CN103758750B - Six-blade differential pump driven by Fourier noncircular gears - Google Patents

Six-blade differential pump driven by Fourier noncircular gears Download PDF

Info

Publication number
CN103758750B
CN103758750B CN201410039549.1A CN201410039549A CN103758750B CN 103758750 B CN103758750 B CN 103758750B CN 201410039549 A CN201410039549 A CN 201410039549A CN 103758750 B CN103758750 B CN 103758750B
Authority
CN
China
Prior art keywords
fourier
noncircular gear
impeller
liquid
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410039549.1A
Other languages
Chinese (zh)
Other versions
CN103758750A (en
Inventor
陈建能
夏旭东
徐高欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUZHOU ZHILI CHILDREN'S CLOTHING DEVELOPMENT CO LTD
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201410039549.1A priority Critical patent/CN103758750B/en
Publication of CN103758750A publication Critical patent/CN103758750A/en
Application granted granted Critical
Publication of CN103758750B publication Critical patent/CN103758750B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rotary Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention discloses a six-blade differential pump driven by Fourier noncircular gears. Power of the six-blade differential pump is output by a motor, and is transferred to an input shaft by a coupling; a first Fourier noncircular gear and a second Fourier noncircular gear are both fixed on the input shaft; a first conjugated Fourier noncircular gear is fixed on an output shaft, and is meshed with the first Fourier noncircular gear; a second conjugated Fourier noncircular gear is fixedly connected with a second impeller through a shaft sleeve; the shaft sleeve is movably sleeved upon the output shaft; the second conjugated Fourier noncircular gear is meshed with the second Fourier noncircular gear; a first impeller is fixed on the output shaft; the first impeller and the second impeller are respectively provided with three blades; a one-way pressure relief valve is mounted in each of the blades; the direction of the one-way pressure relief valves is the same with the rotating direction of the blades. The six-blade differential pump driven by the Fourier noncircular gears has the advantages of large displacement, stable flow and easy adjustment of non-constant speed rules, and effectively solves the pressure pulsation and liquid trapping problems in the traditional differential pump.

