CN103910520B - 一种氧化铝多孔陶瓷的制备方法 - Google Patents

一种氧化铝多孔陶瓷的制备方法 Download PDF

Info

Publication number
CN103910520B
CN103910520B CN201310447409.3A CN201310447409A CN103910520B CN 103910520 B CN103910520 B CN 103910520B CN 201310447409 A CN201310447409 A CN 201310447409A CN 103910520 B CN103910520 B CN 103910520B
Authority
CN
China
Prior art keywords
preparation
porous ceramic
wollastonite powder
deionized water
dextrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310447409.3A
Other languages
English (en)
Other versions
CN103910520A (zh
Inventor
杨道媛
屈源超
刘若洋
冯晓聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201310447409.3A priority Critical patent/CN103910520B/zh
Publication of CN103910520A publication Critical patent/CN103910520A/zh
Application granted granted Critical
Publication of CN103910520B publication Critical patent/CN103910520B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种氧化铝多孔陶瓷的制备方法,采用冷冻干燥和直接发泡相结合,利用表面活性剂修饰颗粒表面使颗粒具有部分疏水性,并利用部分疏水的颗粒稳定泡沫,从而获得更高机械强度更多闭气孔的多孔陶瓷。本发明利用没食子酸正丙酯修饰氧化铝颗粒使其具有部分疏水性,由于部分疏水的固体颗粒在气液界面的吸附能很高,因此以几乎不可逆的形式吸附在气液界面,以低能态的气固界面取代高能态的气液界面从而降低了界面能,大大地提高泡沫稳定性,延长泡沫塌陷时间,保证干燥后的坯体内部气孔结构完整,并利用冷冻干燥法进行干燥从而保证样品的净尺寸无变化。所制得的氧化铝多孔陶瓷密度为0.35~0.65g/cm3,气孔率为75~90%,抗压强度为1.5~16MPa。

