CN103942000A - —种触摸事件识别方法 - Google Patents

—种触摸事件识别方法 Download PDF

Info

Publication number
CN103942000A
CN103942000A CN201410164863.2A CN201410164863A CN103942000A CN 103942000 A CN103942000 A CN 103942000A CN 201410164863 A CN201410164863 A CN 201410164863A CN 103942000 A CN103942000 A CN 103942000A
Authority
CN
China
Prior art keywords
touch
control
screen
touch event
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410164863.2A
Other languages
English (en)
Inventor
倪龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Free Trade Zone Pandong Information Technology Co Ltd
Original Assignee
Ningbo Free Trade Zone Pandong Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Free Trade Zone Pandong Information Technology Co Ltd filed Critical Ningbo Free Trade Zone Pandong Information Technology Co Ltd
Priority to CN201410164863.2A priority Critical patent/CN103942000A/zh
Publication of CN103942000A publication Critical patent/CN103942000A/zh
Pending legal-status Critical Current

Links

Landscapes

  • User Interface Of Digital Computer (AREA)

Abstract

本发明公开的一种触摸事件识别方法,按桌面、图层、窗口或对象进行触摸事件识别,且识别的触摸事件全部或部分位于所操控桌面、图层、窗口或对象的控制点或控制域,且上述控制点或控制域不在所操控桌面、图层、窗口或对象的范围内;控制点或控制域与所操控桌面、图层、窗口或对象是跟随匹配的或是固定位置匹配的。上述触摸事件识别方法有助于解决多点触摸事件的识别,推动多点触摸在现实中更好的应用普及。