Description

Six blade differential pumps that a kind of Fourier's noncircular gear drives
Technical field
The invention belongs to displacement pump technical field, relate to blade differential pump, be specifically related to six blade differential pumps that a kind of Fourier's noncircular gear drives.
Background technique
The liquid pump that universal machine is conventional has reciprocating pump, plunger pump, diaphragm pump, roller pump and centrifugal pump, wherein: live (post) fills in pump higher outlet pressure, but require that the sealing between piston and cylinder barrel is reliable, and pressure surge is large; Diaphragm pump can produce a more stable liquid stream when multi-cylinder, but complex structure; Roller pump delivery is uniform when stabilization of speed, and along with the raising of pressure, leakage rate increases, the lifting rate of pump and the corresponding reduction of efficiency; Centrifugal pump structure is simple, easily manufactures, but its discharge capacity is large, and pressure is low, for the less demanding occasion of working pressure.There is respective defect in these pumps, can't meet the constant flow rate of part special mechanical requirement, the demand of high pressure well.
Existing differential pump mainly contains following several according to the difference of driving mechanism:
Rotating guide-bar-gear type blade differential pump, its drive system bears alternate load, produces gear tooth noise, and also can cause impact noise when each pair clearance is larger.
Universal-joint gear wheel mechanism drive vane differential pump, the input shaft of its universal joint mechanism and the angle of output shaft are the key parameters affecting pump performance.This angle is larger, and pump delivery is also larger, but along with the increase at this angle, the flow pulsation aggravation of pump and the transmission efficiency of universal joint reduce.
Distortion eccentric circle noncircular gear drive vane differential pump, its eccentric circle non-circular gear pitch curve adjustment parameter mainly eccentricity and deformation coefficient, adjustment amount is limited, Adjustment precision is not high, cause velocity ratio optimization, adjustment inconvenience, design dumb, be unfavorable for further optimal design, be difficult to optimize the problem such as pressure pulsation, tired liquid.
Summary of the invention
The object of the invention is for the deficiencies in the prior art, six blade differential pumps that a kind of Fourier's noncircular gear drives be provided, this blade differential pump displacement is large, pressure is high, stability of flow, compact structure; Fourier's non-circular gear pitch curve has six to adjust parameter, and the variable speed rule of its driving mechanism easily adjusts, convenient function optimization; By installing unidirectional Decompression valves in blade, during pressure limit, getting through contiguous enclosed cavity, effectively solving existing differential pump and being stranded liquid problem.
The present invention includes driver part and differential pump parts.
Described driver part comprises driving gearbox, input shaft, output shaft, first Fourier's noncircular gear, second Fourier's noncircular gear, the first conjugation Fourier noncircular gear, the second conjugation Fourier noncircular gear and axle sleeve.Motor drives input shaft to rotate, and input shaft passes through two bearings in the two side of driving gearbox; First described Fourier's noncircular gear and second Fourier's noncircular gear are all fixedly mounted on input shaft; The two ends of output shaft are respectively by bearings on the tank wall of driving gearbox and pump case, and the first conjugation Fourier noncircular gear is fixedly mounted on output shaft, and engages with first Fourier's noncircular gear; Second conjugation Fourier noncircular gear and the second impeller are all cemented on axle sleeve, and axle sleeve kink is on output shaft; Second conjugation Fourier noncircular gear engages with second Fourier's noncircular gear;
Described differential pump parts comprise pump case, the first impeller, the second impeller and unidirectional Decompression valves; Described pump case along the circumferential direction offers the first liquid port, the first liquid sucting port, the second liquid port, the second liquid sucting port, the 3rd liquid port and the 3rd liquid sucting port successively; First liquid port, the second liquid port and the 3rd liquid port are uniformly distributed along the circumference, and the first liquid sucting port, the second liquid sucting port and the 3rd liquid sucting port are uniformly distributed along the circumference; First impeller is fixed on output shaft; The first described impeller and the second impeller are all uniformly distributed along the circumference and are provided with three blades; Along the circumferential direction, the blade of the first impeller and the alternate setting of blade of the second impeller; All blade interior all install a unidirectional Decompression valves, and unidirectional Decompression valves direction is consistent with blade rotation direction.
The structure of described first Fourier's noncircular gear and second Fourier's noncircular gear is completely the same, the structure of the first conjugation Fourier noncircular gear and the second conjugation Fourier noncircular gear is completely the same, and first Fourier's noncircular gear, second Fourier's noncircular gear, the first conjugation Fourier noncircular gear and the second conjugation Fourier noncircular gear are three rank noncircular gears; The initial installation phase difference of the initial installation phase difference of first Fourier's noncircular gear and second Fourier's noncircular gear, the first conjugation Fourier noncircular gear and the second conjugation Fourier noncircular gear is 60 °.
