CN103887309B - 半导体器件、制造半导体器件的方法、电源及高频放大器 - Google Patents

半导体器件、制造半导体器件的方法、电源及高频放大器 Download PDF

Info

Publication number
CN103887309B
CN103887309B CN201310559631.2A CN201310559631A CN103887309B CN 103887309 B CN103887309 B CN 103887309B CN 201310559631 A CN201310559631 A CN 201310559631A CN 103887309 B CN103887309 B CN 103887309B
Authority
CN
China
Prior art keywords
layer
electrode
nitride semiconductor
semiconductor layers
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310559631.2A
Other languages
English (en)
Other versions
CN103887309A (zh
Inventor
山田敦史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012279707A external-priority patent/JP5949527B2/ja
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN103887309A publication Critical patent/CN103887309A/zh
Application granted granted Critical
Publication of CN103887309B publication Critical patent/CN103887309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种半导体器件、一种用于制造半导体器件的方法、一种电源和一种高频放大器。本发明提供了一种半导体器件,所述半导体器件包括:第一晶体管,所述第一晶体管包括第一栅电极、第一源电极、第一漏电极和第一氮化物半导体叠层,所述第一氮化物半导体叠层包括第一电子渡越层和第一电子供给层;第二晶体管,所述第二晶体管包括第二栅电极、第二源电极、第二漏电极和第二氮化物半导体叠层,所述第二氮化物半导体叠层包括第二电子渡越层和第二电子供给层,所述第二漏电极为还用作所述第一源电极的公共电极,所述第二电子渡越层具有位于所述第二栅电极之下并包含p型掺杂剂的部分;以及p型掺杂剂扩散阻挡层。

Description

半导体器件、制造半导体器件的方法、电源及高频放大器
技术领域
本文中论述的实施方案涉及一种半导体器件、一种用于制造半导体器件的方法、一种电源和一种高频放大器。
背景技术
氮化物半导体器件具有如呈现高饱和电子速度和宽带隙的特性。已利用这样的特性来促进具有高耐受电压和高功率的器件的开发。用于这种具有高耐受电压和高功率的器件的开发所使用的氮化物半导体器件的实例包括场效应晶体管,具体地,高电子迁移率晶体管(HEMT)。
HEMT的实例为具有HEMT结构的GaN-HEMT(AlGaN/GaN-HEMT),在该HEMT结构中,在GaN电子渡越层上设置有AlGaN电子供给层。在GaN-HEMT中,在AlGaN中由于AlGaN与GaN之间的晶格常数差异而产生应力,并且该应力导致压电极化。该压电极化和AlGaN的自发极化导致产生高浓度的二维电子气(2DEG)。因此,该GaN-HEMT使得能够开发具有高耐受电压和高功率的器件。
然而,在GaN-HEMT中,高浓度2DEG使得在常断模式下操作困难。在用于使得能够在常断模式下操作的技术中,例如,蚀刻栅电极正下方的电子供给层的部分以中断2DEG的流动。该技术在本文中被称为第一技术。此外,在另一个用于使得能够在常断模式下操作的技术中,例如,在栅电极正下方形成p型GaN层以抵消2DEG。该技术在本文中被称为第二技术。这样的结构还被称为p-GaN栅极结构。此外,例如,在用于使得能够在常断模式下操作,以及使得能够实现低的源极电阻和在高的操作电压下的操作二者的技术中,将掺杂有p型掺杂剂的2DEG减少层和掺杂有n型掺杂剂的低电阻层形成为使其覆盖在电子供给层在源电极和栅电极之间的部分。该技术在本文中被称为第三技术。此外,例如,在用于使得能够在常断模式下操作以及使得能够实现低导通电阻和高耐受电压二者的技术中,电子渡越层位于源电极和栅电极之下的部分掺杂有p型掺杂剂。该技术在本文中被称为第四技术。
然而,在第一技术中,蚀刻损害了常断型晶体管在栅电极下方的部分,这导致导通电阻和漏电流的增大。因此,第一技术对于使得能够在常断模式下以低导通电阻实现稳定操作是不现实的。在第二技术中,为了在常断模式下操作,由p型GaN层抵消2DEG使得必需减小电子供给层的厚度;然而,在这种情况下,难以能够实现低导通电阻和高耐受电压。具体地,在为了能够在常断模式下操作而降低电子供给层的厚度的情况下,增加了栅电极与漏电极之间的距离以实现高耐受电压;然而,栅电极与漏电极之间距离的增加导致导通电阻的增加。因而,第二技术对于使得能够在常断模式下操作以及使得能够实现低导通电阻和高耐受电压是不适合的。
在第三技术中,由于添加至2DEG减少层的p型掺杂剂在电子供给层或电子渡越层的晶体生长期间扩散至电子供给层或电子渡越层,因而第三技术对于使得能够在常断模式下操作以及使得能够实现低导通电阻和高耐受电压是不现实的。在第三技术中,例如,即使增加了电子供给层的厚度和栅电极与漏电极之间的距离以实现高耐受电压和低导通电阻,这样的方法也不能良好地运行以保持低水平的导通电阻。另外,由于第三技术包括其中仅仅层叠2DEG减少层和低电阻层的结构,所以电子迁移率低,并且沟道电阻高;因此,没有成功降低导通电阻。
在第四技术中,添加至电子渡越层的一部分的p型掺杂剂在电子渡越层的晶体生长期间扩散至电子渡越层的其他部分。因此,对于使得能够在常断模式下操作以及能够实现低导通电阻和高耐受电压是不现实的。在第四技术中,例如,即使增加电子供给层的厚度以及栅电极与漏电极之间的距离以实现高耐受电压和低导通电阻,这样的方法也不能良好地运行以保持低水平的导通电阻。
以下是参考文献:
[文献1]日本公开特许公报第2009-76845号,
[文献2]日本公开特许公报第2007-19309号,
[文献3]国际公开第WO2010/016564号,以及
[文献4]日本公开特许公报第2004-260140号。
发明内容
根据本发明的一个方面,半导体器件包括第一晶体管、第二晶体管和p型掺杂剂扩散阻挡层:所述第一晶体管包括第一栅电极、第一源电极、第一漏电极和第一氮化物半导体叠层,所述第一氮化物半导体叠层包括第一电子渡越层和第一电子供给层;所述第二晶体管包括第二栅电极、第二源电极、第二漏电极和第二氮化物半导体叠层,所述第二氮化物半导体叠层包括第二电子渡越层和第二电子供给层,所述第二漏电极是还用作所述第一源电极的公共电极,所述第二电子渡越层具有位于所述第二栅电极之下并包含p型掺杂剂的部分;在所述p型掺杂剂扩散阻挡层中,所述第二氮化物半导体叠层设置成高于所述第一氮化物半导体叠层,其中所述p型掺杂剂扩散阻挡层介于第一氮化物半导体叠层与第二氮化物半导体叠层之间,以及所述第一栅电极和所述第二源电极彼此电耦接以建立第一晶体管与第二晶体管的共源共栅连接(cascode connection)。
将通过在权利要求中特别指出的元件和组合来实现并获得本发明的目的和优点。
应当理解,前面的一般性描述和下面的详细描述二者对于所要求保护的本发明都是示例性和说明性的而不是限制性的。
附图说明
图1为示出了根据第一实施方案的半导体器件的构造的示意性横截面视图;
图2A至2D为示出了根据第一实施方案的用于制造半导体器件的方法的示意性横截面视图;
图3A至3C为示出了根据第一实施方案的变化方案的用于制造半导体器件的方法的示意性示意性横截面视图;
图4A和4B为示出了根据第一实施方案的变化方案的用于制造半导体器件的方法和半导体器件的构造的示意性横截面视图;
图5A和5B为示出了根据第一实施方案的第一变化方案的用于制造半导体器件的方法和半导体器件的构造的示意性横截面视图;