Description

一种氧化铝多孔陶瓷的制备方法
技术领域
本发明属于氧化铝多孔陶瓷领域,具体地说涉及一种采用冷冻干燥和直接发泡相结合的工艺制备具有高机械强度多闭气孔的多孔陶瓷。
背景技术
多孔陶瓷是经高温烧成、体内具有大量彼此相通或闭合气孔结构的陶瓷材料,具有低密度、高气孔率、耐高温、抗腐蚀及良好隔热保温性能等优点。根据成孔方法和孔隙结构的不同,多孔陶瓷可分为三类:粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷。根据孔径大小不同,可分为宏孔,介孔和微孔陶瓷。多孔氧化铝陶瓷材料具化学稳定性好,耐高温,耐腐蚀,孔隙率高,孔径小等,非常适合应用于轻质保温材料。
目前制备多孔陶瓷材料的方法有很多,如:有机泡沫浸渍法,发泡法,溶胶凝胶法;添加造孔剂法等。专利CN103204672采用有机泡沫浸渍法制备得到粉煤灰泡沫陶瓷,并用烧失处理过的氧化铝粉末填充并掩埋,经高温煅烧之后制备出高强度的粉煤灰泡沫陶瓷。专利CN103058708采用发泡工艺结合溶胶注模工艺的方法,将氮化硅与碳化硅相结合,制备出一种新型的兼具耐腐蚀性和低热导率的多孔陶瓷。专利CN103011884采用溶胶凝胶成型工艺结合发泡工艺的方式,利用硅溶胶的凝胶化反应实现泡沫料浆的快速成型,从而制备出刚玉莫来石多孔陶瓷。目前,实际生产中最常用的方法是添加造孔剂法,在可燃物烧失过程中,空气通过多孔材料内部孔隙向内部扩散并输送氧气,燃烧产物则通过孔隙向外排出,从而使材料内部形成连续的孔道,结果使开口气孔和贯通孔增加,导致材料机械强度降低,热导率变大,从而不利于材料的隔热保温。专利CN102765126以生物高分子蛋白质作为表面活性剂来稳定气泡,并利用相应的固化成型模具制备出泡沫陶瓷。但是由于长链高分子蛋白质在气液界面的吸附能较低,以其做表面活性剂来稳定气泡并不能达到长时间稳定的效果,而且其固化成型工艺难以控制,蛋白质的成本较高,不利于实际应用。因此如何更简单更实用的制备孔隙率高,闭孔气孔多且机械强度好的氧化铝多孔陶瓷成为了一个亟待解决的问题。
发明内容
本发明的目的在于克服上述不足提供一种氧化铝多孔陶瓷的制备方法,采用冷冻干燥和直接发泡相结合,利用表面活性剂修饰颗粒表面使颗粒具有部分疏水性,并利用部分疏水的颗粒稳定泡沫,从而获得更高机械强度更多闭气孔的多孔陶瓷。      
为实现上述目的,本发明采用以下技术方案:
一种氧化铝多孔陶瓷的制备方法,包括以下步骤:
a.料浆的制备:取质量百分比为85%-95%的Al2O3和5%-15%的硅灰粉为原料,通过氨水调节没食子酸正丙酯去离子水溶液的pH值为9-10,将总质量的23%的Al2O3 加入到溶解有没食子酸正丙酯的去离子水溶液中,机械搅拌均匀得第一种浆料;将硅灰粉和剩余的Al2O3加入到溶解有明胶和糊精的去离子水溶液中,机械搅拌均匀,得第二种浆料;最后将两种浆料混合均匀;
 b.发泡:将料浆充分搅拌并发泡得到体积是原来三倍的均匀的泡沫料浆;
c.冷冻干燥:将泡沫料浆导入模具中,放入冷冻箱中充分冷冻,脱模真空干燥;
d.烧结:将干燥后的坯体进行烧结,然后自然冷却制得氧化铝多孔陶瓷;
所述步骤a中明胶和糊精的去离子水溶液的制备方法是先将明胶倒入去离子水中,水浴加热并搅拌充分溶解,再加入糊精搅拌混合均匀。
上述氧化铝多孔陶瓷的制备方法,所述步骤a取质量百分比为90%的Al2O3和10%的硅灰粉为原料。
上述氧化铝多孔陶瓷的制备方法,所述步骤c冷冻温度是-40℃,冷冻时间为1~4h,脱模再重新在-40℃回冷10~30min,然后移到真空干燥箱中干燥。
上述氧化铝多孔陶瓷的制备方法,所述步骤d烧结温度是室温~550℃的升温速度为1~2℃/min,550~烧结温度的升温速度为2~5℃/min,烧结温度是1300-1600℃。
上述氧化铝多孔陶瓷的制备方法,Al2O3和硅灰粉粒径小于20μm。
上述氧化铝多孔陶瓷的制备方法,所述明胶是食用明胶、药用明胶或工业明胶中的任一种或至少两种混合,糊精为白糊精、黄糊精、英国胶、麦芽糊精或环糊精中的任一种或至少两种混合。
上述氧化铝多孔陶瓷的制备方法,步骤a没食子酸正丙酯溶液中,没食子酸正丙酯的含量为Al2O3和硅灰粉质量总和的0.8~1.5%,去离子水含量为为Al2O3和硅灰粉质量总和的22~45%;步骤a明胶与糊精溶液中,明胶含量为Al2O3和硅灰粉质量总和的2.5~3.5%,糊精含量为Al2O3和硅灰粉质量总和的4~6%,去离子水含量为Al2O3和硅灰粉质量总和的39~60%。
上述氧化铝多孔陶瓷的制备方法,步骤a中搅拌速率为200r/min,步骤b中搅拌速率应逐渐增加到400~600r/min,至最高转速并保持5~10min。
