CN103915506B - 一种具有纵向npn结构的双栅ldmos器件 - Google Patents

一种具有纵向npn结构的双栅ldmos器件 Download PDF

Info

Publication number
CN103915506B
CN103915506B CN201410174541.6A CN201410174541A CN103915506B CN 103915506 B CN103915506 B CN 103915506B CN 201410174541 A CN201410174541 A CN 201410174541A CN 103915506 B CN103915506 B CN 103915506B
Authority
CN
China
Prior art keywords
district
longitudinal
grid
type silicon
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410174541.6A
Other languages
English (en)
Other versions
CN103915506A (zh
Inventor
胡盛东
金晶晶
陈银晖
朱志
武星河
李少红
阮祯臻
丁文春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201410174541.6A priority Critical patent/CN103915506B/zh
Publication of CN103915506A publication Critical patent/CN103915506A/zh
Application granted granted Critical
Publication of CN103915506B publication Critical patent/CN103915506B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种具有纵向NPN结构的双栅LDMOS器件,涉及一种半导体功率器件,P‑衬底、有源顶层硅、横向多晶硅栅、纵向多晶硅栅、源电极区、漏电极区和场氧层,有源硅层包含有纵向NPN结构即纵向排列的上层N型硅条、中层P型硅条及下层N型硅条所组成;本发明在常规的功率LDMOS器件基础上,将类似超结结构的NPN漂移区、常规横向栅以及纵向槽型栅结合起来,只要至少一个栅极打开,器件即处于开态,而当两个栅极均打开时,器件为电子提供上下两个导通通道,所以可以有效降低器件导通电阻。另外,器件处于关态时,纵向的NPN结构的RESURF效应得以增强,可在较高掺杂浓度情况下获得高的击穿电压,进一步降低器件导通电阻。

