CN103953403A - 回收烟气余热的跨临界与亚临界耦合有机朗肯循环*** - Google Patents

回收烟气余热的跨临界与亚临界耦合有机朗肯循环*** Download PDF

Info

Publication number
CN103953403A
CN103953403A CN201410091071.7A CN201410091071A CN103953403A CN 103953403 A CN103953403 A CN 103953403A CN 201410091071 A CN201410091071 A CN 201410091071A CN 103953403 A CN103953403 A CN 103953403A
Authority
CN
China
Prior art keywords
working medium
organic rankine
critical
organic
subcritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410091071.7A
Other languages
English (en)
Inventor
李友荣
王晓琼
谢凌洁
李晓平
吴双应
刘朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201410091071.7A priority Critical patent/CN103953403A/zh
Publication of CN103953403A publication Critical patent/CN103953403A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明提出了回收烟气余热的跨临界与亚临界耦合有机朗肯循环***,属于工业节能领域。该***通过一个中间换热器将跨临界与亚临界有机朗肯循环进行耦合,采用跨临界有机朗肯循环膨胀机排汽对亚临界有机朗肯循环的工质进行加热,通过选用适用于不同温区的有机工质,提高耦合循环***热效率。该***采用单螺杆膨胀机,可有效地降低单螺杆膨胀机膨胀压力比,提高膨胀机膨胀效率。同时,通过采用超临界压力使蒸发器内有机工质的升温过程与烟气的放热曲线良好匹配,降低蒸发器内的不可逆损失,进一步提高***热效率。