The pitch curve representation of first Fourier's noncircular gear is:
Wherein, a 1, a 2, b 1and b 2for the parameter of fourier function, a 1span is 1 ~ 6, a 2span is 1 ~ 3, b 1span is 0 ~ 2.3, b 2the exponent number of span to be 0 ~ 2.3, n be first Fourier's noncircular gear, value is 3; be the corner of first Fourier's noncircular gear, it is the corresponding corner of first Fourier's noncircular gear radius vector.
Computer center is iterative apart from a's:
Get centre distance initial value a 0the search of advance and retreat method is adopted to calculate the exact value of centre distance a.
The velocity ratio of first Fourier's noncircular gear and the first conjugation Fourier noncircular gear is:
The velocity ratio of second Fourier's noncircular gear and the second conjugation Fourier noncircular gear is:
Wherein, θ is the phase difference of first Fourier's noncircular gear and second Fourier's noncircular gear, and value is 60 °.
Make the velocity ratio i of first Fourier's noncircular gear and the first conjugation Fourier noncircular gear 21equal the velocity ratio i of second Fourier's noncircular gear and the second conjugation Fourier noncircular gear 43, four different corners can be tried to achieve corner get minimum value time, the angular displacement of first Fourier's noncircular gear is the angular displacement of second Fourier's noncircular gear is the corner of the first impeller and the second impeller is respectively:
The blade angle θ of the first impeller and the second impeller leafvalue be 25 ~ 35 °; The equal and opposite in direction of the first liquid port, the first liquid sucting port, the second liquid port, the second liquid sucting port, the 3rd liquid port and the 3rd liquid sucting port, and than the blade angle θ of blade leaflittle 2 ~ 5 °.First liquid port centre bit angle setting of pump case first liquid sucting port centre bit angle setting second liquid port centre bit angle setting second liquid sucting port centre bit angle setting 3rd liquid port centre bit angle setting 3rd liquid sucting port centre bit angle setting
The beneficial effect that the present invention has is:
The present invention adopts Fourier's non-circular gear mechanism, Fourier's non-circular gear pitch curve has six to adjust parameter, compare existing distortion eccentric circle noncircular gear adjustable parameter many, therefore Fourier's noncircular gear variable speed transmission rule easily adjusts, and easily realizes the optimization of the performances such as differential pump delivery, pressure, flow.By installing unidirectional Decompression valves in blade, during pressure limit, getting through contiguous enclosed cavity, effectively solving existing differential pump and being stranded liquid problem.The differential pump liquid sucting port driven due to Fourier's non-circular gear mechanism and liquid port are uniformly distributed along the circumference, and radial equilibrium is good, and non-constant speed drive is rotary motion, and reliable, the radial work loads that therefore operates steadily balance, pulsation controllability are good; Blade is many, discharge capacity is large, and simply, volumetric efficiency is high for the internal surface of pump case and blade shape.
Core institution of the present invention is two install Fourier's noncircular gear of phase place to difference, and parts are few, compact structure.
Accompanying drawing explanation
Fig. 1 is kinematic sketch of mechanism of the present invention;
Fig. 2 is the overall structure sectional view of differential pump parts in the present invention;
Fig. 3 is the meshing relation schematic diagram of Fourier's non-circular gear pitch curve when initial makeup location in the present invention;
Fig. 4 is blade limit position schematic diagram of the present invention.
In figure: 1, driving gearbox, 2, input shaft, 3, output shaft, 4, first Fourier's noncircular gear, 5, second Fourier's noncircular gear, 6, the first conjugation Fourier noncircular gear, the 7, second conjugation Fourier noncircular gear, 8, axle sleeve, 9, coupling, 10, motor, 11, pump case, 11-1, the first liquid port, 11-2, the first liquid sucting port, 11-3, the second liquid port, 11-4, the second liquid sucting port, 11-5, the 3rd liquid port, 11-6, the 3rd liquid sucting port, 12, the first impeller, the 13, second impeller, 14, unidirectional Decompression valves.
Embodiment
Below in conjunction with drawings and Examples, the invention will be further described.
As illustrated in fig. 1 and 2, six blade differential pumps that a kind of Fourier's noncircular gear drives comprise driver part and differential pump parts.
Driver part comprises driving gearbox 1, input shaft 2, output shaft 3, first Fourier's noncircular gear 4, second Fourier's noncircular gear 5, first conjugation Fourier noncircular gear 6, second conjugation Fourier noncircular gear 7 and axle sleeve 8.Power is passed to input shaft 2 through coupling 9 by motor 10, and input shaft 2 passes through two bearings in the two side of driving gearbox 1; First Fourier's noncircular gear 4 and second Fourier's noncircular gear 5 are all fixedly mounted on input shaft 2; The two ends of output shaft 3 are respectively by bearings on the tank wall of driving gearbox 1 and pump case 11, and the first conjugation Fourier noncircular gear 6 is fixedly mounted on output shaft, and engages with first Fourier's noncircular gear 4; Second conjugation Fourier noncircular gear 7 and the second impeller 13 are all cemented on axle sleeve 8, and axle sleeve 8 kink is on output shaft 3; Second conjugation Fourier noncircular gear 7 engages with second Fourier's noncircular gear 5;