Description

一种具有纵向NPN结构的双栅LDMOS器件
技术领域
本发明涉及一种半导体功率器件,特别涉及一种具有纵向NPN结构的双栅LDMOS器件。
背景技术
功率LDMOS(Lateral Double-diffused Metal-Oxide-Semiconductor即横向双扩散金属-氧化物-半导体)器件广泛应用于功率集成领域,而击穿电压与导通电阻之间的矛盾是人们长期关注的焦点问题之一,并由此提出众多缓解该矛盾的方案,其中RESURF(Reduced SURfaceField,降低表面电场)技术和超结(Superjunction)技术认、是能够有效缓解该矛盾的结构之一。图1为典型的单RESURF技术(Single-RESURF)中1、P-衬底,2、衬底电极,3、漏电极,4、源电极,5、场氧层,6、漏N+区,7、源N+区,9、源P+区,11、横向多晶硅栅,14、P阱,18、N-漂移区。关态时,衬底及源电极接地,漏电极接高压,该结构当外延层全部耗尽时,外延层耗尽区电场与衬底耗尽区电场相互抵消,降低了表面电场,使击穿点由PN结表面转移到体内,达到提高击穿电压和降低比导通电阻的效果。相关内容可见参考文献:J.A.Appels and H.M.J.Vaes,High-voltage thin layer devices,IEDM Tech.Dig.,1979,pp.238-241;S.Y.Han,H.W.Kim,and S.K.Chung,Surface field distributionand breakdown voltage of RESURF LDMOSFETs,Microelectronics Journal,2001,31(8),pp.685-688。在单RESURF结构基础上,双RESURF(Double-RESURF)结构被提出,见图2,其中1、P-衬底,2、衬底电极,3、漏电极,4、源电极,5、场氧层,6、漏N+区,7、源N+区,9、源P+区,11、横向多晶硅栅,14、P阱,18、N-漂移区,19、P-top层。与单RESURF相比较可以看出,双RESURF是在漂移区表面加一个P-top层,该P-top层辅助耗尽N-漂移区,在满足RESURF条件时使得N-漂移区掺杂浓度进一步提高,从而获得更小的导通电阻。相关内容可见参考文献:Souza M.M.D.,Narayanan E.M.S.,Double RESURF technologyfor HVIC,Electronics Letters,1996,Vol.32,No.12,pp.1092-1093;Hardikar S.,SouzaM.M.D.,Xu Y.Z.,et al.,A novel double RESURF LDMOS for HVIC’s,MicroelectronicsJournal,2004,Vol.35,No.3,pp.305-310。超结技术见图3,1、P-衬底,2、衬底电极,3、漏电极,4、源电极,6、漏N+区,7、源N+区,9、源P+区,11、横向多晶硅栅,14、P阱,20、超结N型硅条,21、超结P型硅条。其概念是用交替的高浓度的N区和P区构成了漂移区,在反向偏置电压下N区与P区相互补偿耗尽,达到电荷平衡,所以在漂移区达到了均匀的电场分布,在给定的漂移区长度下,均匀分布的电场可以获得高的击穿电压,而且几乎和漂移区的掺杂浓度无关,并且由于采用了高掺杂浓度的N区,所以导通电阻得到了很好的改善。详见文献D.J.Coe.High voltage semiconductor device.U.S.Patent4754310,June28,1988;X.B.Chen.Semiconductor power devices with alternating conductivitytype high voltage breakdown region.U.S.Patent5216275,June1,1993。目前,采用RESURF结构和超结结构的器件仍然是世界范围内的研究热点,而上述常规的Single-RESURF、Double-RESURF及超结结构都只有一个横向沟道为载流子提供导通路径,在一定程度上限制了器件导通电阻的进一步降低。
发明内容
有鉴于此,为了解决进一步降低功率MOS的导通电阻,缓解器件击穿电压与导通电阻之间的问题,本发明提出一种具有纵向NPN结构的双栅LDMOS器件,较常规RESURF结构大大提高了漂移区掺杂浓度,并且利用纵向沟道和横向沟道分别控制上下两个电子通道,从而有效降低器件在开态时候的导通电阻。
本发明的目的是通过这样的技术方案实现的,一种具有纵向NPN结构的双栅LDMOS器件,包括第一区域和第二区域,所述第一区域与第二区域镜像对称;所述第一区域包括P-衬底1、有源顶层硅、横向多晶硅栅11、纵向多晶硅栅12、源电极区、漏电极区和场氧层5;所述有源顶层硅包括自上而下纵向排列的上层N型硅条15、中层P型硅条16及下层N型硅条17,所述源电极区包括设置在场氧层5内的源电极4、横向沟道源N+区7、纵向沟道源N+区8和源P+区9,其中横向沟道源N+区7和纵向沟道源N+区8位于源P+区9的左右两侧,所述横向沟道源N+区7、纵向沟道源N+区8和源P+区9三者并排设置于上层N型硅条15中且三者同时与源电极4下表面接触;所述漏电极区包括设置在场氧层5内的漏电极3和设置在上层N型硅条15中的漏N+区6,所述漏N+区6与漏电极3的下表面接触,所述横向多晶硅栅11设置在场氧层5内且与场氧层的下表面分离,所述源电极和漏电极设置在横向多晶硅栅的左右两侧,所述上层N型硅条中还设置有与中层P型硅条接触的P阱14,所述P阱14分别与横向沟道源N+区7、纵向沟道源N+区8、源P+区9以及场氧层5的下表面接触;所述纵向多晶硅栅12纵向伸入有源顶层硅中并分别与源电极4、纵向沟道源N+区8、P阱14、中层P型硅条16及下层N型硅条17接触;所述漏N+区6的下表面还设置有伸入上层N型硅条的N阱13,所述N阱13分别与中层P型硅条16、下层N型硅条17接触。