图6A和6B为示出了根据第一实施方案的第二变化方案的用于制造半导体器件的方法和半导体器件的构造的示意性横截面视图;
图7为示出了根据第二实施方案的半导体器件(半导体封装件)的构造的示意性平面图;
图8示意性地示出了在根据第二实施方案的电源中包括的功率因子校正(PFC)电路的配置;以及
图9示意性地示出了根据第三实施方案的高频放大器的构造。
具体实施方式
在后文中将参照附图来描述根据实施方案的半导体器件、用于制造该半导体器件的方法、电源及高频放大器。
[第一实施方案]
现将参照图1至图4B来描述根据第一实施方案的半导体器件和用于制造该半导体器件的方法。
第一实施方案的半导体器件为化合物半导体器件,具体地,其中使用氮化物半导体材料以及具有高耐受电压和高功率的器件。还将这样的半导体器件称为氮化物半导体器件。第一实施方案的半导体器件包括其中使用氮化物半导体材料的场效应晶体管。还将这样的场效应晶体管称为氮化物半导体场效应晶体管。特别地,第一实施方案的半导体器件为其中使用GaN半导体材料的GaN器件;参照图1,该半导体器件包括为常通型晶体管GaN-HEMT1和为常断型晶体管GaN-HEMT2。在图1中,虚线表示2DEG,箭头表示电流通路。
还将常通型晶体管GaN-HEMT称为常通型HEMT、常通型HEMT区域或第一晶体管。还将常断型晶体管GaN-HEMT称为常断型HEMT、常断型HEMT区域或第二晶体管。在第一实施方案的半导体器件中,将常通型HEMT1和常断型HEMT2设置成覆盖相同的半导体衬底,将常断型HEMT2定位成高于常通型HEMT1,并且将常通型HEMT1和常断型HEMT2彼此共源共栅连接。
常通型HEMT1包括第一氮化物半导体叠层5、栅电极6、源电极7和漏电极8,所述第一氮化物半导体叠层5包括被形成为覆盖半导体衬底(未示出)的i-GaN电子渡越层3和n-AlGaN电子供给层4。在第一实施方案中,n-AlGaN电子供给层4在源电极7正下方的部分和i-GaN电子渡越层3在源电极7正下方的部分掺杂有n型掺杂剂,并且这些n型掺杂部分用作n型接触区域9A。源电极7形成在n型接触区域9A上(在第一实施方案中,在n-AlGaN电子供给层4的n型接触区域上)。类似地,n-AlGaN电子供给层4在漏电极8正下方的另一部分和i-GaN电子渡越层3在漏电极8正下方的另一部分掺杂有n型掺杂剂,并且这些n型掺杂部分用作n型接触区域9B。漏电极8形成在n型接触区域9B上(在第一实施方案中,在n-AlGaN电子供给层4的n型接触区域上)。可以通过例如n型掺杂剂如Si的离子注入来形成n型接触区域9A和9B。在这种情况下,n型接触区域9A和9B为已向其中注入了n型掺杂剂离子的区域。AlN杂质扩散阻挡层10设置在第一氮化物半导体叠层5上,并且AlN杂质扩散阻挡层10的表面覆盖有例如SiN膜11(钝化膜、栅极绝缘体、或绝缘膜)。栅电极6设置在SiN膜11上。这样的结构是金属绝缘体半导体(MIS)结构并且可以是其中已移除了SiN膜11在栅电极6正下方的部分的肖特基(Schottky)结构。尽管在第一实施方案中n型接触区域9A和9B分别设置在源电极7和漏电极8正下方,但是可以省略n型接触区域9A和9B的形成。此外,可以在移除n-AlGaN电子供给层4的在待形成源电极7和漏电极8的位置正下方的部分之后形成源电极7和漏电极8。
第一氮化物半导体叠层5还称为化合物半导体叠层、GaN-HEMT结构、AlGaN/GaN-HEMT结构、或GaN-HEMT晶体。第一氮化物半导体叠层5可以包括至少电子渡越层和电子供给层,并且可以包括其他半导体层。第一氮化物半导体叠层5可以是例如使得能够形成场效应晶体管(如其中使用氮化物半导体的场效应晶体管)的氮化物半导体叠层。i-GaN电子渡越层3还称为第一电子渡越层。n-AlGaN电子供给层4还称为第一电子供给层。栅电极6还称为第一栅电极。源电极7还称为第一源电极。漏电极8还称为第一漏电极。
在第一实施方案的半导体器件中,AlN杂质扩散阻挡层10设置在第一氮化物半导体叠层5上。AlN杂质扩散阻挡层10用于阻挡p型掺杂剂在n-AlGaN电子供给层4和i-GaN电子渡越层3的晶体生长期间从形成在该AlN杂质扩散阻挡层10上的p-GaN电子渡越层12扩散到n-AlGaN电子供给层4和i-GaN电子渡越层3。因此,AlN杂质扩散阻挡层10还称为p型掺杂剂扩散阻挡层。
在第一实施方案中,p型掺杂剂扩散阻挡层10为AlN层但本发明不限于此;例如,p型掺杂剂扩散阻挡层10可以为AlGaN层。换句话说,p型掺杂剂扩散阻挡层10可以为任意层,只要该层包含AlGaN或AlN即可。p型掺杂剂扩散阻挡层10优选包含Al含量为至少0.5的AlGaN或AlN。具体地,与在形成在p型掺杂剂扩散阻挡层10下方的n-AlGaN电子供给层4中相比,在p型掺杂剂扩散阻挡层10中的Al含量(Al含量比率)优选地较大。在第一实施方案中,例如,形成在p型掺杂剂扩散阻挡层10下方的n-AlGaN电子供给层4的Al含量为0.3;由于p型掺杂剂扩散阻挡层10是AlN层,所以与在形成在p型掺杂剂扩散阻挡层10下方的n-AlGaN电子供给层4中相比,在p型掺杂剂扩散阻挡层10中Al含量较大。因此,该结构使得能够进一步有效地阻挡p型掺杂剂的扩散。此外,与n-AlGaN电子供给层4相比具有较大Al含量的p型掺杂剂扩散阻挡层10呈现较大程度的自发极化和压电极化,这还给予了增加常通型HEMT1中生成的2DEG的量的效果。在这种情况下,2DEG的量可以以与p型掺杂剂扩散阻挡层10中Al含量的增加成比例的方式来增加。
常断型HEMT2被设置成覆盖AlN杂质扩散阻挡层10的一部分。常断型HEMT2包括具有p-GaN电子渡越层12和n-AlGaN电子供给层13的分层结构的第二氮化物半导体叠层14。第二氮化物半导体叠层14被定位成高于常通型HEMT1中包括的第一氮化物半导体叠层5,其中AlN杂质扩散阻挡层10介于第二氮化物半导体叠层14与第一氮化物半导体叠层5之间。
栅电极15和源电极16被设置成覆盖第二氮化物半导体叠层14,并且漏电极17被设置在第二氮化物半导体叠层14的侧面。漏电极17为还用作常通型HEMT1的源电极7的公共电极18。在这种情况下,常通型HEMT1的源电极7和常断型HEMT2的漏电极17(它们是公共电极18)由与用于形成常通型HEMT1的漏电极8和常断型HEMT2的源电极16所使用的金属相同的金属形成。
在第一实施方案中,n-AlGaN电子供给层13在源电极16正下方的部分和p-GaN电子渡越层12在源电极16正下方的部分掺杂有n型掺杂剂,并且这些n型掺杂部分用作n型接触区域9C。源电极16形成在n型接触区域9C上(在第一实施方案中,在n-AlGaN电子供给层13的n型接触区域上)。n-AlGaN电子供给层13和p-GaN电子渡越层12与漏电极17接触的部分掺杂有n型掺杂剂,并且这些n型掺杂部分用作n型接触区域9D。漏电极17被形成为与n型接触区域9D接触。可以通过例如n型掺杂剂(如Si)的离子注入来形成n型接触区域9C和9D。在这种情况下,n型接触区域9C和9D为向其中注入了n型掺杂剂离子的区域。第二氮化物半导体叠层14的表面(即包括在第二氮化物半导体叠层14中的n-AlGaN电子供给层13的表面)覆盖有例如SiN膜11(钝化膜、栅极绝缘体、或绝缘膜)。栅电极15设置在SiN膜11上。这样的结构为MIS结构并且可以为其中SiN膜11的在栅电极15正下方的部分被移除的肖特基结构。
在这样的结构中,p-GaN电子渡越层12的在源电极16侧的部分为n型,p-GaN电子渡越层12的在栅电极15正下方的另一部分为p型,p-GaN电子渡越层12的在漏电极17侧的另一部分为n型;因此,常断型HEMT2具有npn结构。n型接触区域9C和9D二者优选地延伸至栅电极15正下方的区域。以此方式,常断型HEMT2的电子渡越层12可以具有在栅电极15正下方的含p型掺杂剂的部分。
第二氮化物半导体叠层14还称为化合物半导体叠层、GaN-HEMT结构、AlGaN/GaN-HEMT结构或GaN-HEMT晶体。第二氮化物半导体叠层14可以包括至少电子渡越层和电子供给层,并且可以包括其他半导体层。第二氮化物半导体叠层14可以为例如使得能够形成场效应晶体管(例如其中使用氮化物半导体的场效应晶体管)的氮化物半导体叠层。p-GaN电子渡越层12还称为第二电子渡越层。n-AlGaN电子供给层13还称为第二电子供给层。栅电极15还称为第二栅电极。源电极16还称为第二源电极。漏电极17还称为第二漏电极。