Differential pump parts comprise pump case 11, first impeller 12, second impeller 13 and unidirectional Decompression valves 14; Pump case along the circumferential direction offers the first liquid port 11-1, the first liquid sucting port 11-2, the second liquid port 11-3, the second liquid sucting port 11-4, the 3rd liquid port 11-5 and the 3rd liquid sucting port 11-6 successively; First liquid port 11-1, the second liquid port 11-3 and the 3rd liquid port 11-5 are uniformly distributed along the circumference, and the first liquid sucting port 11-2, the second liquid sucting port 11-4 and the 3rd liquid sucting port 11-6 are uniformly distributed along the circumference; First impeller 12 is fixed on output shaft 3; First impeller 12 and the second impeller 13 are all uniformly distributed along the circumference and are provided with three blades; Along the circumferential direction, the blade of the first impeller 12 and the alternate setting of blade of the second impeller 13; All blade interior all install a unidirectional Decompression valves 14, and unidirectional Decompression valves 14 direction is consistent with blade rotation direction.
As shown in Figure 3, the structure of first Fourier's noncircular gear 4 and second Fourier's noncircular gear 5 is completely the same, the structure of the first conjugation Fourier noncircular gear 6 and the second conjugation Fourier noncircular gear 7 is completely the same, and first Fourier's noncircular gear 4, second Fourier's noncircular gear 5, first conjugation Fourier noncircular gear 6 and the second conjugation Fourier noncircular gear 7 are three rank noncircular gears; The initial installation phase angle of first Fourier's noncircular gear 4 is θ 1, the initial installation phase angle of second Fourier's noncircular gear 5 is θ 2; The initial installation phase difference of first Fourier's noncircular gear 4 and second Fourier's noncircular gear 5, first conjugation Fourier noncircular gear 6 and the second conjugation Fourier noncircular gear 7 is θ 12its value is 60 °, the differential realizing the first impeller 12 and the second impeller 13 rotates, make the volume cyclically-varying of differential pump enclosed cavity, produce discharge opeing at the first liquid port 11-1, the second liquid port 11-3, the 3rd liquid port 11-5, produce imbibition at the first liquid sucting port 11-2, the second liquid sucting port 11-4, the 3rd liquid sucting port 11-6.Because the non-at the uniform velocity transmission of Fourier's noncircular gear is continuous print, enclosed cavity be in complete airtight time, blade still has differential to rotate, and this will make enclosed cavity pressure exceed limit value, and vicinity enclosed cavity is got through pressure release by unidirectional Decompression valves 14, prevents tired liquid.
The working principle of six blade differential pumps that this Fourier's noncircular gear drives:
Power is passed to the first Fourier's noncircular gear 4 and second Fourier's noncircular gear 5 by coupling 9 and input shaft 2 by motor 10.First Fourier's noncircular gear 4 engages with the first conjugation Fourier noncircular gear 6, second Fourier's noncircular gear 5 engages with the second conjugation Fourier noncircular gear 7, power is passed to the first impeller 12 by output shaft 3 by the first conjugation Fourier noncircular gear 6, power is passed to the second impeller 13 by axle sleeve 8 by the second conjugation Fourier noncircular gear 7, and axle sleeve 8 and the second conjugation Fourier noncircular gear 7 kink are on output shaft 3.The installation phase place of two pairs of Fourier's noncircular gear pairs is different, and the differential realizing the first impeller 12 and the second impeller 13 rotates, thus realizes imbibition and discharge opeing.
The pitch curve representation of first Fourier's noncircular gear 4 is:
Wherein, a 1, a 2, b 1and b 2for the parameter of fourier function, get a 1=2.025, a 2=2.5, b 1=0.013 and b 2=0.013; N is the exponent number of first Fourier's noncircular gear 4, and value is 3; be the corner of first Fourier's noncircular gear 4, it is the corresponding corner of first Fourier's noncircular gear 4 radius vector.
Computer center is iterative apart from a's:
Get centre distance initial value a 0the exact value that=25mm adopts the search of advance and retreat method to calculate centre distance a is 50.4mm.
The velocity ratio of first Fourier's noncircular gear 4 and the first conjugation Fourier noncircular gear 6 is:
The velocity ratio of second Fourier's noncircular gear 5 and the second conjugation Fourier noncircular gear 7 is:
Wherein, θ is the initial installation phase difference of first Fourier's noncircular gear 4 and second Fourier's noncircular gear 5, and value is 90 °.
Make the velocity ratio i of first Fourier's noncircular gear 4 and the first conjugation Fourier noncircular gear 6 21equal the velocity ratio i of second Fourier's noncircular gear 5 and the second conjugation Fourier noncircular gear 7 43, four different corners can be tried to achieve corner get minimum value time, the angular displacement of first Fourier's noncircular gear 4 is the angular displacement of second Fourier's noncircular gear 5 is the corner of the first impeller 12 and the second impeller 13 is respectively:
As shown in Figure 4, the blade angle θ of the first impeller 12 and the second impeller 13 leafvalue be 30 °; The size of the first liquid port, the first liquid sucting port, the second liquid port, the second liquid sucting port, the 3rd liquid port and the 3rd liquid sucting port is all than the blade angle θ of blade leaflittle 2 °.First liquid port centre bit angle setting of pump case first liquid sucting port centre bit angle setting second liquid port centre bit angle setting ψ row 2row 1+ 120 °=170 °, the second liquid sucting port centre bit angle setting ψ inhale 2inhale 1+ 120 °=220 °, the 3rd liquid port centre bit angle setting ψ row 3row 2+ 120 °=290 °, the 3rd liquid sucting port centre bit angle setting ψ inhale 3inhale 2+ 120 °=340 °.