Description

回收烟气余热的跨临界与亚临界耦合有机朗肯循环***
技术领域
本发明的名称是回收烟气余热的跨临界与亚临界耦合有机朗肯循环***,属工业节能技术领域。 
背景技术
我国工业能源消耗占全国能源消耗的70%以上,特别是在钢铁、化工、水泥、有色、建材、石油石化、轻工、煤炭等行业,其不仅能源消耗量大,而且工业余热排放量也大,在工业生产过程中排放的余热量占燃料消耗的(17~67)%,其中,可回收利用的余热资源约占燃料消耗的(10~40)%。然而,目前我国余热资源的回收利用率仅为33%左右,大部分的余热资源尚未得到利用,从而导致能源的极大浪费,因此,工业余热的回收利用是实现节能减排目标、缓解能源问题的关键环节。常用的余热动力回收利用技术是以低沸点有机物作为循环工质的有机朗肯循环(ORC)技术,它能将低品位余热资源转化为高品位的电能输出。基本的有机朗肯循环***主要由蒸发器、膨胀机、冷凝器和工质循环泵组成,其具有结构简单、灵活性高、运行费用低和余热回收率高等优点,很多学者对基本有机朗肯循环进行了多方面的研究,主要包括工质的选择、性能评价及参数优化等,以及对基本***结构进行改进,或提出跨临界***和新型复合***等。与传统的亚临界有机朗肯循环相比,跨临界有机朗肯循环具有与热源较好的温度匹配,使得***热效率较高。跨临界有机朗肯循环存在的问题是,高效率与低压力不能同时兼得,这就使得余热回收利用受到设备材料的限制。而且由于不同工质的临界压力、临界温度及干湿性的不同,使得工质的热力性能在不同的温区存在很大的差异。通常情况下,用于有机朗肯循环技术的 膨胀机为小型膨胀机,而大多数小型膨胀机对膨胀压力比有一定的限制,其中单螺杆膨胀机的最佳压力比范围为2~8。显然,在最佳膨胀压力比范围内,烟气余热资源不能充分被利用,***热效率低。因此,为了提高膨胀机膨胀效率、最大限度地回收烟气余热、充分利用工质的热力性能,采用两级有机朗肯循环耦合***是一种理想的方法。 
基于以上现状和思想,提出把适用于中、高温区的跨临界有机朗肯循环和低温区的亚临界有机朗肯循环进行有效耦合的复合余热回收***,在两个子***中分别采用不同的循环工质。本耦合***一方面可以有效地降低单螺杆膨胀机膨胀压力比,提高膨胀效率;另一方面在不同温区采用不同的有机工质,能充分利用工质的热力性能,增加***净输出功,同时降低***最高压力。 
发明内容
本发明旨在提出回收烟气余热的跨临界与亚临界耦合有机朗肯循环***。本耦合***包括跨临界有机朗肯循环子***和亚临界有机朗肯循环子***。该耦合***一方面可以深度回收利用低温烟气余热,另一方面可以减小单螺杆膨胀机膨胀压力比,同时,通过在不同温区采用不同的有机工质,充分利用工质的热力性能,提高***热效率,降低***最高压力,减小对设备材料的限制。 
本发明通过以下技术方案实现: 
主要由蒸发器1、中间换热器2、单螺杆膨胀机3和4、发电机5和6、冷凝器7、工质循环泵8和9、预热器10、连接管道以及监测设备等组成的回收烟气余热的跨临界与亚临界耦合有机朗肯循环***,其特征在于:所述耦合***以不同的低沸点有机物作为循环工质,中温烟气(200~300℃)在跨临界有机朗肯循环子***的蒸发器1内加热经工质循环泵8升压后的液态有机工质,使工 质汽化成为处于超临界状态的蒸汽,然后进入膨胀机3对外作功,实现电能输出。排汽进入中间换热器2被冷凝至饱和液体状态后进入下一个循环。在亚临界有机朗肯循环子***中,在中间换热器2被加热至饱和蒸汽状态的工质推动膨胀机4对外作功,实现电能输出,排汽进入冷凝器7被冷凝至饱和液体状态后由工质循环泵9升压、经预热器10加热后进入下一个循环过程。 
通过中间换热器2将跨临界有机朗肯循环和亚临界有机朗肯循环有效地耦合起来,跨临界有机朗肯循环子***的膨胀机排汽具有较高的温度,用来对亚临界有机朗肯循环子***的有机工质进行加热。在跨临界有机朗肯循环和亚临界有机朗肯循环***中,采用了不同的有机工质,因此,能充分利用工质的热力性能,提高***热效率,降低***最高压力,减小对设备材料的限制。 
跨临界有机朗肯循环子***内的工质循环泵8将液态有机工质加压至超临界压力状态,然后在蒸发器1内被烟气加热至超临界蒸汽状态,其换热过程存在温度滑移,使得有机工质的吸热升温过程与烟气放热降温过程良好匹配。 