在第一实施方案中,具体地,使用p-GaN层作为电子渡越层12使得能够在常断模式下操作。具体地,使用p-GaN层作为电子渡越层12导致栅电极15正下方的能带升高。能带升高使得p-GaN电子渡越层12与n-AlGaN电子供给层13之间的界面处的导电带的能级高于费米能级,因此抑制了2DEG的生成,从而使得能够在常断模式下操作。在这种情况下,与其中在栅电极与电子供给层之间设置p-GaN层的常规p-GaN栅极结构相比,p-GaN电子渡越层12被定位成更接近沟道区域(电子在其中移动的区域),因此第一实施方案更容易使得能够在常断模式下操作。另外,由于常断型HEMT2的阈值电压的大小与添加至p-GaN电子渡越层12的p型掺杂剂的浓度成比例,所以基于添加至p-GaN电子渡越层12的p型掺杂剂的浓度可控制阈值电压。因此,与常规的p-GaN栅极结构相比,第一实施方案使得能够容易地控制阈值电压。
在第一实施方案中,由于在常断模式下操作的晶体管包括包含p型掺杂剂的电子渡越层12,同时该晶体管具有包括电子渡越层12和电子供给层13的HEMT结构,所以电子迁移率高,这使得能够获得与普通的金属氧化物半导体场效应晶体管(MOSFET)相比操作较快并具有较高性能的常断型晶体管。在第一实施方案中,p-GaN电子渡越层12掺杂有为p型掺杂剂Mg。待添加至p-GaN电子渡越层12的p型掺杂剂不限于Mg;例如,可以使用Be、Fe和C。具体地,p-GaN电子渡越层12可以包含GaN以及选自Be、Mg、Fe和C的任意p型掺杂剂。在第一实施方案中,AlGaN被用于电子供给层13,但电子供给层13的材料不限于AlGaN;例如,电子供给层13可以包含AlGaN、InAlN和AlInGaN中的任一种。
在第一实施方案中,例如,除了形成在常通型HEMT1的第一氮化物半导体叠层5上形成的AlN杂质扩散阻挡层10的表面和常断型HEMT2的第二氮化物半导体叠层14的表面之外,用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18的表面还覆盖有例如SiN膜11(钝化膜、栅极绝缘体、或绝缘膜)。
在第一实施方案中,常通型HEMT1的漏电极8和常断型HEMT2的栅电极15和源电极16连接至例如导线和焊垫。常通型HEMT1的栅电极6电连接至常断型HEMT2的源电极16以建立常通型HEMT1与常断型HEMT2的共源共栅连接。在这种情况下,常断型HEMT2的源电极16接地,并且常通型HEMT1的栅电极6电连接至常断型HEMT2的源电极16。换句话说,共源极常断型HEMT2与共栅极常通型HEMT1串联连接以建立常通型HEMT1与常断型HEMT2的共源共栅连接。
在具有这样结构的第一实施方案的半导体器件中,由于掺杂有p型掺杂剂的常断型HEMT2的电子渡越层12被设置在常通型HEMT1的电子供给层4和电子渡越层3上方,其中p型掺杂剂扩散阻挡层10介于该电子渡越层12与该电子供给层4和该电子渡越层3之间,所以可以在常通型HEMT1的电子供给层4和电子渡越层3的晶体生长期间阻挡常断型HEMT2的电子渡越层12中包含的p型掺杂剂扩散到该电子供给层4和该电子渡越层3。如上所述,使用与n-AlGaN电子供给层4相比具有较大Al含量的p型掺杂剂扩散阻挡层10导致常通型HEMT1中生成的2DEG的量增加。从而,使得能够在常断模式下操作同时使得能够获得低的导通电阻和高耐受电压。
常断型HEMT2包括包含p型掺杂剂的p-GaN层的电子渡越层12,同时常断型HEMT2具有包括电子渡越层12和电子供给层13的HEMT结构。因此,电子迁移率高,并且沟道电阻低,这使得能够获得低的导通电阻。从而,使得能够在常断模式下操作同时使得能够获得高耐受电压。
通过如下所述的蚀刻未损害常断型HEMT2。因此不发生因蚀刻而产生的损害而使得导通电阻和漏电流增加。因此,使得能够稳定地在常断模式下操作并且使得能够获得低的导通电阻。在常断型HEMT2中,电子渡越层12为p-GaN层。在这种情况下,由于常断型HEMT2的阈值电压的大小与添加至p-GaN电子渡越层12的p型掺杂剂的浓度成比例,所以基于添加至p-GaN电子渡越层12的p型掺杂剂的浓度可控制阈值电压。因而,第一实施方案使得能够容易地控制阈值电压。与例如常规的p-GaN栅极结构相比,使得能够易于控制阈值电压和在常断模式下操作。
与例如其中形成为覆盖不同的半导体衬底的Si-MOSFET和GaN-HEMT彼此共源共栅连接(混合共源共栅连接)的结构相比,其中形成为覆盖相同半导体衬底的常通型HEMT1和常断型HEMT2彼此共源共栅连接的结构使得能够减小互相连接的长度;因此,可以降低电路的电抗,这使得电路操作的速度提高。
在具有上述结构的第一实施方案的半导体器件中,由于单独通过常断型HEMT2使得能够在常断模式下操作,所以可以独立配置常通型HEMT1而不考虑常断模式下的操作。具体地,由于常通型HEMT1可以被配置成不对常断模式下的操作做出贡献,所以可以独立确定2DEG的量即电子供给层4的厚度以降低导通电阻。因而,在常通型HEMT1中,可以增加电子供给层4的厚度以增加2DEG的量,从而降低导通电阻。换句话说,常通型HEMT1的电子供给层4优选地具有大的厚度以降低导通电阻。优选的是,例如,常通型HEMT1的电子供给层4的厚度大于常断型HEMT2的电子供给层13的厚度。在常通型HEMT1的电子供给层4被配置成具有大的厚度的情况下,n型接触区域9A和9B优选地分别形成在源电极7和漏电极8的正下方以降低由于电子供给层4生成的电阻。然而,由于电子供给层4的厚度的增加引起2DEG的量增加,所以可以省略n型接触区域9A和9B的形成。在常通型HEMT1中,栅电极6与漏电极8之间的距离的增加使得能够增加耐受电压。换句话说,在常通型HEMT1中,优选地增加栅电极6与漏电极8之间的距离以增加耐受电压。在常通型HEMT1中,例如,优选地形成栅电极6、漏电极8和源电极7使得栅电极6与漏电极8之间的距离大于栅电极6与源电极7之间的距离。
在常通型HEMT1中,在增加栅电极6与漏电极8之间的距离以增加耐受电压的情况下,增加电子供给层4的厚度以抑制由这样增加的距离所引起的导通电阻的增加。换句话说,可以增加耐受电压同时使得能够获得低的导通电阻。因此,常通型HEMT1还称为用于高耐受电压的功能区域。
如上所述,高耐受电压的功能区域的常通型HEMT1与在常断模式下操作的功能区域的常断型HEMT2组合,这使得能够在常断模式下操作以及使得能够获得低的导通电阻和高耐受电压二者。具体地,在常断模式下操作的功能区域和用于高耐受电压的功能区域彼此分离且彼此共源共栅连接,这使得能够制造在常断模式下操作同时使得能够获得低的导通电阻和高耐受电压二者的器件。
具体地,如上所述可以在常通型HEMT1的电子供给层4和电子渡越层3的晶体生长期间阻挡常断型HEMT2的电子渡越层12中包含的p型掺杂剂扩散到该电子供给层4和该电子渡越层3,这使得常通型HEMT1的导通电阻能够被保持在低水平。现在将参照图2A至图4B来描述第一实施方案的制造半导体器件的方法。
如图2A所示,形成用作第一电子渡越层的i-GaN层3、用作第一电子供给层的n-AlGaN层4、用作p型掺杂剂扩散阻挡层的AlN层10、用作第二电子渡越层的p-GaN层12和用作第二电子供给层的n-AlGaN层13形成以覆盖半导体衬底(未示出)。在这种情况下,半导体衬底可以为例如半绝缘SiC衬底20(见图3A)。此外,例如,成核层21和缓冲层22可以形成在半导体衬底20与用作第一电子渡越层的i-GaN层3之间(见图3A)。用作第一电子渡越层的i-GaN层3的厚度可以为例如约3μm。此外,用作第一间隔层的i-AlGaN层23可以形成在用作第一电子渡越层的i-GaN层3与用作第一电子供给层的n-AlGaN层4之间(见图3A)。在这种情况下,用作第一间隔层的i-AlGaN层23的厚度可以为例如约5nm。在用作第一电子供给层的n-AlGaN层4中,例如,其厚度可以为约30nm,Al含量可以为0.3,具体地,在式AlxGa1-xN中,x为0.3,待添加至该n-AlGaN层4的n型掺杂剂可以为Si,并且掺杂剂浓度可以为约5×1018cm-3。用作p型掺杂剂扩散阻挡层的AlN层10(在式AlxGa1-xN中,x为1)可以具有例如约5nm的厚度。例如,在用作第二电子渡越层的p-GaN层12中,其厚度可以为约100nm,添加至该p-GaN层12的p型掺杂剂可以为Mg,并且掺杂剂浓度可以为约1×1021cm-3。此外,用作第二间隔层的i-AlGaN层24可以形成在用作第二电子渡越层的p-GaN层12与用作第二电子供给层的n-AlGaN层13之间(见图3A)。在这种情况下,用作第二间隔层的i-AlGaN层24的厚度可以为例如约5nm。在用作第二电子供给层的n-AlGaN层13中,例如,其厚度可以为约30nm,待添加至该n-AlGaN层13的n型掺杂剂可以为Si,并且掺杂剂浓度可以为约5×1018cm-3。晶体生长方法的示例为金属有机物气相外延(MOVPE)。用于形成每个氮化物半导体层的源气体可以为三甲基铝(TMA)、三甲基镓(TMG)和氨(NH3)的混合气体,并且可以根据待形成的氮化物半导体层的类型来适当地调整作为Al源的TMA或作为Ga源的TMG的供给和流量。