采用上述技术方案,本发明有以下优点:本发明利用没食子酸正丙酯修饰氧化铝颗粒使其具有部分疏水性,由于部分疏水的固体颗粒在气液界面的吸附能很高,因此以几乎不可逆的形式吸附在气液界面,以低能态的气固界面取代高能态的气液界面从而降低了界面能,大大地提高泡沫稳定性,延长泡沫塌陷时间,保证干燥后的坯体内部气孔结构完整,并利用冷冻干燥法进行干燥从而保证样品的净尺寸无变化。所制得的氧化铝多孔陶瓷密度为0.35~0.65g/cm3,气孔率为75~90%,抗压强度为1.5~16MPa。
具体实施方式
实施例1
取0.819g没食子酸正丙酯(PG)倒入23g的去离子水中,水浴加热10分钟,用氨水调节溶液pH=9,取23.04gAl2O3粉体加入到没食子酸正丙酯(PG)溶液中,以200r/min的速度机械搅拌10分钟得到第一部分料浆。取3.07g工业明胶倒入40g的去离子水中,水浴加热15分钟并手动搅拌5分钟使工业明胶充分溶解,然后取5.12g黄糊精加入到工业明胶溶液中,手动搅拌5分钟使两者充分混合。取74.24gAl2O3粉体和5.12g硅灰粉混合均匀,然后倒入工业明胶与黄糊精的混合溶液中,以200r/min的速度机械搅拌10分钟得到第二部分料浆。最后将第一部分料浆倒入第二部分料浆中并以400r/min搅拌10分钟,料浆充分发泡,体积变为原来三倍。将泡沫料浆倒入模具并放入冷冻箱-42℃冷冻1小时,然后取出脱模并回冷30分钟,之后放入真空干燥箱中干燥12小时。取出干燥的坯体放入高温箱式炉中以1℃/min的速率升高到550℃,然后以2℃/min的速率升高到1300℃。保温2小时之后就可得到氧化铝多孔陶瓷。所得制品气孔率为76%,密度为0.65g/cm3,抗压强度为15.8MPa。
实施例2
取1.024g没食子酸正丙酯(PG)倒入33g的去离子水中,水浴加热10分钟,用氨水调节溶液pH=9.4,取23.04gAl2O3粉体加入到没食子酸正丙酯(PG)溶液中,以200r/min的速度机械搅拌10分钟得到第一部分料浆。取2.56g工业明胶倒入40g的去离子水中,水浴加热15分钟并手动搅拌5分钟使工业明胶充分溶解,然后取5.12g白糊精加入到工业明胶溶液中,手动搅拌5分钟使两者充分混合。取69.12gAl2O3粉体和10.24g硅灰粉混合均匀,然后倒入工业明胶与白糊精的混合溶液中,以200r/min的速度机械搅拌10分钟得到第二部分料浆。最后将第一部分料浆倒入第二部分料浆中并以500r/min的速度搅拌10分钟,料浆充分发泡,体积变为原来三倍。将泡沫料浆倒入模具并放入冷冻箱-40℃冷冻2小时,然后取出脱模并回冷20分钟,之后放入真空干燥箱中干燥12小时。取出干燥的坯体放入高温箱式炉中以2℃/min的速率升高到550℃,然后以2℃/min的速率升高到1400℃。保温2小时之后就可得到氧化铝多孔陶瓷。所得制品气孔率为85%,密度为0.6g/cm3,抗压强度为8.7MPa。
实施例3
取1.229g没食子酸正丙酯(PG)倒入33g的去离子水中,水浴加热10分钟,用氨水调节溶液pH=9.5,取23.04gAl2O3粉体加入到没食子酸正丙酯(PG)溶液中,以200r/min的速度机械搅拌10分钟得到第一部分料浆。取3.58g工业明胶倒入40g的去离子水中,水浴加热15分钟并手动搅拌5分钟使工业明胶充分溶解,然后取4.1g环糊精加入到工业明胶溶液中,手动搅拌5分钟使两者充分混合。取64gAl2O3粉体和15.36g硅灰粉混合均匀,然后倒入工业明胶与环糊精的混合溶液中,以200r/min的速度机械搅拌10分钟得到第二部分料浆。最后将第一部分料浆倒入第二部分料浆中并以600r/min的速度搅拌5分钟,料浆充分发泡,体积变为原来三倍。将泡沫料浆倒入模具并放入冷冻箱-40℃冷冻4小时,然后取出脱模并回冷10分钟,之后放入真空干燥箱中干燥12小时。取出干燥的坯体放入高温箱式炉中以1℃/min的速率升高到550℃,然后以3℃/min的速率升高到1400℃。保温2小时之后就可得到氧化铝多孔陶瓷。所得制品气孔率为84%,密度为0.63g/cm3,抗压强度为8.1MPa。
实施例4