Claims (1)

1. six blade differential pumps of Fourier's noncircular gear driving, comprise driver part and differential pump parts, it is characterized in that:
Described driver part comprises driving gearbox, input shaft, output shaft, first Fourier's noncircular gear, second Fourier's noncircular gear, the first conjugation Fourier noncircular gear, the second conjugation Fourier noncircular gear and axle sleeve; Power is passed to input shaft through coupling by motor, and input shaft passes through two bearings in the two side of driving gearbox; First described Fourier's noncircular gear and second Fourier's noncircular gear are all fixedly mounted on input shaft; The two ends of output shaft are respectively by bearings on the tank wall of driving gearbox and pump case, and the first conjugation Fourier noncircular gear is fixedly mounted on output shaft, and engages with first Fourier's noncircular gear; Second impeller of the second conjugation Fourier noncircular gear and differential pump parts is all cemented on axle sleeve, and axle sleeve kink is on output shaft; Second conjugation Fourier noncircular gear engages with second Fourier's noncircular gear;
Described differential pump parts comprise pump case, the first impeller, the second impeller and unidirectional Decompression valves; Described pump case along the circumferential direction offers the first liquid port, the first liquid sucting port, the second liquid port, the second liquid sucting port, the 3rd liquid port and the 3rd liquid sucting port successively; First liquid port, the second liquid port and the 3rd liquid port are uniformly distributed along the circumference, and the first liquid sucting port, the second liquid sucting port and the 3rd liquid sucting port are uniformly distributed along the circumference; First impeller is fixed on output shaft; The first described impeller and the second impeller are all uniformly distributed along the circumference and are provided with three blades; Along the circumferential direction, the blade of the first impeller and the alternate setting of blade of the second impeller; All blade interior all install a unidirectional Decompression valves, and unidirectional Decompression valves direction is consistent with blade rotation direction;
The structure of described first Fourier's noncircular gear and second Fourier's noncircular gear is completely the same, the structure of the first conjugation Fourier noncircular gear and the second conjugation Fourier noncircular gear is completely the same, and first Fourier's noncircular gear, second Fourier's noncircular gear, the first conjugation Fourier noncircular gear and the second conjugation Fourier noncircular gear are three rank noncircular gears; The initial installation phase difference of the initial installation phase difference of first Fourier's noncircular gear and second Fourier's noncircular gear, the first conjugation Fourier noncircular gear and the second conjugation Fourier noncircular gear is 60 °;
The pitch curve representation of first Fourier's noncircular gear is:
Wherein, a 1, a 2, b 1and b 2for the parameter of fourier function, a 1span is 1 ~ 6, a 2span is 1 ~ 3, b 1span is 0 ~ 2.3, b 2the exponent number of span to be 0 ~ 2.3, n be first Fourier's noncircular gear, value is 3; be the corner of first Fourier's noncircular gear, it is the corresponding corner of first Fourier's noncircular gear radius vector;
Computer center is iterative apart from a's:
Get centre distance initial value a 0the search of advance and retreat method is adopted to calculate the exact value of centre distance a;
The velocity ratio of first Fourier's noncircular gear and the first conjugation Fourier noncircular gear is:
The velocity ratio of second Fourier's noncircular gear and the second conjugation Fourier noncircular gear is:
Wherein, θ is the phase difference of first Fourier's noncircular gear and second Fourier's noncircular gear, and value is 60 °;
Make the velocity ratio i of first Fourier's noncircular gear and the first conjugation Fourier noncircular gear 21equal the velocity ratio i of second Fourier's noncircular gear and the second conjugation Fourier noncircular gear 43, four different corners can be tried to achieve corner get minimum value time, the angular displacement of first Fourier's noncircular gear is the angular displacement of second Fourier's noncircular gear is the corner of the first impeller and the second impeller is respectively:
The blade angle θ of the first impeller and the second impeller leafvalue be 25 ~ 35 °; The equal and opposite in direction of the first liquid port, the first liquid sucting port, the second liquid port, the second liquid sucting port, the 3rd liquid port and the 3rd liquid sucting port, and than the blade angle θ of blade leaflittle 2 ~ 5 °; First liquid port centre bit angle setting of pump case first liquid sucting port centre bit angle setting second liquid port centre bit angle setting second liquid sucting port centre bit angle setting 3rd liquid port centre bit angle setting 3rd liquid sucting port centre bit angle setting
CN201410039549.1A 2014-01-27 2014-01-27 Six-blade differential pump driven by Fourier noncircular gears Expired - Fee Related CN103758750B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410039549.1A CN103758750B (en) 2014-01-27 2014-01-27 Six-blade differential pump driven by Fourier noncircular gears