半绝缘SiC衬底20被制备为半导体衬底,并且将成核层21、缓冲层22、用作第一电子渡越层的i-GaN层3、用作第一间隔层的i-AlGaN层23、用作第一电子供给层的n-AlGaN层4、用作p型掺杂剂扩散阻挡层的AlN层10、用作第二电子渡越层的p-GaN层12、用作第二间隔层的i-AlGaN层24和用作第二电子供给层的n-AlGaN层13形成为覆盖半导体衬底,从而形成图3A中示出的结构。
用作第二电子渡越层的p-GaN层12中包含的p型掺杂剂(例如,Mg)在该p-GaN层12的晶体生长期间是高度扩散性的。然而,用作p型掺杂剂扩散阻挡层的AlN层10设置在用作第二电子渡越层的p-GaN层12下方,并且用作第一电子供给层的n-AlGaN层4和用作第一电子渡越层的i-GaN层3位于用作p型掺杂剂扩散阻挡层的AlN层10之下,以便覆盖有AlN层10。因此,在形成用作第二电子渡越层的p-GaN层12的晶体生长期间,可以阻止用作第二电子渡越层的p-GaN层12中所含的p型掺杂剂(例如,Mg)扩散至用作第一电子供给层的n-AlGaN层4和用作第一电子渡越层的i-GaN层3,n-AlGaN层4和i-GaN层3位于p-GaN层12之下。这样的结构可以消除器件的受损性能,例如导通电阻的增加。另外,用作p型掺杂剂扩散阻挡层的AlN层10还使得能够增加常通型HEMT1中生成的2DEG的量。
在第一实施方案中,尽管AlN层被形成为p型掺杂剂扩散阻挡层10,但是p型掺杂剂扩散阻挡层10不限于此;例如,p型掺杂剂扩散阻挡层10可以为AlGaN层。换句话说,p型掺杂剂扩散阻挡层10可以由AlGaN或AlN形成。具体地,p型掺杂剂扩散阻挡层10优选地由具有不少于0.5的Al含量的AlGaN或AlN形成。在第一实施方案中,第二电子渡越层12是掺杂有作为p型掺杂剂Mg的p-GaN层,但本发明不限于此;第二电子渡越层12可以为掺杂有另一种的p型掺杂剂例如Be、Fe、或C的p-GaN层。换句话说,作为第二电子渡越层的p-GaN层12可以为包含GaN、以及选自Be、Mg、Fe和C的p型掺杂剂中的任一种的层。在第一实施方案中,第二电子供给层为n-AlGaN层13但不限于此;可以形成包含AlGaN、InAlN和AlInGaN中任一种的层。第一电子供给层4优选地具有大厚度。例如,优选地形成第一电子供给层4使其具有比第二电子供给层13的厚度更大的厚度。该结构使得能够增加2DEG的量,导致导通电阻的降低。优选地,将栅电极6和漏电极8设置成彼此以大距离间隔开。该结构使得能够获得高耐受电压。栅电极6、漏电极8和源电极7优选地形成为例如使得栅电极6与漏电极8之间的距离大于栅电极6与源电极7之间的距离。
然后,如图2B所示,通过例如光刻法蚀刻来移除n-AlGaN层13和p-GaN层12的如下部分:对应于除了待形成常断型HEMT的区域之外的区域,换句话说对应于待形成常通型HEMT的区域(图2B中右侧)。在该工艺中,将p型掺杂剂扩散阻挡层的AlGaN层10用作蚀刻停止层。因此,保护用作第一电子供给层的n-AlGaN层4和用作第一电子渡越层的i-GaN层3即沟道区域(通道区域)免于因蚀刻产生的损害,其中n-AlGaN层4和i-GaN层3包括在常通型HEMT1中。此外,通过例如光刻法蚀刻来移除用作p型掺杂剂扩散阻挡层的AlN层10的部分,这些部分对应于其中待形成常通型HEMT1的源电极和漏电极的区域。
通过该工艺,具有i-GaN电子渡越层3(第一电子渡越层)和n-AlGaN电子供给层4(第一电子供给层)的分层结构的氮化物半导体叠层已形成为常通型HEMT1中包括的第一氮化物半导体叠层5。具有p-GaN电子渡越层12(第二电子渡越层)和n-AlGaN电子供给层13(第二电子供给层)的分层结构的氮化物半导体叠层被形成为在常断型HEMT2中包含的第二氮化物半导体叠层14,使得被定位成高于常通型HEMT1中包含的第一氮化物半导体叠层5,其中作为p型掺杂剂扩散阻挡层的AlN杂质扩散阻挡层10介于第二氮化物半导体叠层14与第一氮化物半导体叠层5之间。
在半绝缘SiC衬底20被制备成半导体衬底的情况下,以及在成核层21、缓冲层22、用作第一电子渡越层的i-GaN层3、用作第一间隔层的i-AlGaN层23、用作第一电子供给层的n-AlGaN层4、用作p型掺杂剂扩散阻挡层的AlN层10、用作第二电子渡越层的p-GaN层12、用作第二间隔层的i-AlGaN层24和用作第二电子供给层的n-AlGaN层13被形成为覆盖半导体衬底的情况下,通过蚀刻来移除n-AlGaN层13、i-AlGaN层24和p-GaN层12的对应于待形成常断型HEMT的区域之外的区域的部分,并且通过蚀刻来移除p型掺杂剂扩散阻挡层AlN层10与在其中待形成常通型HEMT的区域中待形成源电极和漏电极的部分对应的部分,从而提供图3B中示出的结构。
在这种情况下,将具有成核层21、缓冲层22、i-GaN电子渡越层3(第一电子渡越层)、i-AlGaN第一间隔层23和n-AlGaN电子供给层4(第一电子供给层)的分层结构的氮化物半导体叠层形成为包括在常通型HEMT1中的第一氮化物半导体叠层5。另外,将具有p-GaN电子渡越层12(第二电子渡越层)、i-AlGaN第二间隔层24和n-AlGaN电子供给层13(第二电子供给层)的分层结构的氮化物半导体叠层形成为包括在常断型HEMT2中的第二氮化物半导体叠层14,使其定位成高于常通型HEMT1中包括的第一氮化物半导体叠层5,其中作为p型掺杂剂扩散阻挡层的AlN杂质扩散阻挡层10介于第二氮化物半导体叠层14与第一氮化物半导体叠层5之间。
然后,如图2C所示,将n型掺杂剂(如Si)离子注入到以下区域中:与常通型HEMT1的漏电极8接触的区域、与常断型HEMT2的源电极16接触的区域、以及与用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18接触的区域,然后使产品经历活化处理例如热处理,从而形成作为n掺杂区域的n型接触区域9A至9D。
在该工艺中,将n型掺杂剂(如Si)离子注入到n-AlGaN电子供给层4和i-GaN电子渡越层3的在常通型HEMT1的漏电极8之下的部分中。另外,将n型掺杂剂(如Si)离子注入到n-AlGaN电子供给层13和p-GaN电子渡越层12的在常断型HEMT2的源电极16之下的部分中。而且,将n型掺杂剂(如Si)离子注入到n-AlGaN电子供给层4和i-GaN电子渡越层3的在用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18之下的部分中,并注入到n-AlGaN电子供给层13和p-GaN电子渡越层12的在用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18侧面的部分中。然后,进行活化处理例如热处理来形成是n掺杂区域的n型接触区域9A至9D。通过该工艺,赋予常断型HEMT2以npn结构。