Description

—种触摸事件识别方法
技术领域
本发明涉及触摸技术领域,特别是一种触摸事件识别方法。 
背景技术
触摸装置包括触摸屏、触摸笔、触摸板、触摸膜等,其中触摸屏、触摸笔、触摸板等一般是能够独立接受触觉输入的设备或部件,而触摸膜等则是具备触觉感应能力但一般还需要以此为基础进一步制成触摸设备或部件的半成品。上述触摸装置中,目前以触摸屏最为常见。触摸屏是用手指或其它触摸感应介质直接触摸显示器操作计算机(或其它类型电子产品)的一种输入设备。现今在各种电子产品市场中,移动电话、平板电脑、个人数字助理、MP3/MP4 等便携式电子产品,以及电脑家用电器等都在逐渐开始使用触摸屏作为用户和电子设备数据沟通的界面。触摸屏作为一种定位和输入设备,用户在使用时可以对显示的物件进行触摸、拖拽和手势等操控,这样使人机交互变得更加简单、直观和人性化,同时也符合电子产品轻薄化的发展趋势。触摸屏正在取代鼠标、键盘等传统输入设备,成为电子产品的重要组成部件。2007年美国苹果公司生产的iPhone手机等产品的推出,成为触摸屏发展的一个里程碑,iPhone手机等产品的热销,使触摸屏真正走入人们的日常生活。 
按照触摸屏的工作原理和传输信息的介质,可以把触摸屏分为四种,分别是电阻式、电容式、声波式、光学式。 
1、电阻式触摸屏。电阻式触摸屏结构为上下两层镀有导电功能的透明ITO(铟锡氧化物)膜,两片膜间设有空气层间隙,当屏幕处于未被按压的状态时,上下膜不接触,触摸屏处于未导电状态,而当操作者以指尖或笔尖压按屏幕时,上下膜发生形变接触导电,再通过侦测X 轴和Y 轴电压变化值定位出触控点的坐标,完成屏幕的触按处理机制。一般电阻式触摸屏为4 线结构,随着技术发展逐渐出现5 线、6 线与8 线等多种类型,线数越多,可侦测的精密度越高,电阻屏的性能也就越优异。电阻屏具有结构简单、成本较低,制造方法成熟等优点,曾经是市场的主流技术,得到广泛的应用。但是电阻屏功耗大、寿命较短、易出现检测点漂移,特别是不支持多点触控,已不能满足触控技术的发展和人们的需要,其地位目前已被电容式触摸屏取代。 
2、电容式触摸屏。电容式触摸屏技术分为表面电容式和投射式两种。表面电容式触摸屏的原理是利用电场感应方式感测屏幕表面。其面板是一片均匀镀刻的ITO 层,面板的四角各有一条输出线与控制器连接在一起,使用时触摸屏表面会有一个电场,如果接地的物体触碰到屏表面,面板表面的电场就会发生电荷的转移,通过侦测这个电荷的转移就可以准确的定位触碰点的坐标。表面电容式触摸屏具有使用透光率高、寿命长、但是不支持多点触控、分辨率低,目前主要应用于大尺寸户外用触摸屏,如各类公共信息和服务平台。投射电容式触摸屏原理是借助电极发射出的静电场线来感应的。投射电容技术包括自我电容和交互电容两种,它们的投射电容式传感器中,传感电容在设计中遵循了相关的方法,在规定的时间内就能侦测到触摸,该触摸与以往不同的就是不仅能识别出单指,还能识别多根手指。自2009 年以来,美国苹果公司生产的iPhone、iPad 为其赢得了良好的效益,推动了投射式电容屏技术不断走向繁荣,根据市场研究机构Displaysearch 调查,投射式电容触控技术在2010 年正式超越电阻式触控技术,成为产值比重最高的触控面板技术。 
3、声波式触摸屏。声波式触摸屏包括两种:表面声波式触摸屏和弯曲声波式触摸屏。表面声波式触摸屏是利用声波定位的一种触控技术。触摸屏四角设置有发射和接收声波的传感器,当手指触摸屏幕时,手指吸收部分声波能量,传感器就可以侦测信号在衰减,由此计算出触摸点的位置。表面声波触摸屏技术比较稳定,具有很高的精度,除了可以响应X和Y坐标外,还能响应第三轴z 轴坐标,也就是压力轴响应。表面声波触摸屏的透光率好,耐用性强,反应灵敏,寿命长,不影响图像质量,一般在办公室、机关单位等环境比较清洁的公共场所使用。弯曲声波式触摸屏是一种声音脉冲识别技术。弯曲式的声波在沿基板内部传播,因此弯曲声波式触摸屏可以排除衣物、灰尘和昆虫等环境因素造成的误识别。目前弯曲式触摸屏主要应用于中大尺寸的信息亭、金融设备等。 