取1.536g没食子酸正丙酯(PG)倒入33g的去离子水中,水浴加热10分钟,用氨水调节溶液pH=10,取23.04gAl2O3粉体加入到没食子酸正丙酯(PG)溶液中,以200r/min的速度机械搅拌10分钟得到第一部分料浆。取3.07g食用明胶倒入50g的去离子水中,水浴加热15分钟并手动搅拌5分钟使食用明胶充分溶解,然后取6.14g白糊精加入到食用明胶溶液中,手动搅拌5分钟使两者充分混合。取67.07gAl2O3粉体和12.29g硅灰粉混合均匀,然后倒入食用明胶与白糊精的混合溶液中,以200r/min的速度机械搅拌10分钟得到第二部分料浆。最后将第一部分料浆倒入第二部分料浆中并以600r/min的速度搅拌10分钟,料浆充分发泡,体积变为原来三倍。将泡沫料浆倒入模具并放入冷冻箱-40℃冷冻2小时,然后取出脱模并回冷20分钟,之后放入真空干燥箱中干燥12小时。取出干燥的坯体放入高温箱式炉中以2℃/min的速率升高到550℃,然后以5℃/min的速率升高到1600℃。保温2小时之后就可得到氧化铝多孔陶瓷。所得制品气孔率为80%,密度为0.62g/cm3,抗压强度为9.4MPa。
实施例5
取1.229g没食子酸正丙酯(PG)倒入46g的去离子水中,水浴加热10分钟,用氨水调节溶液pH=9.6,取23.04gAl2O3粉体加入到没食子酸正丙酯(PG)溶液中,以200r/min的速度机械搅拌10分钟得到第一部分料浆。取3.07g食用明胶倒入60g的去离子水中,水浴加热15分钟并手动搅拌5分钟使食用明胶充分溶解,然后取5.12g黄糊精加入到食用明胶溶液中,手动搅拌5分钟使两者充分混合。取69.12gAl2O3粉体和10.24g硅灰粉混合均匀,然后倒入食用明胶与黄糊精的混合溶液中,以200r/min的速度机械搅拌10分钟得到第二部分料浆。最后将第一部分料浆倒入第二部分料浆中并以600r/min的速度搅拌10分钟,料浆充分发泡,体积变为原来三倍。将泡沫料浆倒入模具并放入冷冻箱-40℃冷冻2小时,然后取出脱模并回冷10分钟,之后放入真空干燥箱中干燥12小时。取出干燥的坯体放入高温箱式炉中以1℃/min的速率升高到550℃,然后以2℃/min的速率升高到1500℃。保温2小时之后就可得到氧化铝多孔陶瓷。所得制品气孔率为91%,密度为0.37g/cm3,抗压强度为1.5MPa。
实施例6
取0.819g没食子酸正丙酯(PG)倒入23g的去离子水中,水浴加热10分钟,用氨水调节溶液pH=9,取23.04gAl2O3粉体加入到没食子酸正丙酯(PG)溶液中,以200r/min的速度机械搅拌10分钟得到第一部分料浆。取3.07g工业明胶倒入40g的去离子水中,水浴加热15分钟并手动搅拌5分钟使工业明胶充分溶解,然后取5.12g黄糊精加入到工业明胶溶液中,手动搅拌5分钟使两者充分混合。取74.24gAl2O3粉体和5.12g硅灰粉混合均匀,然后倒入工业明胶与黄糊精的混合溶液中,以120r/min的速度机械搅拌10分钟得到第二部分料浆。最后将第一部分料浆倒入第二部分料浆中并以400r/min搅拌10分钟,料浆充分发泡,体积变为原来三倍。将泡沫料浆倒入模具并放入冷冻箱-30℃度冷冻1小时,然后取出脱模并回冷30分钟,之后放入真空干燥箱中干燥12小时。取出干燥的坯体放入高温箱式炉中以1℃/min的速率升高到550℃,然后以2℃/min的速率升高到1350℃。保温2小时之后就可得到氧化铝多孔陶瓷。所得制品气孔率为76%,密度为0.65g/cm3,抗压强度为15.8MPa。
实施例7
取1.024g没食子酸正丙酯(PG)倒入33g的去离子水中,水浴加热10分钟,用氨水调节溶液pH=9.4,取23.04gAl2O3粉体加入到没食子酸正丙酯(PG)溶液中,以200r/min的速度机械搅拌10分钟得到第一部分料浆。取2.56g工业明胶倒入40g的去离子水中,水浴加热15分钟并手动搅拌5分钟使工业明胶充分溶解,然后取5.12g白糊精加入到工业明胶溶液中,手动搅拌5分钟使两者充分混合。取69.12gAl2O3粉体和10.24g硅灰粉混合均匀,然后倒入工业明胶与白糊精的混合溶液中,以200r/min的速度机械搅拌10分钟得到第二部分料浆。最后将第一部分料浆倒入第二部分料浆中并以500r/min的速度搅拌10分钟,料浆充分发泡,体积变为原来三倍。将泡沫料浆倒入模具并放入冷冻箱-50℃冷冻2小时,然后取出脱模并回冷20分钟,之后放入真空干燥箱中干燥12小时。取出干燥的坯体放入高温箱式炉中以2℃/min的速率升高到550℃,然后以2℃/min的速率升高到1450℃。保温2小时之后就可得到氧化铝多孔陶瓷。所得制品气孔率为85%,密度为0.6g/cm3,抗压强度为8.7MPa。
以上所述仅为本发明的一种实施方式,不是全部或唯一的实施方式。熟悉本领域的技术人员显然可以很容易的对这些实施例进行修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对本发明做出的修改和改进都应该包含在本发明的保护范围之内。