在亚临界有机朗肯循环子***内工质循环泵9出口处安装了预热器10,对被升压的有机工质进行预热,其热源为流经蒸发器1后的烟气,这样既充分利用了烟气余热,又可以有效地增加***的净输出功。 
本发明与现有回收烟气余热的有机朗肯循环***相比具有以下特点:(1)相对于基本有机朗肯循环***,通过中间换热器将跨临界有机朗肯循环与亚临界有机朗肯循环耦合在一起,可以有效地降低单螺杆膨胀机的膨胀压力比,提高膨胀效率;(2)在跨临界有机朗肯循环与亚临界有机朗肯循环中,通过优选适用于不同温区的有机工质,充分利用工质的热力性能,提高***热效率,降低***最高压力,减小对设备材料的限制;(3)通过增设预热器,利用来自于蒸发器的低温烟气对亚临界有机朗肯循环的工质进行预热,使烟气余热充分被 利用,同时,可减少中间换热器内的不可逆损失;(4)通过工质泵控制跨临界有机朗肯循环中液态有机工质进入蒸发器内的压力和流量,使处于超临界压力状态的有机工质在不断吸收烟气热量由液态转变为汽态的过程中,其升温曲线与烟气的放热曲线良好匹配,最大限度地减少蒸发器内的不可逆损失、提高***热效率。 
附图说明
图1是本发明的***原理图。 
其中:1-蒸发器;2-中间换热器;3、4-膨胀机;5、6-发电机;7-冷凝器;8、9-工质循环泵;10-预热器;11-排烟引风机;12-冷却水泵;13-调节阀;F-烟气;W-冷却水。 
具体实施方式
以下结合说明书附图中的图1对本发明具体实施进行详细说明。 
本发明主要由蒸发器1、中间换热器2、单螺杆膨胀机3和4、发电机5和6、冷凝器7、工质循环泵8和9、预热器10、排烟引风机11、冷却水泵12、连接管道以及监测设备等组成。 
本发明的工作过程如下: 
来自于工业锅炉的烟气依次进入蒸发器1和预热器2分别对跨临界有机朗肯循环和亚临界有机朗肯循环***中的有机工质进行加热,然后由排烟引风机11排除。在跨临界有机朗肯循环子***中,工质循环泵8将饱和液态有机工质进行加压并泵送至蒸发器1中吸收烟气热量,有机工质由液态转变为汽态。在工质循环泵8出口处安装有压力传感器a,直观地对出口液态有机工质压力进行监测。 处于超临界汽体状态的有机工质则进入膨胀机3中作功,驱动发电机5对外输出电能。由膨胀机3排出的有机工质乏汽进入中间换热器2冷凝,释放的热量用来加热亚临界有机朗肯循环子***中的有机工质。在膨胀机3出口处安装有压力传感器b,直观地对其出口排汽压力进行监测。冷凝至饱和液态的有机工质被送到工质循环泵8,进入下一个循环。 
在亚临界有机朗肯循环子***中,有机工质经工质循环泵9升压后,进入预热器10进行预热,预热热源是经蒸发器1放热后的烟气。预热器10的安装可以使烟气温度进一步降低,增加***的输出净功。预热后的有机工质进入中间换热器2,与膨胀机3出口的排汽进行换热,吸热汽化至饱和汽体状态的有机工质进入膨胀机4做功,驱动发电机6对外输出电能。膨胀机4出口处的排汽则进入冷凝器7进行冷凝。在膨胀机4出口处安装压力传感器d,直观地对其出口处的有机工质压力进行监测。冷却水泵12将冷却水输送至冷凝器7,流量调节阀13对输入的冷却水流量进行调节。冷凝后的液态有机工质输被送至工质循环泵9,对其进行升压后进入下一个循环。在工质循环泵8出口处安装有压力传感器c,可直观地对其出口液态有机工质的压力进行监测。 
相对于基本有机朗肯循环***,该耦合***在考虑膨胀机最佳压力比的基础上,在不同的温区采用不同的有机工质,能充分利用工质的热力性能,提高***效率,降低***最高压力,减小对设备材料的限制。本发明主要是以烟气余热发电为主,两级***的有效耦合使得***的净输出电能增加。 
本发明采用温度在(200~300)℃范围内的工业烟气作为热源,采用常温下的水作为冷源。当烟气进口温度为270℃、质量流量为10kg/s、冷却水进口温度为20℃时,对三种有机工质R245fa、R123和R141b在不同组合时的性能进行了优化计算。以净输出功为目标函数,分别对这三种有机工质的任意组合进行 了优化对比,由于约束条件的限制,在此计算工况下R141b不适合作为跨临界有机朗肯循环子***的循环工质,结果如表1所示,有机工质组合R123/R141b是最适合该耦合***的有机工质对。 
表1烟气进口温度为270℃、质量流量为10kg/s、冷却水进口温度为20℃时优化结果 