进一步,所述纵向多晶硅栅包括纵向栅氧10和纵向栅氧所包围的导电介质22。
进一步,所述有源顶层硅硅、Si、SiC、GaN半导体材料中的一种或多种。
进一步,还包括SOI衬底埋氧层,所述SOI衬底埋氧层设置于埋于整个P-衬底硅层表面和有源顶层硅之间。
进一步,所述SOI衬底埋氧层还设置有半导体窗口。
由于采用了上述技术方案,本发明具有如下的优点:
本发明在常规的基于RESURF器件基础上,采用纵向的NPN结构,使得关态获得较高耐压的同时,N漂移区的掺杂浓度得以提高,并且采用两个栅极形成横向和纵向两个沟道,从而有效的降低了导通电阻。由于有双栅的结构设计,在两个都打开的情况较单独一个打开的情况下导通电阻更小。该结构同样适用于基于SOI技术的功率器件。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:
图1为常规单RESURF器件结构示意图;
图2为双RESURF器件结构示意图;
图3为常规超结结构示意图;
图4为本发明提出的一种具有纵向NPN结构的双栅LDMOS器件结构;
其中1、P-衬底;2、衬底电极;3、漏电极;4、源电极;5、场氧层;6、漏N+区;7、横向沟道源N+区;8、纵向沟道源N+区;9、源P+区;10、纵向栅氧;11、横向多晶硅栅;12、纵向多晶硅栅;13、N阱;14、P阱;15、上层N型硅条;16、中层P型硅条;17、下层N型硅条;18、N-漂移区;19、P-top层;20、超结N型硅条;21、超结P型硅条、22、导电介质。
具体实施方式
以下将结合附图,对本发明的优选实施例进行详细的描述;应当理解,优选实施例仅为了说明本发明,而不是为了限制本发明的保护范围。
图4为本发明提出的一种具有纵向NPN结构的双栅LDMOS器件结构,如图所示,一种具有纵向NPN结构的双栅LDMOS器件,包括第一区域和第二区域,所述第一区域与第二区域镜像对称;所述第一区域包括P-衬底1、有源顶层硅、横向多晶硅栅11、纵向多晶硅栅12(包括纵向栅氧10和纵向栅氧10所包围的导电介质22)、源电极区、漏电极区和场氧层5;所述有源顶层硅包括自上而下纵向排列的上层N型硅条15、中层P型硅条16及下层N型硅条17,所述源电极区包括设置在场氧层5内的源电极4、横向沟道源N+区7、纵向沟道源N+区8和源P+区9,其中横向沟道源N+区7和纵向沟道源N+区8位于源P+区9的左右两侧,所述横向沟道源N+区7、纵向沟道源N+区8和源P+区9三者并排设置于上层N型硅条15中且三者同时与源电极4下表面接触;所述漏电极区包括设置在场氧层5内的漏电极3和设置在上层N型硅条15中的漏N+区6,所述漏N+区6与漏电极3的下表面接触,所述横向多晶硅栅11设置在场氧层5内且与场氧层的下表面分离,所述源电极和漏电极设置在横向多晶硅栅的左右两侧,所述上层N型硅条中还设置有与中层P型硅条接触的P阱14,所述P阱14分别与横向沟道源N+区7、纵向沟道源N+区8、源P+区9以及场氧层5的下表面接触;所述纵向多晶硅栅12纵向伸入有源顶层硅中并分别与源电极4、纵向沟道源N+区8、P阱14、中层P型硅条16及下层N型硅条17接触;所述漏N+区6的下表面还设置有伸入上层N型硅条的N阱13,所述N阱13分别与中层P型硅条16、下层N型硅条17接触。
本发明的工作原理:下面以图4提出的一种具有纵向NPN结构的双栅LDMOS器件结构,对所提出的新器件结构的工作机理进行详细说明。当其漏电极3端外加一个高电压Vd,而源电极4及衬底电极2接地,横向多晶硅栅11加合适正电压,横向沟道打开,即位于上层N型硅条15内形成载流子通路;若纵向多晶硅栅12加合适正电压,则纵向沟道打开,即穿过P阱14、中层P型硅条16接触于底层N型硅条17形成载流子通路。当两个栅电极都加电压时,两个沟道同时打开,则载流子从漏极到源极有两条通路,相当于采用了并联的形式,因而降低了导通电阻。关态时,由于采用NPN结构,中层P型硅条16辅助耗尽上层N型硅条15及下层N型硅条17,在优化横向电场的同时可使得上下N型硅条掺入较高浓度杂志,进一步降低导通电阻。
所述有源顶层硅硅、Si、SiC、GaN半导体材料中的一种或多种。
本发明所提出的结构还可应用于SOI衬底上,当应用于SOI衬底上时,本发明所提出的结构还包括SOI衬底埋氧层,所述SOI衬底埋氧层设置于埋于整个P-衬底硅层表面和有源顶层硅之间;介质埋层可为SiO2和/或Si3N4
所述SOI衬底埋氧层还设置有半导体窗口。
以上所述仅为本发明的优选实施例,并不用于限制本发明,显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (4)