Claims (9)

1.一种氧化铝多孔陶瓷的制备方法,包括以下步骤:
a.料浆的制备:取质量百分比为85%-95%的Al2O3和5%-15%的硅灰粉为原料,通过氨水调节没食子酸正丙酯去离子水溶液的pH值为9-10,将Al2O3和硅灰粉总质量的23%的Al2O3 加入到溶解有没食子酸正丙酯的去离子水溶液中,机械搅拌均匀得第一种浆料;将硅灰粉和剩余的Al2O3加入到溶解有明胶和糊精的去离子水溶液中,机械搅拌均匀,得第二种浆料;最后将两种浆料混合均匀;
 b.发泡:将料浆充分搅拌并发泡得到体积是原来三倍的均匀的泡沫料浆;
c.冷冻干燥:将泡沫料浆导入模具中,放入冷冻箱中充分冷冻,脱模真空干燥;
d.烧结:将干燥后的坯体进行烧结,然后自然冷却制得氧化铝多孔陶瓷;
所述步骤a中明胶和糊精的去离子水溶液的制备方法是先将明胶倒入去离子水中,水浴加热并搅拌充分溶解,再加入糊精搅拌混合均匀。
2.根据权利要求1所述的氧化铝多孔陶瓷的制备方法,其特征在于:所述步骤a取质量百分比为90%的Al2O3和10%的硅灰粉为原料。
3.根据权利要求1所述的氧化铝多孔陶瓷的制备方法,其特征在于:所述步骤c冷冻温度是-20~-50℃,冷冻时间为1~4h,脱模再重新在-20~-50℃回冷10~30min,然后移到真空干燥箱中干燥。
4. 根据权利要求3所述的氧化铝多孔陶瓷的制备方法,其特征在于:所述步骤c冷冻温度是-50℃,冷冻时间为1~4h,脱模再重新在-40℃回冷10~30min,然后移到真空干燥箱中干燥。
5. 根据权利要求1所述的氧化铝多孔陶瓷的制备方法,其特征在于:所述步骤d烧结温度是室温~550℃的升温速度为1~2℃/min,550~烧结温度的升温速度为2~5℃/min,烧结温度是1300-1600℃。
6. 根据权利要求1所述的氧化铝多孔陶瓷的制备方法,其特征在于:Al2O3和硅灰粉粒径小于20μm。
7. 根据权利要求1所述的氧化铝多孔陶瓷的制备方法,其特征在于:所述明胶是食用明胶、药用明胶或工业明胶中的任一种或至少两种混合,糊精为白糊精、黄糊精、英国胶、麦芽糊精或环糊精中的任一种或至少两种混合。
8. 根据权利要求1所述的氧化铝多孔陶瓷的制备方法,其特征在于:步骤a没食子酸正丙酯溶液中,没食子酸正丙酯的含量为Al2O3和硅灰粉质量总和的0.8~1.5%,去离子水含量为Al2O3和硅灰粉质量总和的22~45%;步骤a明胶与糊精溶液中,明胶含量为Al2O3和硅灰粉质量总和的2.5~3.5%,糊精含量为Al2O3和硅灰粉质量总和的4~6%,去离子水含量为Al2O3和硅灰粉质量总和的39~60%。
9. 根据权利要求1所述的氧化铝多孔陶瓷的制备方法,其特征在于:步骤a中搅拌速率为200r/min,步骤b中搅拌速率应逐渐增加到400~600r/min,至最高转速并保持5~10min。
CN201310447409.3A 2013-09-27 2013-09-27 一种氧化铝多孔陶瓷的制备方法 Expired - Fee Related CN103910520B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310447409.3A CN103910520B (zh) 2013-09-27 2013-09-27 一种氧化铝多孔陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310447409.3A CN103910520B (zh) 2013-09-27 2013-09-27 一种氧化铝多孔陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN103910520A CN103910520A (zh) 2014-07-09
CN103910520B true CN103910520B (zh) 2015-05-27