Claims (5)

1.回收烟气余热的跨临界与亚临界耦合有机朗肯循环***,包括跨临界有机朗肯循环子***和亚临界有机朗肯循环子***。该耦合***主要由蒸发器(1)、中间换热器(2)、单螺杆膨胀机(3和4)、发电机(5和6)、冷凝器(7)、工质循环泵(8和9)、预热器(10)、连接管道以及监测设备等组成;其特征在于:所述耦合***以低沸点有机物作为循环工质,温度在(200~300)℃范围内的中温烟气在跨临界有机朗肯循环子***的蒸发器(1)内加热经工质循环泵(8)升压后的有机工质,处于超临界状态的汽态有机工质推动膨胀机(3)作功、驱动发电机(5)对外输出电能。排汽进入中间换热器(2)加热亚临界有机朗肯循环工质,并冷凝至饱和液体状态后进入下一个循环。在亚临界有机朗肯循环子***中,在中间换热器(2)中被加热至饱和蒸汽状态的有机工质推动膨胀机(4)作功,驱动发电机(6)对外输出电能,排汽进入冷凝器(7)冷凝至饱和液体状态后由工质循环泵(9)升压,由预热器(2)预热后进入下一个循环。
2.根据权利要求1所述的回收烟气余热的跨临界与亚临界耦合有机朗肯循环***,其特征在于:跨临界有机朗肯循环和亚临界有机朗肯循环分别采用不同的循环工质,通过中间换热器(2)将跨临界有机朗肯循环和亚临界有机朗肯循环有效地耦合起来,跨临界有机朗肯循环子***的膨胀机排汽具有较高的温度,用来对亚临界有机朗肯循环子***的有机工质进行加热。
3.根据权利要求1所述的回收烟气余热的跨临界与亚临界耦合有机朗肯循环***,其特征在于:所述跨临界有机朗肯循环子***内的工质循环泵(8)将液态有机工质加压至超临界压力状态,然后在蒸发器(1)内被烟气加热至超临界蒸汽状态,其换热过程存在温度滑移,使得有机工质的吸热升温过程与烟气放热降温过程良好匹配。
4.根据权利要求1所述的回收烟气余热的跨临界与亚临界耦合有机朗肯循环***,其特征在于:在不同温区采用不同的有机工质,充分利用工质的热力性能。
5.根据权利要求1所述的回收烟气余热的跨临界与亚临界耦合有机朗肯循环***,其特征在于:在所述亚临界有机朗肯循环子***内工质循环泵(9)出口处安装了预热器(10),对被升压的有机工质进行预热,其热源为流经蒸发器(1)后的烟气,这样既充分利用了烟气余热,又可以有效地增加***净输出功。
CN201410091071.7A 2014-03-13 2014-03-13 回收烟气余热的跨临界与亚临界耦合有机朗肯循环*** Pending CN103953403A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410091071.7A CN103953403A (zh) 2014-03-13 2014-03-13 回收烟气余热的跨临界与亚临界耦合有机朗肯循环***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410091071.7A CN103953403A (zh) 2014-03-13 2014-03-13 回收烟气余热的跨临界与亚临界耦合有机朗肯循环***

Publications (1)

Publication Number Publication Date
CN103953403A true CN103953403A (zh) 2014-07-30

Family

ID=51330732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410091071.7A Pending CN103953403A (zh) 2014-03-13 2014-03-13 回收烟气余热的跨临界与亚临界耦合有机朗肯循环***

Country Status (1)

Country Link
CN (1) CN103953403A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105484811A (zh) * 2016-01-07 2016-04-13 上海维尔泰克螺杆机械有限公司 一种低温热流体回收利用***
CN106523055A (zh) * 2016-12-30 2017-03-22 翁志远 环保节能发电***及其工艺和发电站
CN109611167A (zh) * 2018-11-23 2019-04-12 华北电力大学(保定) 回收低温余热蒸汽的方法、装置、设备、***及存储介质
CN109751095A (zh) * 2019-01-16 2019-05-14 南京航空航天大学 梯级利用烟气废热浓缩溶液的水电联产***及工作方法
CN110462206A (zh) * 2017-04-03 2019-11-15 西门子歌美飒可再生能源公司 风力涡轮机废热回收***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622472A (en) * 1984-07-16 1986-11-11 Ormat Turbines Ltd. Hybrid electric power generating system
CN101839154A (zh) * 2010-04-28 2010-09-22 北京力通高科技发展有限公司 分布式余热余压发电***和分布式余热余压发电方法
CN101988397A (zh) * 2009-07-31 2011-03-23 王世英 一种低品位热流原动机、发电***及其方法
EP2397659A2 (en) * 2010-06-21 2011-12-21 Paccar Inc. Dual cycle rankine waste heat recovery cycle
CN102979588A (zh) * 2012-10-29 2013-03-20 昆明理工大学 一种光伏与有机郎肯循环耦合热电联供***
CN203201684U (zh) * 2013-04-24 2013-09-18 哈尔滨广瀚新能动力有限公司 一种基于朗肯循环的内燃发电机组余热梯级回收利用***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622472A (en) * 1984-07-16 1986-11-11 Ormat Turbines Ltd. Hybrid electric power generating system
CN101988397A (zh) * 2009-07-31 2011-03-23 王世英 一种低品位热流原动机、发电***及其方法
CN101839154A (zh) * 2010-04-28 2010-09-22 北京力通高科技发展有限公司 分布式余热余压发电***和分布式余热余压发电方法
EP2397659A2 (en) * 2010-06-21 2011-12-21 Paccar Inc. Dual cycle rankine waste heat recovery cycle
CN102979588A (zh) * 2012-10-29 2013-03-20 昆明理工大学 一种光伏与有机郎肯循环耦合热电联供***
CN203201684U (zh) * 2013-04-24 2013-09-18 哈尔滨广瀚新能动力有限公司 一种基于朗肯循环的内燃发电机组余热梯级回收利用***

