曲线映射到真实地理坐标,并设置航点,从而完成全局路径的规划。
(2)若安全评估模型报告不安全状态而飞行机器人仍处于全局安全巡检飞行路径时,加大安全距离的阈值,根据(1)中的方法重新规划全局安全巡检飞行路径;
(3)若安全评估模型报告不安全状态,并且飞行机器人在全局安全巡检飞行路径以外,将对飞行机器人进行局部安全巡检飞行路径规划,帮助飞行机器人及时飞离危险区域,实现安全距离的保持。
如图5所示为局部安全巡检飞行路径规划图,具体为:飞行机器人先保持悬停状态,在三维走廊模型中,将全局安全巡检飞行路径数据和飞行机器人坐标数据垂直投影到水平地面XY上,记飞行机器人二维投影坐标为PF′′,以PF′′为中心,构建一个矩形B={(x′,y′)|a<x′<b,m<y′<n},计算在此范围内的全局安全路径上的点到PF′′的距离值,取距离值最小的那个点P。增设对应于点P坐标的新航点,自动导航飞行机器人回到全局安全路径上来。
该方法的实施需要依赖如图6所示的飞行机器人平台上的***,首先是数据采集分析平台1,其能够汇集机载传感器7(GPS导航仪、机载高清摄像头、电磁场检测器等)所采集的数据,并对其进行初步分类加工,为机载高性能计算平台2提供可靠数据来源。同时,它还存储了架空输电线路的三维走廊模型。
其次是机载高性能计算平台2,其配备了以下模块:
(1)故障检测模块3,其内置已训练的基于图像的故障诊断模型,故障检测模块3利用机载高清相机采集的检测目标的图像,实时判定架空电力线路是否存在故障,从而决定飞行机器人的距离保持方式。
(2)实时距离预测模块4,其能结合数据采集分析平台1中的实时传感数据和三维走廊模型数据,计算出飞行机器人与架空电力线路之间的实际距离。
(3)安全评估模块5,其内置安全评估模型,结合数据采集分析平台1中的实时传感数据,对当前飞行机器人所处安全状况进行评估,评估的结果供给路径规划模块6,用以实时调整路径规划结果。
(4)路径规划模块6,其内置安全自适应动态路径规划方法,能利用数据采集分析平台1中的三维走廊模型数据,以及当前飞行机器人所处的位置安全状况,自适应动态规划飞行机器人的飞行路径。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (2)