4、光学式触摸屏。光学式触摸屏包括两种:红外式触摸屏和CCD光学式触摸屏。红外式触摸屏原理是在X、Y 方向上设置一定数量的红外线矩阵来侦测定位用户的触摸。红外触摸屏在正面位置安装一个电路板外框,外框四边排布红外线发射管和接收管,发射管和接收管一一对应成垂直的矩阵。触摸屏幕时,触摸物体就会阻挡该位置的横竖两条红外发射线,相对应位置就不能接收到红外线,就可以定位出触摸点在屏幕的位置。红外线式触摸屏优点是透光率高、抗干扰能力强、触控稳定性高,缺点是红外触摸屏的准确度易受环境光线变化的干扰。目前先进的红外线式触摸屏寿命得到大幅提高,在对手指移动轨迹进行跟踪时,相关要求规定的精度、平滑度、跟踪速度都能实现,可以进行手写识别输入,还能很好的转换成图像轨迹。红外式触摸屏主要是在没有强光线干扰的公共场所、办公室或者是不需要精密要求的工业控制场所中使用。CCD光学式触摸屏,由含有镜头结构的两个CCD、背光源(例如红外线)以及位于屏幕边缘的反射条组成,CCD布置在触摸屏的左右两角,在***中拥有独立的坐标值。工作时,背光源会发射红外线或其他不可见光,手指接触触摸屏后,CCD会测量CCD到手指的距离、CCD主光线与其光学***光轴等的夹角等一系列数据,最后计算出手指的坐标值,将其转换为鼠标信息传递给电脑。 
按安装方式触摸屏可以分为外挂式、内置式和整体式。外挂式触摸屏就是将触摸装置的触摸感应部分直接安装在显示设备的前面,内置式触摸屏是把触摸装置的触摸感应部分安装在显示设备的外壳内、显像管的前面,整体式触摸屏则是将触摸感应部分制作到显像管上。触摸屏技术发展日新月异,先有静电容量方式,后有在液晶面板中内置触摸传感器的“In-cell型”和玻璃盖板一体型OGS等多种新技术不断亮相。后两种技术因可实现智能手机薄型化和提高视认性而开始普及,Incell型因得到美国苹果公司最新款智能手机iPhone 5的采用而备受关注,玻璃盖板一体型OGS则由日本索尼移动通信的智能手机Xperia V等的采用。最近在玻璃盖板上贴有触摸传感器的“薄膜传感器型”(GIF)也很受推崇,苹果公司的最新款平板电脑iPad mini就采用了该技术,因其成品率低、产量少、价格也贵,但比较易于支持7~10英寸的中等尺寸,因此极有可能在平板终端中普及。 此外,在彩色滤光片基板上形成触摸传感器的“On-cell型”面板的量产制造装置也开始接受订货。对于手机来说,是In-cell和OGS的比拼,种种迹象显示,苹果采用的In-cell技术并不能称为最好的技术,成品率也难于往上提升,OGS则由于技术难度较低,因此预计近期将获得较大的采用机会而大放异彩。至于究竟哪种技术会成为主流,由于每种技术各有其优缺点,估计还不会有某一种技术成为市场的唯一选择。 
触摸屏主要结构是由触摸检测部件和触摸屏控制器组成。触摸检测部件安装在显示器面板前面,用于检测用户触摸位置,接收后传送至触摸屏控制器;触摸屏控制器的主要作用是从触摸检测部件上接收触摸信息,并将它转换为触摸位置或手势,再送给CPU,它同时能接收CPU发来的命令并加以执行。触摸检测部件包含可以感应触摸的传感器,其它类型的触摸装置也有类似的部件,后文中统称为触摸感应模块;其它类型的触摸装置同样也有类似于触摸屏控制器的部件,后文中统称为触摸控制模块。 
2007 年以来,美国苹果公司i-Pad、iPhone 系列产品能够在激烈的市场竞争中获得巨大的成功,就是因为采用的投射式电容式触摸屏可支持多点触控,给用户带来了更加丰富的触控体验,开启了多点触摸技术应用的新风潮。多点触摸技术已经从最初的仅支持2 点缩放,逐渐发展实现3 指滚动、4 指拨移、5 指以上触控式别以及多重输入方式等。今后多点触控技术将向更细致的屏幕物件操控以及更具自由度的方向发展。多点触摸顾名思义就是识别到两个或以上手指的触摸。多点触摸技术目前有两种:Multi-Touch Gesture和Multi-Touch All-Point。通俗地讲,就是多点触摸识别手势方向和多点触摸识别手指位置。现在看到最多的是Multi-Touch Gesture,即两个手指触摸时,可以识别到这两个手指的运动方向,但还不能判断出具***置,可以进行缩放、平移、旋转等操作。这种多点触摸的实现方式比较简单,轴坐标方式即可实现。把ITO分为X 、Y轴,可以感应到两个触摸操作,但是感应到触摸和探测到触摸的具***置是两个概念。XY 轴方式的触摸屏可以探测到第2 个触摸,但是无法了解第二个触摸的确切位置。