Family

ID=51036574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310447409.3A Expired - Fee Related CN103910520B (zh) 2013-09-27 2013-09-27 一种氧化铝多孔陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN103910520B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529513A (zh) * 2014-12-20 2015-04-22 佛山铭乾科技有限公司 一种泡沫压电陶瓷及其制备方法
CN110028337A (zh) * 2019-03-27 2019-07-19 辽宁科技大学 一种多级开孔泡沫陶瓷的制备方法
CN111848138B (zh) * 2020-06-18 2022-06-17 日照鼎源新材料有限公司 湿纺-浸渍法制备具有致密孔壁的直通孔氧化铝陶瓷
CN113233484B (zh) * 2021-06-02 2022-06-21 西南石油大学 一种耐高温高比表面活性氧化铝的制备方法
CN114591574B (zh) * 2022-04-12 2023-07-21 瑞安市大虎鞋业有限公司 一种轻质耐磨鞋底材料及其制备方法
CN116444251A (zh) * 2023-04-04 2023-07-18 北京科技大学 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050128A (zh) * 2007-04-13 2007-10-10 中国科学院上海硅酸盐研究所 冷冻干燥法制备多孔材料的改进
CN102432327A (zh) * 2011-09-07 2012-05-02 陕西理工学院 一种采用冷冻干燥工艺制备具有复合结构氧化铝多孔陶瓷的方法
CN102503510A (zh) * 2011-11-03 2012-06-20 杭州中亚新材料科技有限公司 一种辊道窑烧制氧化铝泡沫陶瓷过滤板的生产工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050128A (zh) * 2007-04-13 2007-10-10 中国科学院上海硅酸盐研究所 冷冻干燥法制备多孔材料的改进
CN102432327A (zh) * 2011-09-07 2012-05-02 陕西理工学院 一种采用冷冻干燥工艺制备具有复合结构氧化铝多孔陶瓷的方法
CN102503510A (zh) * 2011-11-03 2012-06-20 杭州中亚新材料科技有限公司 一种辊道窑烧制氧化铝泡沫陶瓷过滤板的生产工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
短链两亲分子活性剂制备氮化硅泡沫陶瓷;余娟丽等;《硅酸盐学报》;20120331;第40卷(第3期);329-334 *

Also Published As

Publication number Publication date
CN103910520A (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
CN103910520B (zh) 一种氧化铝多孔陶瓷的制备方法
Montanaro et al. A review on aqueous gelcasting: A versatile and low-toxic technique to shape ceramics
CN103011884B (zh) 一种刚玉莫来石轻质隔热材料的制备方法
CN100371303C (zh) 高孔隙率多孔陶瓷的制备方法
CN105924225B (zh) 一种莫来石结合碳化硅多孔陶瓷的制备方法
CN103951452B (zh) 一种微孔蓝晶石基轻质隔热耐火材料的制备方法
CN111393181B (zh) 基于直接凝固注模成型的全闭孔多孔莫来石陶瓷制备方法
CN105565850A (zh) 一种微孔轻质硅砖及其制备方法
CN103588482B (zh) 一种高孔隙率及高强度钇硅氧多孔陶瓷的制备方法
CN103496999B (zh) 一种采用陶瓷空心球制备多孔陶瓷的方法
CN104909799A (zh) 一种轻质高强陶粒及其制备工艺
CN105130391B (zh) 利用湖泊底泥和城市污泥微波烧结制备轻质陶粒的方法
CN103011885B (zh) 一种镁铝尖晶石轻质耐火浇注料及其制备方法
CN103145444A (zh) 一种低成本保温隔热轻质多孔莫来石陶瓷的制备方法
CN106699227A (zh) 一种纳米线自增强多孔氮化硅陶瓷及其制备方法
CN101353250A (zh) 页岩复合烧结砖及其生产工艺
CN109095948B (zh) 一种利用中空微球制备具有连通孔壁泡沫陶瓷的方法
CN106478077A (zh) 一种建筑用多孔保温陶瓷材料及其制备方法
CN105294111A (zh) 一种氮化硅多孔陶瓷的凝胶注模成型方法
CN108085785A (zh) 一种氮化硅纤维材料的制备方法
CN102659427A (zh) 一种轻质耐火原料的制备方法
CN104909817A (zh) 镁质多孔保温材料及其制备方法
CN105036788A (zh) 泡沫陶瓷的制备方法
CN114933473A (zh) 一种尖晶石-刚玉质轻量耐火材料及其制备方法
CN103708814A (zh) 一种莫来石-氧化铝多孔陶瓷的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150527

Termination date: 20150927

EXPY Termination of patent right or utility model