1.一种巡检飞行机器人与架空电力线路距离预测和保持方法,其特征在于,该方法包括距离预测方法和距离保持方法,所述距离预测方法为:
11)确定当前飞行机器人的地理位置坐标,将其映射到已有的三维走廊模型中,获取当前巡检范围内架空电力线路走势,计算三维走廊模型中的飞行机器人与架空电力线路的最小距离,将其乘以比例因子转化为实际距离;
所述距离保持方法为:
21)针对相关架空电力线路巡检标准,利用机载高清摄像头采集巡检目标图像,计算机视觉和模式识别方法和已有的常见故障图像进行离线训练,获得架空电力线路的故障诊断模型;将巡检目标图像作为故障诊断模型的输入,对架空电力线路进行实时故障检测,智能确定巡检飞行距离保持方式;若架空电力线路出现故障迹象,则飞行机器人以悬停的检测方式保持距离;若无故障迹象,则飞行机器人继续向前飞行;
22)将飞行机器人机身电位水平、电磁场场强、风速、湿度和步骤11)中获取的实际距离,作为安全评估模型的输入,分析当前飞行机器人的安全状况;
安全评估模型由深度学***E、电磁场场强M、风速W、湿度H;在区间[5m,15m]中每0.5米选择一个距离值组成距离样本SD,依据巡检技术规范和飞行机器人相关部件表现性能,评估在条件{E,M,W,H,SD}下飞行机器人的安全性,输出结果S,S=1即安全,和S=0即不安全;将{E,M,W,H,SD,S}作为深度神经网络的训练数据,自底向上学习特征,并在网络顶层设置一个分类器,自顶向下调整参数,计算获取完整的安全评估模型SDNN;对于训练数据{E,M,W,H,SD,S}而言,该模型满足SDNN{E,M,W,H,SD}的输出结果与实际S之间的错误率最小;
23)进行安全自适应动态路径规划。
2.根据权利要求1所述的一种巡检飞行机器人与架空电力线路距离预测和保持方法,其特征在于,所述安全自适应动态路径规划包括:
(1)以三维走廊模型,飞行机器人在三维走廊模型中的位置坐标和预设的安全距离为基础,自动规划计算全局安全巡检飞行路径;
(2)若安全评估模型报告不安全状态而飞行机器人仍处于全局安全巡检飞行路径时,加大安全距离的阈值,根据(1)中的方法重新规划全局安全巡检飞行路径;
(3)若安全评估模型报告不安全状态,并且飞行机器人在全局安全巡检飞行路径以外,对飞行机器人进行局部安全巡检飞行路径规划,及时飞离危险区域,实现安全距离的保持;
所述方法用于的飞行机器人平台上的***包括
(1)数据采集分析平台,其能够汇集机载传感器所采集的数据,并对其进行初步分类加工,为机载高性能计算平台提供可靠数据来源;它还存储了架空输电线路的三维走廊模型;机载传感器包括GPS导航仪、机载高清摄像头和电磁场检测器;
(2)机载高性能计算平台,其配备了以下模块:
故障检测模块,其内置已训练的基于图像的故障诊断模型,故障检测模块利用机载高清相机采集的检测目标的图像,实时判定架空电力线路是否存在故障,从而决定飞行机器人的距离保持方式;
实时距离预测模块,其能结合数据采集分析平台中的实时传感数据和三维走廊模型数据,计算出飞行机器人与架空电力线路之间的实际距离;
安全评估模块,其内置安全评估模型,结合数据采集分析平台中的实时传感数据,对当前飞行机器人所处安全状况进行评估,评估的结果供给路径规划模块,用以实时调整路径规划结果;
路径规划模块,其内置安全自适应动态路径规划方法,能利用数据采集分析平台中的三维走廊模型数据,以及当前飞行机器人所处的位置安全状况,自适应动态规划飞行机器人的飞行路径。
CN201410211164.9A 2014-05-19 2014-05-19 一种巡检飞行机器人与架空电力线路距离预测和保持方法 Expired - Fee Related CN103984355B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410211164.9A CN103984355B (zh) 2014-05-19 2014-05-19 一种巡检飞行机器人与架空电力线路距离预测和保持方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410211164.9A CN103984355B (zh) 2014-05-19 2014-05-19 一种巡检飞行机器人与架空电力线路距离预测和保持方法

Publications (2)

Publication Number Publication Date
CN103984355A CN103984355A (zh) 2014-08-13
CN103984355B true CN103984355B (zh) 2017-01-11

Family

ID=51276370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410211164.9A Expired - Fee Related CN103984355B (zh) 2014-05-19 2014-05-19 一种巡检飞行机器人与架空电力线路距离预测和保持方法

Country Status (1)