1.一种具有纵向NPN结构的双栅LDMOS器件,其特征在于:包括第一区域和第二区域,所述第一区域与第二区域镜像对称;所述第一区域包括P-衬底(1)、有源顶层硅、横向多晶硅栅(11)、纵向多晶硅栅(12)、源电极区、漏电极区和场氧层(5);所述有源顶层硅包括自上而下纵向排列的上层N型硅条(15)、中层P型硅条(16)及下层N型硅条(17),所述源电极区包括设置在场氧层(5)内的源电极(4)、横向沟道源N+区(7)、纵向沟道源N+区(8)和源P+区(9),其中横向沟道源N+区(7)和纵向沟道源N+区(8)位于源P+区(9)的左右两侧,所述横向沟道源N+区(7)、纵向沟道源N+区(8)和源P+区(9)三者并排设置于上层N型硅条(15)中且三者同时与源电极(4)下表面接触;所述漏电极区包括设置在场氧层(5)内的漏电极(3)和设置在上层N型硅条(15)中的漏N+区(6),所述漏N+区(6)与漏电极(3)的下表面接触,所述横向多晶硅栅(11)设置在场氧层(5)内且与场氧层的下表面分离,所述源电极和漏电极设置在横向多晶硅栅的左右两侧,所述上层N型硅条中还设置有与中层P型硅条接触的P阱(14),所述P阱(14)分别与横向沟道源N+区(7)、纵向沟道源N+区(8)、源P+区(9)以及场氧层(5)的下表面接触;所述纵向多晶硅栅(12)纵向伸入有源顶层硅中并分别与源电极(4)、纵向沟道源N+区(8)、P阱(14)、中层P型硅条(16)及下层N型硅条(17)接触;所述漏N+区(6)的下表面还设置有伸入上层N型硅条的N阱(13),所述N阱(13)分别与中层P型硅条(16)、下层N型硅条(17)接触。
2.根据权利要求1所述的具有纵向NPN结构的双栅LDMOS器件,其特征在于:所述纵向多晶硅栅包括纵向栅氧(10)和纵向栅氧(10)所包围的导电介质(22)。
3.根据权利要求1所述的具有纵向NPN结构的双栅LDMOS器件,其特征在于:还包括SOI衬底埋氧层,所述SOI衬底埋氧层设置于埋于整个P-衬底和有源顶层硅之间。
4.根据权利要求3所述的一种具有纵向NPN结构的双栅LDMOS器件,其特征在于:所述SOI衬底埋氧层还设置有半导体窗口。
CN201410174541.6A 2014-04-28 2014-04-28 一种具有纵向npn结构的双栅ldmos器件 Expired - Fee Related CN103915506B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410174541.6A CN103915506B (zh) 2014-04-28 2014-04-28 一种具有纵向npn结构的双栅ldmos器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410174541.6A CN103915506B (zh) 2014-04-28 2014-04-28 一种具有纵向npn结构的双栅ldmos器件