在半绝缘SiC衬底20被制备为半导体衬底的情况下,以及在成核层21、缓冲层22、用作第一电子渡越层的i-GaN层3、用作第一间隔层的i-AlGaN层23、用作第一电子供给层的n-AlGaN层4、用作p型掺杂剂扩散阻挡层的AlN层10、用作第二电子渡越层的p-GaN层12、用作第二间隔层的i-AlGaN层24和用作第二电子供给层的n-AlGaN层13被形成为覆盖半导体衬底的情况下,将n型掺杂剂(如Si)离子注入到n-AlGaN电子供给层4、i-AlGaN第一间隔层23和i-GaN电子渡越层3的在常通型HEMT1的漏电极8之下的部分中。将n型掺杂剂(如Si)离子注入到n-AlGaN电子供给层13、i-AlGaN第二间隔层24和p-GaN电子渡越层12的在常断型HEMT2的源电极16之下的部分中。将n型掺杂剂(如Si)离子注入到n-AlGaN电子供给层4、i-AlGaN第一间隔层23和i-GaN电子渡越层3的在用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18之下的部分中,并注入到n-AlGaN电子供给层13、i-AlGaN第二间隔层24和p-GaN电子渡越层12的在用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18侧面的部分中。然后,进行活化处理例如热处理来形成是n掺杂区域的n型接触区域9A至9D。通过该工艺,赋予常断型HEMT2以npn结构。在这种情况下,提供了图3C中示出的结构。
在不形成n型接触区域9A和9B的情况下,例如,可以移除n-AlGaN电子供给层4的在形成常通型HEMT1的漏电极的位置正下方的部分、以及n-AlGaN电子供给层4的在形成公共电极18的位置正下方的部分,其中公共电极18用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17。
尽管未示出,但是通过例如光刻法来形成具有与器件隔离区域对应的开口的抗蚀剂掩模,并且通过例如利用氯基气体进行干法蚀刻或通过抗蚀剂掩模进行离子注入来进行器件隔离。然后,如图2D所示,形成了常通型HEMT1的漏电极8、常断型HEMT2的源电极16和用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18。具体地,常通型HEMT1的漏电极8形成在常通型HEMT1的第一氮化物半导体叠层5上,常断型HEMT2的源电极16形成在常断型HEMT2的第二氮化物半导体叠层14上,并且用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18形成在常通型HEMT1的第一氮化物半导体叠层5上,使其定位在常断型HEMT2的第二氮化物半导体叠层14的侧面。
通过例如光刻法及沉积和剥离技术来在以下区域中顺次沉积钽和铝:其中待形成常通型HEMT1的漏电极8的区域、其中待形成常断型HEMT2的源电极16的区域、以及其中待形成用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18的区域,从而分别形成了钽/铝的漏电极8、源电极16和公共电极18。具体地,漏电极8、源电极16和公共电极18由钽/铝形成,使得分别接触上述形成的n型接触区域9B、9C及9A和9D。在这种情况下,例如,钽被沉积至约20nm的厚度,并且铝被沉积至约200nm的厚度。然后,例如,在氮气氛中以约400℃至1000℃(例如,550℃)来加热产品以产生欧姆特性。在第一实施方案中,以此方式,公共电极18由与用于形成漏电极8和第二源电极16所使用的金属相同的金属形成。
在半绝缘SiC衬底20被制备为半导体衬底的情况下,并且在成核层21、缓冲层22、用作第一电子渡越层的i-GaN层3、用作第一间隔层的i-AlGaN层23、用作第一电子供给层的n-AlGaN层4、用作p型掺杂剂扩散阻挡层的AlN层10、用作第二电子渡越层的p-GaN层12、用作第二间隔层的i-AlGaN层24和用作第二电子供给层的n-AlGaN层13被形成为覆盖半导体衬底的情况下,形成了常通型HEMT1的漏电极8、常断型HEMT2的源电极16和用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18,从而提供了图4A中示出的结构。用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18具有图2D中示出的形状或图4A中示出的形状。换句话说,用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18可以被形成为仅在其侧表面上或在其侧表面和上表面二者上接触常断型HEMT2的n型接触区域9D。
然后,如图2D所示,例如,SiN膜11(钝化膜、栅极绝缘体、或绝缘膜)形成在产品的表面上,并且常通型HEMT1的栅电极6和常断型HEMT2的栅电极15随后形成在SiN膜11上。在这种情况下,形成了MIS结构。具体地,常通型HEMT1的栅电极6形成在常通型HEMT1的第一氮化物半导体叠层5上,并且常断型HEMT2的栅电极15形成在常断型HEMT2的第二氮化物半导体叠层14上。在这种情况下,常断型HEMT2的栅电极15形成在常断型HEMT2的第二氮化物半导体叠层14中包括的p-GaN电子渡越层12的包含p型掺杂剂的区域上方,即在除掺杂有n型掺杂剂的区域之外的区域上方。
通过例如光刻法及沉积和剥离技术来在其中待形成栅电极的区域中顺次沉积镍和金,从而形成镍/金的栅电极6和15。在这种情况下,例如,镍被沉积至约30nm的厚度,并且金被沉积至约400nm的厚度。在半绝缘SiC衬底20被制备为半导体衬底的情况下,并且在成核层21、缓冲层22、用作第一电子渡越层的i-GaN层3、用作第一间隔层的i-AlGaN层23、用作第一电子供给层的n-AlGaN层4、用作p型掺杂剂扩散阻挡层的AlN层10、用作第二电子渡越层的p-GaN层12、用作第二间隔层的i-AlGaN层24和用作第二电子供给层的n-AlGaN层13被形成为覆盖半导体衬底的情况下,在没有形成SiN膜11的情况下形成了常通型HEMT1的栅电极6和常断型HEMT2的栅电极15,换句话说,肖特基结构的形成提供了图4B中示出的结构。
然后,常通型HEMT1的漏电极8以及常断型HEMT2的栅电极15和源电极16连接至例如导线和焊垫。另外,常通型HEMT1的栅电极6电连接至常断型HEMT2的源电极16以建立常通型HEMT1与常断型HEMT2的共源共栅连接。
以此方式,完成了第一实施方案的半导体器件的制造,其中,常断型HEMT2被设置成高于常通型HEMT1同时p型掺杂剂扩散阻挡层10介于常断型HEMT2与常通型HEMT1之间,并且常通型HEMT1已与常断型HEMT2共源共栅连接。在第一实施方案中,使用SiC衬底20作为半导体衬底的实例,但是半导体衬底不限于此;例如,可以使用其他的衬底例如包括蓝宝石衬底、Si衬底和GaN衬底的半导体衬底。此外,在第一实施方案中,衬底20为半绝缘衬底但不限于此;例如,衬底20可以为n型导电衬底或p型导电衬底。
包括源电极16、漏电极8、公共电极18、以及栅电极6和15的上述分层结构是示例,并且可以使用其他的分层结构而不受限制。包括源电极16、漏电极8、公共电极18、以及栅电极6和15的上述分层结构可以为例如单层结构或多层结构。用于形成源电极16、漏电极8、公共电极18、以及栅电极6和15的工艺仅是示例,并且可以通过其他工艺来形成。
尽管进行了热处理来发展源电极16、漏电极8和公共电极18的欧姆特性,但是可以通过任何其他技术来发展欧姆特性;在无需热处理来发展欧姆特性的情况下,可以省略用于发展源电极16、漏电极8和公共电极18的欧姆特性的热处理。虽然在第一实施方案中没有使栅电极6和15经历热处理,但是可以使栅电极6和15经历热处理。
根据第一实施方案的半导体器件和用于制造半导体器件的方法提供了其中使得能够在常断模式下操作同时使低的导通电阻和高耐受电压增强的有益效果。可以不受限制地如下所述来修改根据第一实施方案的半导体器件和用于制造半导体器件的方法。现在将参照图5A和5B来描述第一变化方案。
第一变化方案与第一实施方案的区别在于用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18不是金属电极而是如图5B所示的n掺杂区域9E。在第一实施方案中,例如,半绝缘SiC衬底20被制备为半导体衬底,并且成核层21、缓冲层22、用作第一电子渡越层的i-GaN层3、用作第一间隔层的i-AlGaN层23、用作第一电子供给层的n-AlGaN层4、用作p型掺杂剂扩散阻挡层的AlN层10、用作第二电子渡越层的p-GaN层12、用作第二间隔层的i-AlGaN层24和用作第二电子供给层的n-AlGaN层13被形成为覆盖半导体衬底。