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105484811A (zh) * 2016-01-07 2016-04-13 上海维尔泰克螺杆机械有限公司 一种低温热流体回收利用***
CN106523055A (zh) * 2016-12-30 2017-03-22 翁志远 环保节能发电***及其工艺和发电站
CN110462206A (zh) * 2017-04-03 2019-11-15 西门子歌美飒可再生能源公司 风力涡轮机废热回收***
CN109611167A (zh) * 2018-11-23 2019-04-12 华北电力大学(保定) 回收低温余热蒸汽的方法、装置、设备、***及存储介质
CN109751095A (zh) * 2019-01-16 2019-05-14 南京航空航天大学 梯级利用烟气废热浓缩溶液的水电联产***及工作方法

Similar Documents

Publication Publication Date Title
CN103244214B (zh) 基于有机朗肯循环的烟气冷凝热回收热电联供***
CN201852277U (zh) 带相变换热器的锅炉余热高效回收装置
CN105423592B (zh) 双工况直燃双效型溴化锂吸收式热泵机组
CN103953403A (zh) 回收烟气余热的跨临界与亚临界耦合有机朗肯循环***
CN204254934U (zh) 一种利用压缩式热泵实现锅炉烟气余热深度回收的供热***
CN1737454A (zh) 吸收式循环与有机物朗肯循环的联合循环装置
CN104359103A (zh) 一种吸收式热泵循环的烟气余热回收***
CN110500910A (zh) 一种热质解耦换热器及其热质解耦方法
CN100570241C (zh) 烟气余热利用的双效溴化锂吸收式制冷装置
CN106403283B (zh) 热水型热泵***
CN205640981U (zh) 一种利用吸收式热泵驱动暖风器的装置
CN205102453U (zh) 一种太阳能双级喷射式制冷***
CN208154872U (zh) 热水倒串联直燃双效型溴化锂吸收式热泵机组
CN104075489B (zh) 高温蒸汽热泵机组
CN209399346U (zh) 用于回收烟气余热的汽拖热泵***
CN103983014B (zh) 一种带热声加热的空气源热泵热水器及其加热方法
CN103851784A (zh) 一种无蒸发器的吸收式热泵机组及其供热方法
CN205383781U (zh) 燃气机驱动型蒸气压缩与吸收复合式热泵热水机组
CN204730519U (zh) 一种用于实现水热联产的复合第一类吸收式热泵装置
CN110986420B (zh) 基于升温再热技术的吸收式循环***
CN110567189B (zh) 一种蒸汽压缩型吸收式热泵
CN208124669U (zh) 热水倒串联蒸汽双效型溴化锂吸收式热泵机组
CN207585132U (zh) 一种基于第一类吸收式混合热泵
CN102230689B (zh) 新型制冷、除湿、制热的多功能***
CN110455012A (zh) 一种蒸汽压缩型吸收式热泵

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140730