Publications (2)

Publication Number Publication Date
CN103915506A CN103915506A (zh) 2014-07-09
CN103915506B true CN103915506B (zh) 2016-08-31

Family

ID=51041042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410174541.6A Expired - Fee Related CN103915506B (zh) 2014-04-28 2014-04-28 一种具有纵向npn结构的双栅ldmos器件

Country Status (1)

Country Link
CN (1) CN103915506B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331204B2 (en) * 2014-03-13 2016-05-03 Macronix International Co., Ltd. High voltage field effect transistors and circuits utilizing the same
CN105633137B (zh) * 2016-01-08 2019-02-01 电子科技大学 一种槽栅功率mosfet器件
DE102016205331A1 (de) * 2016-03-31 2017-10-05 Robert Bosch Gmbh Vertikaler SiC-MOSFET
CN107369711A (zh) * 2016-05-13 2017-11-21 北大方正集团有限公司 一种金属氧化物半导体mos器件及其制作方法
CN107275402B (zh) * 2017-03-31 2020-04-21 成都芯源***有限公司 半导体器件及其制造方法
US10573744B1 (en) 2017-10-03 2020-02-25 Maxim Integrated Products, Inc. Self-aligned, dual-gate LDMOS transistors and associated methods
CN112909091A (zh) * 2021-01-14 2021-06-04 杰华特微电子(杭州)有限公司 横向双扩散晶体管及其制造方法
CN113644132A (zh) * 2021-07-13 2021-11-12 上海华力集成电路制造有限公司 一种基于soi晶圆双栅极的dmos器件及其制造方法
CN114220847B (zh) * 2022-02-22 2022-05-17 北京芯可鉴科技有限公司 一种ldmosfet、制备方法及芯片和电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148251A (zh) * 2011-01-10 2011-08-10 电子科技大学 Soi横向mosfet器件和集成电路
CN103268890A (zh) * 2013-05-28 2013-08-28 电子科技大学 一种具有结型场板的功率ldmos器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053145B4 (de) * 2005-11-14 2014-07-10 Denso Corporation Halbleitervorrichtung mit Trennungsbereich

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148251A (zh) * 2011-01-10 2011-08-10 电子科技大学 Soi横向mosfet器件和集成电路
CN103268890A (zh) * 2013-05-28 2013-08-28 电子科技大学 一种具有结型场板的功率ldmos器件

Also Published As

Publication number Publication date
CN103915506A (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
CN103915506B (zh) 一种具有纵向npn结构的双栅ldmos器件
US9947779B2 (en) Power MOSFET having lateral channel, vertical current path, and P-region under gate for increasing breakdown voltage
US7535057B2 (en) DMOS transistor with a poly-filled deep trench for improved performance
US8890280B2 (en) Trench-type semiconductor power devices
US9184248B2 (en) Vertical power MOSFET having planar channel and its method of fabrication
CN101300679B (zh) 制造半导体器件的方法
CN101969074A (zh) 一种高压ldmos器件
JP2020119939A (ja) 半導体装置
US7898024B2 (en) Semiconductor device and method for manufacturing the same
KR101755718B1 (ko) 수평형 디모스 소자 및 그 제조 방법
CN108847423A (zh) 半导体器件及其制造方法
CN102306659B (zh) 一种基于体电场调制的ldmos器件
CN102157560A (zh) 一种高压ldmos器件
JP2023026604A (ja) 半導体装置
JP6618615B2 (ja) 横方向拡散金属酸化物半導体電界効果トランジスタ
CN107564965B (zh) 一种横向双扩散mos器件
CN107546274B (zh) 一种具有阶梯型沟槽的ldmos器件
CN107785433B (zh) 一种阶梯高k介质层宽带隙半导体纵向双扩散金属氧化物半导体场效应管
KR20160108835A (ko) 반도체 장치
CN109346524A (zh) 一种具有阶梯浓度多晶硅侧墙结构的超结vdmos器件
CN110021655B (zh) 一种具有阶梯n型重掺杂埋层的半超结横向双扩散金属氧化物半导体场效应管
CN108258050A (zh) 高k介质沟槽横向超结双扩散金属氧化物元素半导体场效应管及其制作方法
CN102790090A (zh) 一种基于高k材料的ldmos器件
JP5448733B2 (ja) 半導体装置の製造方法
CN103426932A (zh) 双resurf ldmos器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160831

Termination date: 20180428

CF01 Termination of patent right due to non-payment of annual fee