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410039549.1A CN103758750B (en) 2014-01-27 2014-01-27 Six-blade differential pump driven by Fourier noncircular gears

Publications (2)

Publication Number Publication Date
CN103758750A CN103758750A (en) 2014-04-30
CN103758750B true CN103758750B (en) 2015-07-22

Family

ID=50526044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410039549.1A Expired - Fee Related CN103758750B (en) 2014-01-27 2014-01-27 Six-blade differential pump driven by Fourier noncircular gears

Country Status (1)

Country Link
CN (1) CN103758750B (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB362085A (en) * 1929-10-12 1931-12-03 Pierre Zens
FR944904A (en) * 1947-03-29 1949-04-20 Rotary positive displacement pump
DE2421532A1 (en) * 1973-06-21 1975-07-03 Miyaoku Rotary vane arrangement for rotary piston pump or engine - has two vane assemblies with vanes ending near housing inner peripheral surface
JPS6332101A (en) * 1986-07-26 1988-02-10 Mitsubishi Electric Corp Rotary absorption and discharge device
US4844708A (en) * 1987-04-02 1989-07-04 Astrl Corporation Elliptical-drive oscillating compressor and pump
JPH0494423A (en) * 1990-08-11 1992-03-26 Mikio Kurisu Rotary engine
CA2324674A1 (en) * 2000-10-31 2002-04-30 Sorin-Vasile Cora Scissors pump
CN2555426Y (en) * 2002-06-16 2003-06-11 哈尔滨工业大学 Six-blade differential pump
CN1439797A (en) * 2003-03-29 2003-09-03 孟良吉 Interactive speed variable double rotor engine
CN101196124A (en) * 2007-08-08 2008-06-11 邵文英 Vane type cavity capability changing device, vane type gas engine and vane compressor
WO2009040733A2 (en) * 2007-09-27 2009-04-02 Dall Asta Daniele Device for converting energy
CN103291607A (en) * 2013-06-17 2013-09-11 浙江理工大学 Incomplete gear mechanism-driven blade differential pump
CN203730296U (en) * 2014-01-27 2014-07-23 浙江理工大学 Fourier non-circular gear-driven six-blade differential pump