Country Link
CN (1) CN103984355B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106156850A (zh) * 2015-04-24 2016-11-23 江苏卓顿信息科技有限公司 一种基于云计算的心理顾问机器人***
CN104865971B (zh) * 2015-05-26 2017-07-28 广西大学 一种输电线路巡检无人机的控制方法及无人机
CN106441286B (zh) * 2016-06-27 2019-11-19 上海大学 基于bim技术的无人机隧道巡检***
CN108073180B (zh) * 2016-11-08 2020-07-28 北京金风科创风电设备有限公司 无人机的控制方法、装置和***
CN108415453A (zh) * 2018-01-24 2018-08-17 上海大学 基于bim技术的无人机隧道巡检方法
CN110362098B (zh) * 2018-03-26 2022-07-05 北京京东尚科信息技术有限公司 无人机视觉伺服控制方法、装置以及无人机
CN108830965A (zh) * 2018-05-31 2018-11-16 中国舰船研究设计中心 一种新型机舱巡检监控***
CN111044044B (zh) * 2019-12-06 2023-04-07 国网安徽省电力有限公司淮南供电公司 一种电力无人机巡检路线规划方法和装置
CN111506116B (zh) * 2020-05-29 2021-08-17 中国南方电网有限责任公司超高压输电公司昆明局 基于换流站强磁场干扰下无人机安全控制方法
CN112230680B (zh) * 2020-10-29 2022-10-18 国网河南省电力公司济源供电公司 一种无人机电力线路巡检控制方法
CN117435998B (zh) * 2023-12-21 2024-03-08 天津博优智能科技有限公司 一种智能机器人的故障检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724751A (ja) * 1989-02-13 1995-01-27 Toshiba Corp 点検作業ロボット
CN1645284A (zh) * 2004-12-17 2005-07-27 华北电力大学(北京) 电力线路巡检机器人飞机及其控制***
CN101477169A (zh) * 2009-01-16 2009-07-08 华北电力大学 巡检飞行机器人对电力线路的检测方法
CN101807080A (zh) * 2010-03-16 2010-08-18 浙江大学 架空线路巡检机器人飞艇控制***及其控制方法
CN102780177A (zh) * 2012-07-19 2012-11-14 华北电力大学 基于飞行机器人的架空电力线路巡检数据采集方法
CN102880186A (zh) * 2012-08-03 2013-01-16 北京理工大学 基于稀疏a*算法和遗传算法的航迹规划方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250010A1 (en) * 2011-03-31 2012-10-04 Richard Charles Hannay Aerial Inspection System(s) and Method(s)
CN102591355B (zh) * 2012-02-24 2014-06-11 山东电力研究院 无人机电力巡线安全距离检测方法
CN102941920A (zh) * 2012-12-05 2013-02-27 南京理工大学 一种基于多旋翼飞行器的高压输电线路巡检机器人及其方法
CN103135550B (zh) * 2013-01-31 2015-05-20 南京航空航天大学 用于电力巡线的无人机多重避障控制方法
CN103235830A (zh) * 2013-05-13 2013-08-07 北京臻迪科技有限公司 一种基于无人机电力巡线方法、装置及无人机
CN103472847B (zh) * 2013-08-30 2016-02-24 广东电网公司电力科学研究院 无人机电力线路巡检航迹监控方法与***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724751A (ja) * 1989-02-13 1995-01-27 Toshiba Corp 点検作業ロボット
CN1645284A (zh) * 2004-12-17 2005-07-27 华北电力大学(北京) 电力线路巡检机器人飞机及其控制***
CN101477169A (zh) * 2009-01-16 2009-07-08 华北电力大学 巡检飞行机器人对电力线路的检测方法
CN101807080A (zh) * 2010-03-16 2010-08-18 浙江大学 架空线路巡检机器人飞艇控制***及其控制方法
CN102780177A (zh) * 2012-07-19 2012-11-14 华北电力大学 基于飞行机器人的架空电力线路巡检数据采集方法
CN102880186A (zh) * 2012-08-03 2013-01-16 北京理工大学 基于稀疏a*算法和遗传算法的航迹规划方法

Also Published As

Publication number Publication date
CN103984355A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
CN103984355B (zh) 一种巡检飞行机器人与架空电力线路距离预测和保持方法
CN105318888B (zh) 基于无人机感知的无人驾驶车辆路径规划方法
CN106371456B (zh) 一种无人机巡线方法及***
CN104932529B (zh) 一种无人机自主飞行的云端控制***
CN104637370B (zh) 一种摄影测量与遥感综合教学的方法及***
CN103135550B (zh) 用于电力巡线的无人机多重避障控制方法
CN105812733B (zh) 一种民航空中交通管制的场面监视引导***
CN108614274B (zh) 基于多旋翼无人机的交叉式跨越线距离测量方法及装置
CN104049641B (zh) 一种自动降落方法、装置及飞行器
CN105222807B (zh) 一种旋翼无人机精密进近航道指示器校验***及校验方法
CN106774392A (zh) 一种电力线路巡检过程中飞行路径的动态规划方法
CN110262546A (zh) 一种隧道智能无人机巡检***及方法
CN106657882A (zh) 基于无人机的输变电***实时监控方法
CN106568441B (zh) 一种利用基于北斗的电力巡检设备进行电力巡检的方法
CN110134143A (zh) 一种电力巡检方法、***及电子设备和存储介质
CN106504362A (zh) 基于无人机的输变电***巡检方法
CN109240284A (zh) 一种无人驾驶农机的自主路径规划方法及装置
CN107515621A (zh) 基于输电线路电磁感知的巡线无人机飞行轨迹控制方法
CN103941746A (zh) 无人机巡检图像处理***及方法
CN110888453A (zh) 一种基于LiDAR数据构建三维实景的无人机自主飞行方法
CN107392247A (zh) 一种电力线下方地物安全距离实时检测方法
CN106291278A (zh) 一种基于多视觉***的开关柜局部放电自动检测方法
CN203038112U (zh) 无人机uav自动控制***
CN104406589B (zh) 一种飞行器穿越雷达区的飞行方法
CN102854881A (zh) 无人机uav自动控制***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170111

Termination date: 20170519

CF01 Termination of patent right due to non-payment of annual fee