单一触摸在每个轴上产生一个单一的最大值,从而断定触摸的位置,如果有第二个手指触摸屏面,在每个轴上就会有两个最大值。这两个最大值可以由两组不同的触摸来产生,于是***就无法准确判断了。有的***引入时序来进行判断,假设两个手指不是同时放上去的,但是,总有同时触碰的情况,这时,***就无法猜测了。我们可以把并不是真正触摸的点叫做“鬼点”。Multi-Touch All-Point是近期比较流行的话题。其可以识别到触摸点的具***置,即没有“鬼点”的现象。多点触摸识别位置可以应用于任何触摸手势的检测,可以检测到双手十个手指的同时触摸,也允许其他非手指触摸形式,比如手掌、脸、拳头等,甚至戴手套也可以,它是人性化的人机接口方式,很适合多手同时操作的应用,比如游戏控制。Multi-Touch All-Point的扫描方式是每行和每列交叉点都需单独扫描检测,扫描次数是行数和列数的乘积。例如,一个10根行线、15根列线所构成的触摸屏,使用Multi-Touch Gesture 的轴坐标方式,需要扫描的次数为25 次,而多点触摸识别位置方式则需要150 次。Multi-Touch All-Point基于互电容的检测方式,而不是自电容,自电容检测的是每个感应单元的电容(也就是寄生电容Cp)的变化,有手指存在时寄生电容会增加,从而判断有触摸存在,而互电容是检测行列交叉处的互电容(也就是耦合电容Cm)的变化,当行列交叉通过时,行列之间会产生互电容(包括:行列感应单元之间的边缘电容,行列交叉重叠处产生的耦合电容),有手指存在时互电容会减小,就可以判断触摸存在,并且准确判断每一个触摸点位置。 
当前应用最多的是单点触摸和双点触摸,更为复杂的多点触摸手势目前还处于探索阶段,基本没有具备实用价值的多点触摸识别方法,而市场上已经出现同时支持40点精准触控的超多点投射式电容膜(苏州触动电子科技有限公司于2013年推出),若以手指触摸的话,至少要4人双手同时触摸才能达到同时40点的触摸,但各人的触摸动作或共同构成的触摸动作代表何种操控动作,目前还缺乏相应的识别方法,在这款产品的演示视频中,只是在同时触摸的手指处泛起波纹,表示能够探测出40点的多点触摸,但这种识别方法在实用当中恐怕用处非常有限。 
发明内容
本发明的目的在于解决多点触摸的识别问题,从而推动多点触摸在现实中更好的应用普及,更多的挖掘多点触摸技术的潜在价值。 
本发明的触摸事件识别方法,具体方案如下: 
按桌面、图层、窗口或对象进行触摸事件识别,且识别的触摸事件全部或部分位于所操控桌面、图层、窗口或对象的控制点或控制域,且上述控制点或控制域不在所操控桌面、图层、窗口或对象的范围内。现有的触摸事件识别一般要求触摸发生在所操控桌面、图层、窗口或对象的范围内,否则无法进行操作,范围内包括边框和内部,控制点一般位于边框上。有的对象的控制点位于对象可视部分之外,比如VISIO软件中的一些曲线对象,但实际上这些对象的有效范围并不限于可视部分,一般把包括控制点在内的范围也视为这些对象的有效范围。本发明则把控制点或控制域放到有效范围之外,这在大屏幕触摸屏应用中能够更好的满足触摸操控的需要,否则的话手指或其它触摸介质够不到的地方就难以实施触摸操控。控制点或控制域与所操控桌面、图层、窗口或对象可以是跟随匹配的或是固定位置匹配的。跟随匹配是指就在所桌面、图层、窗口或对象较近的***,这样操作的目标明确,也容易理解,但仍然存在一些较远的目标难以操控的情况,这时就可以采用固定位置匹配的方式,将位置较近的某个固定区域与要操控桌面、图层、窗口或对象对应起来,这样无论操控的目标在哪里,都可以方便的进行操控。
    上述触摸事件识别方法一般宜于软件实现,因为所操控桌面、图层、窗口或对象都是***软件或应用软件中定义的,甚至还可在此方法的基础上为所操控桌面、图层、窗口或对象定义不同或相同的触摸手势。但也可以进行硬件实现或软硬件结合实现,比如在桌面、图层、窗口或对象进行明确的限定和规范后,这样反应时间更短,运行速度更快。 
具体实施方案
实施例1 
一种按对象进行触摸事件识别的实现。预先为该对象定义一个方便操控的固定区域,凡是该固定区域有触摸事件的,都识别为对该对象的操控,识别的触摸事件包括该固定区域的触摸事件和该对象范围内的触摸事件,其它的触摸事件对该对象一般无效(但允许的除外,比如在游戏软件中其它对象可以对本对象进行攻击)。