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB362085A (en) * 1929-10-12 1931-12-03 Pierre Zens
FR944904A (en) * 1947-03-29 1949-04-20 Rotary positive displacement pump
DE2421532A1 (en) * 1973-06-21 1975-07-03 Miyaoku Rotary vane arrangement for rotary piston pump or engine - has two vane assemblies with vanes ending near housing inner peripheral surface
JPS6332101A (en) * 1986-07-26 1988-02-10 Mitsubishi Electric Corp Rotary absorption and discharge device
US4844708A (en) * 1987-04-02 1989-07-04 Astrl Corporation Elliptical-drive oscillating compressor and pump
JPH0494423A (en) * 1990-08-11 1992-03-26 Mikio Kurisu Rotary engine
CA2324674A1 (en) * 2000-10-31 2002-04-30 Sorin-Vasile Cora Scissors pump
CN2555426Y (en) * 2002-06-16 2003-06-11 哈尔滨工业大学 Six-blade differential pump
CN1439797A (en) * 2003-03-29 2003-09-03 孟良吉 Interactive speed variable double rotor engine
CN101196124A (en) * 2007-08-08 2008-06-11 邵文英 Vane type cavity capability changing device, vane type gas engine and vane compressor
WO2009040733A2 (en) * 2007-09-27 2009-04-02 Dall Asta Daniele Device for converting energy
CN103291607A (en) * 2013-06-17 2013-09-11 浙江理工大学 Incomplete gear mechanism-driven blade differential pump
CN203730296U (en) * 2014-01-27 2014-07-23 浙江理工大学 Fourier non-circular gear-driven six-blade differential pump

Also Published As

Publication number Publication date
CN103758750A (en) 2014-04-30

Similar Documents

Publication Publication Date Title
CN203730296U (en) Fourier non-circular gear-driven six-blade differential pump
CN108087264B (en) Pulse free high-order oval convex wheel pump
CN203730302U (en) Fourier non-circular gear-driven eight-blade differential pump
CN103742406B (en) Four-vane differential velocity pump driven by Fourier noncircular gears
CN103758751B (en) Four-blade differential pump driven by elliptic non-circular gears
CN203702541U (en) Four-blade differential pump driven by sinusoidal non-circular gears
CN203730297U (en) Elliptic non-circular gear-driven six-blade differential pump
CN103758757B (en) Eight blade differential pumps that a kind of Fourier's noncircular gear drives
CN203730303U (en) Pascal non-circular gear-driven six-blade differential pump
CN103758750B (en) Six-blade differential pump driven by Fourier noncircular gears
CN203702542U (en) Six-blade differential pump driven by sinusoidal non-circular gears
CN203702543U (en) Eight-blade differential pump driven by sinusoidal non-circular gears
CN203730299U (en) Pascal non-circular gear-driven eight-blade differential pump
CN103742404B (en) Six-blade differential pump driven by elliptic non-circular gears
CN203730301U (en) Elliptic non-circular gear-driven eight-blade differential pump
CN103758753B (en) Six blade differential pumps that a kind of Bath main officer of Tibet noncircular gear drives
CN207598489U (en) A kind of slip quaterfoil differential pump of free gearratio non-circular gear driving
CN103758748B (en) The quaterfoil differential pump that a kind of sinusoidal non-circular gear drives
CN103758749B (en) Sinusoidal non-circular gear driven six-vane differential velocity pump
CN203730298U (en) Pascal non-circular gear-driven four-blade differential pump
CN103758752B (en) Eight blade differential pumps that a kind of Bath main officer of Tibet noncircular gear drives
CN103758755B (en) Eight blade differential pumps that a kind of sinusoidal non-circular gear drives
CN203730300U (en) Fourier non-circular gear-driven four-blade differential pump
CN103742405B (en) Eight blade differential pumps that a kind of oval noncircular gear drives
CN207513823U (en) A kind of slip quaterfoil differential pump of free pitch curve non-circular gear driving

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171208

Address after: 313000 Zhejiang city of Huzhou Province town in the South (south town government compound)

Patentee after: HUZHOU ZHILI CHILDREN'S CLOTHING DEVELOPMENT Co.,Ltd.

Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park No. 2 Street No. 928

Patentee before: Zhejiang Sci-Tech University

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150722

CF01 Termination of patent right due to non-payment of annual fee