在第一变化方案中,n掺杂区域9E(其为公共电极18)可以如下来形成:不通过蚀刻来移除用作p型掺杂剂扩散阻挡层的AlN层10的如下部分,所述部分属于待形成到源电极中的区域中,所述源电极在其中待形成常通型HEMT的区域中;将n型掺杂剂(如Si)离子注入到待形成到用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18中的区域中,如图5A所示;以及进行活化处理例如热处理。换句话说,用作公共电极18的n掺杂区域9E(已向其中注入n型掺杂剂离子的区域)可以如下来形成:在待形成到用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18中的区域中,将n型掺杂剂例如SiC的离子注入到常断型HEMT2的n-AlGaN电子供给层13、i-AlGaN第二间隔层24和p-GaN电子渡越层12的部分中;以及n-AlGaN电子供给层4、i-AlGaN第一间隔层23和i-GaN电子渡越层3的部分中;然后进行活化处理例如热处理。以此方式,公共电极18可以是从常断型HEMT2的第二氮化物半导体叠层14的表面(在第一实施方案中,n-AlGaN电子供给层13的表面)延伸至常通型HEMT1的第一氮化物半导体叠层5中包括的i-GaN电子渡越层3(第一电子渡越层)的n掺杂区域9E。换句话说,从第二氮化物半导体叠层14的表面延伸至常通型HEMT1的第一氮化物半导体叠层5中包括的i-GaN电子渡越层3(第一电子渡越层)的n掺杂区域9E可以被形成为公共电极18。如图5A所示,可以在分别在其上待形成常通型HEMT1的漏电极8的区域和其上待形成常断型HEMT2的源电极16的区域中形成n型接触区域9B和9C的过程中形成用作公共电极18的n掺杂区域9E。在这种情况下,用于形成常通型HEMT1的漏电极8和常断型HEMT2的源电极16的工艺与用于形成用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18的工艺不同。相比之下,在第一实施方案中,通过相同的工艺来形成这些电极。然后,如图5B所示,可以形成常通型HEMT1的漏电极8和常断型HEMT2的源电极16,并且可以形成常通型HEMT1的栅电极6和常断型HEMT2的栅电极15。该结构的其他部分和制造方法的细节与第一实施方案中的其他部分和细节相同。
现在将参照图6A和6B来描述第二变化方案。第二变化方案与第一实施方案的区别在于形成n型半导体层25A至25C作为n型接触层而不形成n掺杂区域9A至9D作为n型接触区域,如图6B所示。在第二变化方案中,例如,半绝缘SiC衬底20被制备为半导体衬底;成核层21、缓冲层22、用作第一电子渡越层的i-GaN层3、用作第一间隔层的i-AlGaN层23、用作第一电子供给层的n-AlGaN层4、用作p型掺杂剂扩散阻挡层的AlN层10、用作第二电子渡越层的p-GaN层12、用作第二间隔层的i-AlGaN层24和用作第二电子供给层的n-AlGaN层13被形成为覆盖半导体衬底;以及n-GaN层被形成为n型半导体层25A至25C。n型半导体层25A至25C不限于n-GaN层,而可以为例如n-InGaN层。
在第二变化方案中,代替第一实施方案中的用于形成n型接触区域的工艺(见图2C和3C),如图6A所示,可以在如下位置处生长(再生长)n-GaN:待形成常通型HEMT1的漏电极8的位置、待形成常断型HEMT2的源电极16的位置、以及待形成用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18的位置,从而形成了为n型接触层的n-GaN层25A至25C。在第二变化方案中,从常断型HEMT2的第二氮化物半导体叠层14的表面延伸至常通型HEMT1的第一氮化物半导体叠层5的表面的n-GaN层25B(n型半导体层)可以被形成为设置在待形成公共电极的位置处的n型接触层。可以例如如下来形成作为n型接触层的n-GaN层25A至25C:通过光刻和热化学气相沉积(CVD)方法来形成具有与如下区域对应的开口的SiO2膜26:其中待形成常通型HEMT1的漏电极8的区域、待形成常断型HEMT2的源电极16的区域、以及待形成用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18的区域;以及通过例如MOVPE方法基于其中GaN不太可能在SiO2膜26上生长的特性在开口中选择性地外延生长n-GaN。然后,如图6B所示,常断型HEMT2的源电极16、用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18和常通型HEMT1的漏电极8分别形成在为n型接触层的n-GaN层25A至25C上;用作掩模的SiO2膜26可以被保留以用作绝缘膜(钝化膜或栅极绝缘体);以及常通型HEMT1的栅电极6和常断型HEMT2的栅电极15可以形成在SiO2膜26上。在这种情况下,形成了MIS结构。该结构的其他部分和制造方法的细节与第一实施方案中的其他部分和细节相同。
在形成n型半导体层25A至25C作为n型接触层而不形成n掺杂区域9A至9D作为n型接触区域的情况下,以此方式,可以省略为用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18的金属电极的形成。在这种情况下,n型半导体层25B取代用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18。换句话说,从第二氮化物半导体叠层14的表面延伸至第一氮化物半导体叠层5的表面的n型半导体层25B用作为公共电极18的源电极7和漏电极17。在这种情况下,用于形成常通型HEMT1的漏电极8和常断型HEMT2的源电极16的工艺与用于形成用作常通型HEMT1的源电极7和常断型HEMT2的漏电极17的公共电极18的工艺不同。换句话说,通过与用于形成常通型HEMT1的漏电极8和常断型HEMT2的源电极16的工艺不同的工艺,形成了用作公共电极18并从第二氮化物半导体叠层14的表面延伸至第一氮化物半导体叠层5的表面的n型半导体层25B。
在第二变化方案中,尽管用作掩模的SiO2膜26被保留以用作绝缘膜来形成MIS结构,但是第二变化方案的结构不限于此;例如,可以移除用作掩模的SiO2膜26,然后可以形成常通型HEMT1的栅电极6和常断型HEMT2的栅电极15。在这种情况下,提供了肖特基结构。此外,例如,可以移除用作掩模的SiO2膜26,可以随后形成另外的绝缘膜(例如SiN膜、钝化膜、或栅极绝缘体),并且可以在该另外的绝缘膜上形成常通型HEMT1的栅电极6和常断型HEMT2的栅电极15。在这种情况下,提供了MIS结构。
[第二实施方案]
现在将参照附图7和8来描述根据第二实施方案的半导体器件、用于制造半导体器件的方法和电源。
第二实施方案的半导体器件为包括半导体芯片的半导体封装件,该半导体芯片为第一实施方案及其变化方案中任一种的半导体器件(包括具有彼此共源共栅连接的常通型HEMT1和常断型HEMT2的晶体管电路)。该半导体芯片还称为HEMT芯片或晶体管芯片。现在将作为示例来描述分立封装件。
参照图7,第二实施方案的半导体器件包括作为第一实施方案及其变化方案中任一种的半导体器件(包括具有彼此共源共栅连接的常通型HEMT1和常断型HEMT2的晶体管电路)的半导体芯片34、半导体芯片34设置在其上的台30、栅极引线37、源极引线39、漏极引线38、接合线36(后文中称为Al线)、以及密封性树脂40。该密封性树脂40还称为模制树脂。
设置在台30上的半导体芯片34具有通过Al线36分别连接至栅极引线37、源极引线39和漏极引线38的栅极焊垫31、源极焊垫32和漏极焊垫33,并且使用树脂来密封这些焊垫。在半导体芯片34中,常断型HEMT2的栅电极15和源电极16、以及常通型HEMT1的漏电极8分别连接至栅极焊垫31、源极焊垫32和漏极焊垫33。常断型HEMT2的栅电极6电连接至常断型HEMT2的源电极16。从而,常断型HEMT2的栅电极15和源电极16、以及常通型HEMT1的漏电极8分别通过栅极焊垫31、源极焊垫32和漏极焊垫33连接至栅极引线37、源极引线39和漏极引线38。
使用管芯附接材料(die-attach material)35(在这种情况下为焊料)来将半导体芯片34的衬底的后表面固定至台30,并且台30电连接至漏极引线38。第二实施方案不限于这样的结构,而台30可以电连接至源极引线39。现在将描述根据第二实施方案的用于制造半导体器件(分立封装件)的方法。