Claims (2)

1.一种触摸事件识别方法,其特征在于:
按桌面、图层、窗口或对象进行触摸事件识别,且识别的触摸事件全部或部分位于所操控桌面、图层、窗口或对象的控制点或控制域,且上述控制点或控制域不在所操控桌面、图层、窗口或对象的范围内。
2.根据权利要求1所述的触摸事件识别方法,其特征在于:
控制点或控制域与所操控桌面、图层、窗口或对象是跟随匹配的或是固定位置匹配的。
CN201410164863.2A 2014-04-23 2014-04-23 —种触摸事件识别方法 Pending CN103942000A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410164863.2A CN103942000A (zh) 2014-04-23 2014-04-23 —种触摸事件识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410164863.2A CN103942000A (zh) 2014-04-23 2014-04-23 —种触摸事件识别方法

Publications (1)

Publication Number Publication Date
CN103942000A true CN103942000A (zh) 2014-07-23

Family

ID=51189685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410164863.2A Pending CN103942000A (zh) 2014-04-23 2014-04-23 —种触摸事件识别方法

Country Status (1)

Country Link
CN (1) CN103942000A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627351A (zh) * 2007-08-14 2010-01-13 科乐美数码娱乐株式会社 输入受理装置、区域控制方法、信息记录介质及程序
CN102681779A (zh) * 2012-04-25 2012-09-19 中兴通讯股份有限公司南京分公司 触摸屏操作方法及装置
CN102763062A (zh) * 2009-12-03 2012-10-31 微软公司 3态触摸输入***
US20130093712A1 (en) * 2011-10-14 2013-04-18 Himax Technologies Limited Touch sensing method and electronic apparatus using the same
CN103076972A (zh) * 2012-12-31 2013-05-01 中兴通讯股份有限公司 单手操作大屏幕手持设备的方法和手持设备
CN103092514A (zh) * 2013-01-09 2013-05-08 中兴通讯股份有限公司 单手操作大屏幕手持设备的方法和手持设备
CN103324340A (zh) * 2013-06-05 2013-09-25 广东欧珀移动通信有限公司 基于移动终端的单手操作触摸屏的方法及其移动终端
CN103593136A (zh) * 2013-10-21 2014-02-19 广东欧珀移动通信有限公司 单手操作大屏幕触控终端的方法、装置及触控终端
CN103617002A (zh) * 2013-12-16 2014-03-05 深圳市理邦精密仪器股份有限公司 一种触控界面的实现方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627351A (zh) * 2007-08-14 2010-01-13 科乐美数码娱乐株式会社 输入受理装置、区域控制方法、信息记录介质及程序
CN102763062A (zh) * 2009-12-03 2012-10-31 微软公司 3态触摸输入***
US20130093712A1 (en) * 2011-10-14 2013-04-18 Himax Technologies Limited Touch sensing method and electronic apparatus using the same
CN102681779A (zh) * 2012-04-25 2012-09-19 中兴通讯股份有限公司南京分公司 触摸屏操作方法及装置
CN103076972A (zh) * 2012-12-31 2013-05-01 中兴通讯股份有限公司 单手操作大屏幕手持设备的方法和手持设备
CN103092514A (zh) * 2013-01-09 2013-05-08 中兴通讯股份有限公司 单手操作大屏幕手持设备的方法和手持设备
CN103324340A (zh) * 2013-06-05 2013-09-25 广东欧珀移动通信有限公司 基于移动终端的单手操作触摸屏的方法及其移动终端
CN103593136A (zh) * 2013-10-21 2014-02-19 广东欧珀移动通信有限公司 单手操作大屏幕触控终端的方法、装置及触控终端
CN103617002A (zh) * 2013-12-16 2014-03-05 深圳市理邦精密仪器股份有限公司 一种触控界面的实现方法及装置

Similar Documents

Publication Publication Date Title
Bhalla et al. Comparative study of various touchscreen technologies
Walker A review of technologies for sensing contact location on the surface of a display
TWI387914B (zh) 投影式電容觸控裝置、及識別不同接觸位置之方法
CN102144208B (zh) 结合笔跟踪的多点触摸触摸屏
CN101963848B (zh) 一种判断目标点是否属于平面的方法和鼠标及触摸屏
US8289292B2 (en) Electronic device with touch input function and touch input method thereof
Hodges et al. ThinSight: versatile multi-touch sensing for thin form-factor displays
CN103941919A (zh) —种触摸事件识别模式
CN106155419B (zh) 选择性地拒绝触摸表面的边缘区域中的触摸接触
Walker Part 1: Fundamentals of projected-capacitive touch technology
US20080180399A1 (en) Flexible Multi-touch Screen
CN103809792A (zh) 触控显示器
CN103686283A (zh) 一种智能电视遥控器人机交互方法
US20120075202A1 (en) Extending the touchable area of a touch screen beyond the borders of the screen
CN101833400B (zh) 光学式传感屏幕及面板传感方法
CN203759677U (zh) 一种触摸屏及显示装置
US8947378B2 (en) Portable electronic apparatus and touch sensing method
CN103593085B (zh) 使用第一触摸接口和第二触摸接口来检测触摸事件
US20140002339A1 (en) Surface With Touch Sensors for Detecting Proximity
Krithikaa Touch screen technology–a review
WO2019184334A1 (zh) 触控屏、触控检测方法及可穿戴设备
CN103389589A (zh) 一种交互式显示***
TW201142667A (en) Touch display apparatus and electronic reading apparatus with touch inputting function
Walker Touch sensing
CN103941923A (zh) —种拼合触摸装置方法及拼合触摸装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140723

RJ01 Rejection of invention patent application after publication