例如使用晶片附接材料35(在这种情况下为焊料)来将为第一实施方案及其变化方案中任意一者的半导体器件的半导体芯片34固定至台30上,其中台30为引线框。然后,半导体芯片34的栅极焊垫31、漏极焊垫33和源极焊垫32例如通过与Al线36结合来分别连接至栅极引线37、漏极引线38和源极引线39。
然后,通过例如传递模制工艺使用树脂来密封产品。随后移除引线框。可以以此方式制造半导体器件(分立封装件)。尽管本文中描述了其中使用半导体芯片34的垫31至33作为用于线接合的接合垫的分立封装件的示例,但是实施方案不限于此,而可以使用具有其他配置的半导体封装件。例如,可以使用其中使用半导体芯片的垫作为用于无线接合例如倒装芯片接合的接合垫的半导体封装件。此外,可以使用晶圆级封装件。而且,可以使用除分立封装件之外的半导体封装件。
现在将参照图8来描述包括具有半导体芯片34的上述半导体封装件,该半导体芯片34包括其中常通型HEMT1和常断型HEMT2彼此共源共栅连接的晶体管电路。以下描述是基于其中使用包括在上述半导体封装件中且具有常通型HEMT1和常断型HEMT2的晶体管电路作为包括在用在服务器中的电源中的功率因子校正(PFC)电路。
参照图8,第二实施方案的PFC电路包括二极管桥56、扼流线圈52、第一电容器54、包括在上述半导体封装件中的晶体管电路51、二极管53和第二电容器55。由于其中常通型HEMT1和常断型HEMT2如上所述彼此共源共栅连接的晶体管电路51具有包括常通型HEMT1的漏电极8、以及常断型HEMT2的源电极16和栅电极15的三个端子,所以在图8中晶体管电路51被示出为具有分别为漏电极D、源电极S和栅电极G的三个端子。
在第二实施方案的PFC电路中,二极管桥56、扼流线圈52、第一电容器54、包括在上述半导体封装件中的晶体管电路51、二极管53和第二电容器55被安装在电路板上。在第二实施方案中,上述半导体封装件的漏极引线38、源极引线39和栅极引线37分别***到电路板的漏极引线入口、源极引线入口和栅极引线入口,并且使用例如焊料来固定。在形成在电路板上的PFC电路中,以此方式建立了包括在上述半导体封装件中的晶体管51的连接。
在第二实施方案的PFC电路中,扼流线圈52的一个端子和二极管53的阳极端子连接至晶体管51的漏电极D(在这种情况下为常通型HEMT1的漏电极8,见图1)。扼流线圈52的其他端子连接至第一电容器54的一个端子,并且二极管53的阴极端子连接至第二电容器55的一个端子。第一电容器54的其他端子、晶体管51的源电极S(在此情况下为常断型HEMT2的源电极16,见图1)和第二电容器55的其他端子接地。第一电容器54的端子二者还连接至二极管桥56的一对端子,并且二极管桥56的另一对端子连接至向其施加交流(AC)电压的输入端子。第二电容器55的端子二者还连接至从其输出直流(DC)电压的输出端子。晶体管51的栅电极G(在这种情况下为常断型HEMT2的栅电极15,见图1)连接至栅驱动器(未示出)。在第二实施方案的PFC电路中,通过栅驱动器驱动晶体管51以将从输入端子施加的AC电压转换成DC电压,从而从输出端子输出DC电压。
从而第二实施方案的电源具有稳定性增强的有益效果。具体地,在电源中使用为第一实施方案及其变化方案中任意一者的半导体器件的半导体芯片34。这有利地使得能够给予电源高稳定性。在第二实施方案中,描述了其中在包括在用在服务器中的电源中的PFC电路中使用上述半导体器件(半导体芯片或半导体封装件)的示例;然而,第二实施方案不限于此。可以在例如除服务器之外的电子装备(电子装置)例如计算机中使用上述半导体器件(半导体芯片或半导体封装件)。此外,可以在包括在电源中的任何其他的电路(例如,DC-DC转换器)中使用上述半导体器件(半导体芯片或半导体封装件)。
[第三实施方案]
现在将参照图9来描述第三实施方案的高频放大器。
第三实施方案的高频放大器为包括第一实施方案及其变化方案中任意一者的半导体器件的高频放大器。参照图9,第三实施方案的高频放大器包括数字预失真电路41、混频器42a和42b和功率放大器43。功率放大器还简称为放大器。
数字预失真电路41补偿输入信号的非线性失真。混频器42a和42b将经历非线性失真补偿的输入信号与交流信号进行混合。功率放大器43将与交流电信号混频的输入信号放大,并且包括第一实施方案及其变化方案中任意一者的半导体器件,即包括其中常通型HEMT和常断型HEMT已彼此共源共栅连接的晶体管电路的半导体芯片。半导体芯片还称为HEMT芯片或晶体管芯片。
在图9中示出的构造中,例如,切换操作使得混频器42b能够将输出信号与交流信号进行混合,然后将经混合的信号发送到数字预失真电路41。在第三实施方案的高频放大器中,第一实施方案及其变化方案中任意一者的半导体器件被应用于功率放大器43,这有利地使得能够给予高频放大器以高稳定性。
本文中列举的所有示例和条件性语言意在出于教示目的帮助读者理解由本发明人贡献以推广技术的本发明和构思,并且应被解释为不限于这样具体列举的示例和条件,也不限于说明书中的这样的示例与示出本发明的优势或劣势相关的组织。尽管已经详细地描述了本发明的实施方案,然而应该理解的是,可以在不背离本发明的精神和范围的情况下对本发明的实施方案作出各种变化、置换和替换。

Claims (18)

1.一种半导体器件,包括:
第一晶体管,所述第一晶体管包括第一栅电极、第一源电极、第一漏电极和第一氮化物半导体叠层,所述第一氮化物半导体叠层包括第一电子渡越层和第一电子供给层;
第二晶体管,所述第二晶体管包括第二栅电极、第二源电极、第二漏电极和第二氮化物半导体叠层,所述第二氮化物半导体叠层包括第二电子渡越层和第二电子供给层,所述第二漏电极为还用作所述第一源电极的公共电极,所述第二电子渡越层具有位于所述第二栅电极之下并包含p型掺杂剂的部分;以及
p型掺杂剂扩散阻挡层,
其中
所述第二氮化物半导体叠层设置成高于所述第一氮化物半导体叠层,其中所述p型掺杂剂扩散阻挡层介于所述第一氮化物半导体叠层与所述第二氮化物半导体叠层之间,以及
所述第一栅电极和所述第二源电极彼此电耦接以建立所述第一晶体管至所述第二晶体管的共源共栅连接。
2.根据权利要求1所述的半导体器件,其中
所述第一电子供给层比所述第二电子供给层厚。
3.根据权利要求1所述的半导体器件,其中
所述第一栅电极与所述第一漏电极之间的距离大于所述第一栅电极与所述第一源电极之间的距离。
4.根据权利要求1所述的半导体器件,其中
所述p型掺杂剂扩散阻挡层包含Al含量不小于0.5的AlGaN和AlN中的任一种。
5.根据权利要求1所述的半导体器件,其中
用作所述第一源电极和所述第二漏电极的所述公共电极由与形成所述第一漏电极和所述第二源电极所使用的金属相同的金属形成。
6.根据权利要求1所述的半导体器件,其中
用作所述第一源电极和所述第二漏电极的所述公共电极是从所述第二氮化物半导体叠层的表面延伸至所述第一电子渡越层的n掺杂区域。
7.根据权利要求1所述的半导体器件,其中
用作所述第一源电极和所述第二漏电极的所述公共电极是从所述第二氮化物半导体叠层的表面延伸至所述第一氮化物半导体叠层的表面的n型半导体层。
8.根据权利要求1所述的半导体器件,其中
所述第一电子渡越层包含GaN,
所述第一电子供给层包含AlGaN,
所述p型掺杂剂扩散阻挡层包含AlGaN和AlN中的任一种,
所述第二电子渡越层包含GaN以及作为p型掺杂剂的Be、Mg、Fe和C中的任一种,以及
所述第二电子供给层包含AlGaN、InAlN和AlInGaN中的任一种。
9.一种电源,包括:
晶体管芯片,所述晶体管芯片包括:
第一晶体管,所述第一晶体管包括第一栅电极、第一源电极、第一漏电极和第一氮化物半导体叠层,所述第一氮化物半导体叠层包括第一电子渡越层和第一电子供给层;
第二晶体管,所述第二晶体管包括第二栅电极、第二源电极、第二漏电极和第二氮化物半导体叠层,所述第二氮化物半导体叠层包括第二电子渡越层和第二电子供给层,所述第二漏电极为还用作所述第一源电极的公共电极,所述第二电子渡越层具有位于所述第二栅电极之下并包含p型掺杂剂的部分;以及
p型掺杂剂扩散阻挡层,
其中
所述第二氮化物半导体叠层设置成高于所述第一氮化物半导体叠层,其中所述p型掺杂剂扩散阻挡层介于所述第一氮化物半导体叠层与所述第二氮化物半导体叠层之间,以及
所述第一栅电极和所述第二源电极彼此电耦接以建立所述第一晶体管至所述第二晶体管的共源共栅连接。
10.一种高频放大器,包括:
对输入信号进行放大的放大器,所述放大器包括晶体管芯片,所述晶体管芯片包括:
第一晶体管,所述第一晶体管包括第一栅电极、第一源电极、第一漏电极和第一氮化物半导体叠层,所述第一氮化物半导体叠层包括第一电子渡越层和第一电子供给层;
第二晶体管,所述第二晶体管包括第二栅电极、第二源电极、第二漏电极和第二氮化物半导体叠层,所述第二氮化物半导体叠层包括第二电子渡越层和第二电子供给层,所述第二漏电极为还用作所述第一源电极的公共电极,所述第二电子渡越层具有位于所述第二栅电极之下并包含p型掺杂剂的部分;以及
p型掺杂剂扩散阻挡层,
其中
所述第二氮化物半导体叠层设置成高于所述第一氮化物半导体叠层,其中所述p型掺杂剂扩散阻挡层介于所述第一氮化物半导体叠层与所述第二氮化物半导体叠层之间,以及
所述第一栅电极和所述第二源电极彼此电耦接以建立所述第一晶体管至所述第二晶体管的共源共栅连接。
11.一种用于制造半导体器件的方法,所述方法包括:
形成第一氮化物半导体叠层、p型掺杂剂扩散阻挡层以及第二氮化物半导体叠层,所述第一氮化物半导体叠层包括第一电子渡越层和第一电子供给层,所述第二氮化物半导体叠层包括第二电子渡越层和第二电子供给层,每一层均位于半导体衬底之上,所述第二电子渡越层包含p型掺杂剂;
移除所述第二氮化物半导体叠层的对应于其中待形成第一晶体管的区域的部分,所述第一晶体管包括第一栅电极、第一源电极、第一漏电极和所述第一氮化物半导体叠层;
形成所述第一漏电极使得所述第一漏电极在其中待形成所述第一晶体管的区域中覆盖所述第一氮化物半导体叠层,并且形成第二源电极使得所述第二源电极在其中待形成第二晶体管的区域中覆盖所述第二氮化物半导体叠层,所述第二晶体管包括第二栅电极、第二源电极、第二漏电极和所述第二氮化物半导体叠层;
形成用作所述第一源电极和所述第二漏电极的公共电极;
形成所述第一栅电极使得所述第一栅电极覆盖所述第一氮化物半导体叠层,并且形成所述第二栅电极使得所述第二栅电极覆盖所述第二氮化物半导体叠层;以及
将所述第一栅电极与所述第二源电极电耦接以建立所述第一晶体管至所述第二晶体管的共源共栅连接。
12.根据权利要求11所述的方法,其中
所述第一电子供给层被形成为比所述第二电子供给层厚。
13.根据权利要求11所述的方法,其中
所述第一栅电极、所述第一漏电极和所述第一源电极被形成为使所述第一栅电极与所述第一漏电极之间的距离大于所述第一栅电极与所述第一源电极之间的距离。
14.根据权利要求11所述的方法,其中
所述p型掺杂剂扩散阻挡层由Al含量不小于0.5的AlGaN和AlN中的任一种形成。
15.根据权利要求11所述的方法,其中
用作所述第一源电极和所述第二漏电极的所述公共电极由与形成所述第一漏电极和所述第二源电极所使用的金属相同的金属形成。
16.根据权利要求11所述的方法,其中
从所述第二氮化物半导体叠层的表面延伸至所述第一电子渡越层的n掺杂区域被形成为用作所述第一源电极和所述第二漏电极的所述公共电极。
17.根据权利要求11所述的方法,其中
从所述第二氮化物半导体叠层的表面延伸至所述第一氮化物半导体叠层的表面的n型半导体层被形成为用作所述第一源电极和所述第二漏电极的所述公共电极。
18.根据权利要求11所述的方法,其中
所述第一电子渡越层包含GaN,
所述第一电子供给层包含AlGaN,
所述p型掺杂剂扩散阻挡层包含AlGaN和AlN中的任一种,
所述第二电子渡越层包含GaN以及作为p型掺杂剂的Be、Mg、Fe和C中的任一种,以及
所述第二电子供给层包含AlGaN、InAlN和AlInGaN中的任一种。
CN201310559631.2A 2012-12-21 2013-11-12 半导体器件、制造半导体器件的方法、电源及高频放大器 Active CN103887309B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012279707A JP5949527B2 (ja) 2012-12-21 2012-12-21 半導体装置及びその製造方法、電源装置、高周波増幅器
JP2012-279707 2012-12-21

Publications (2)

Publication Number Publication Date
CN103887309A CN103887309A (zh) 2014-06-25
CN103887309B true CN103887309B (zh) 2016-11-30

Family

ID=

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855493A (zh) * 2005-03-28 2006-11-01 三洋电机株式会社 有源元件以及开关电路装置
CN102763204A (zh) * 2010-03-01 2012-10-31 富士通株式会社 化合物半导体装置及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855493A (zh) * 2005-03-28 2006-11-01 三洋电机株式会社 有源元件以及开关电路装置
CN102763204A (zh) * 2010-03-01 2012-10-31 富士通株式会社 化合物半导体装置及其制造方法

Similar Documents

Publication Publication Date Title
TWI515874B (zh) 半導體裝置及其製造方法、電源供應器與高頻放大器
US9231075B2 (en) Semiconductor device including gate electrode provided over active region in p-type nitride semiconductor layer and method of manufacturing the same, and power supply apparatus
JP5874173B2 (ja) 化合物半導体装置及びその製造方法
TWI452696B (zh) 化合物半導體裝置及其製造方法
JP5908692B2 (ja) 化合物半導体装置及びその製造方法
JP5888064B2 (ja) 化合物半導体装置及びその製造方法
US20170352755A1 (en) Semiconductor device, fabrication method for semiconductor device, power supply apparatus and high-frequency amplifier
US9653569B1 (en) Compound semiconductor device and manufacturing method thereof
US8716748B2 (en) Semiconductor device and method of manufacturing the same, and power supply apparatus
CN103367426A (zh) 化合物半导体器件及其制造方法
JP2013207102A (ja) 化合物半導体装置及びその製造方法
CN103325824A (zh) 半导体器件及其制造方法
JP6703269B2 (ja) 化合物半導体装置及びその製造方法
US10665710B2 (en) Compound semiconductor device and fabrication method
JP6674087B2 (ja) 化合物半導体装置及びその製造方法
JP6649586B2 (ja) 化合物半導体装置及びその製造方法
US9954091B2 (en) Compound semiconductor device and method of manufacturing the same
JP2014207379A (ja) 化合物半導体装置及びその製造方法
CN103887309B (zh) 半导体器件、制造半导体器件的方法、电源及高频放大器
CN103325781B (zh) 半导体器件、pfc电路、电源装置和放大器
JP6187167B2 (ja) 化合物半導体装置及びその製造方法
JP2017022214A (ja) 化合物半導体装置及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant