CN103748245A - 锂离子电池壳体用铝合金板材 - Google Patents

锂离子电池壳体用铝合金板材 Download PDF

Info

Publication number
CN103748245A
CN103748245A CN201180072252.XA CN201180072252A CN103748245A CN 103748245 A CN103748245 A CN 103748245A CN 201180072252 A CN201180072252 A CN 201180072252A CN 103748245 A CN103748245 A CN 103748245A
Authority
CN
China
Prior art keywords
aluminum alloy
alloy plate
ion battery
work hardening
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180072252.XA
Other languages
English (en)
Other versions
CN103748245B (zh
Inventor
泷口浩一郎
田中宏树
福田敏彦
日比野淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Publication of CN103748245A publication Critical patent/CN103748245A/zh
Application granted granted Critical
Publication of CN103748245B publication Critical patent/CN103748245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本发明提供一种可降低防爆阀驱动压力,同时激光焊接性优异的锂离子电池壳体用铝合金板材,其特征在于,按质量%计,含有Fe:0.5~2.0%、Si:0.03~0.3%,将作为杂质的Cu、Mn、Mg、Zn分别控制在0.10%以下,余量由Al及不可避免的杂质构成,且在基质中分布有1000个/μm3以上的当量圆直径为5~30nm的Al-Fe类金属间化合物,并且,将冷冲压加工前的原有板材的厚度设为T0、冷冲压加工后的厚度设为T1、且冷冲压加工度R(%)=[(T0-T1)/T0]×100时,对R为70%时的拉伸强度TS70(MPa)和R为90%时的拉伸强度TS90(MPa)进行比较时,(TS70-TS90)超过5MPa。

Description

锂离子电池壳体用铝合金板材
技术领域
本发明涉及适宜作为在汽车、移动电话、数码相机等中利用的锂离子电池的壳体材料的、激光焊接性优异且可降低防爆阀驱动压力的锂离子电池壳体用铝合金板材。
背景技术
锂离子电池用壳体是将铝板或者铁板拉深成形而成的罐体材料、和铝板冲压成形而成的密封材料组合,并封入电极等内部结构体后,通过对罐体材料和密封材料的接合部周围进行激光焊接而制得。
为了提高壳体的强度,对于密封材料提出了冲压加工后的强度高、激光焊接时熔深大、可得到高接合强度的要求,但在另一方面,由于过充电等导致锂离子电池热失控时,出于在电池破裂前减低内部压力的目的而配置有防爆阀(板材厚度局部变薄的部位)。
作为该防爆阀的形成方法,有从密封材料利用冲压加工来一体成形的方法、在经打孔加工的密封材料上通过激光焊接等粘贴箔材的方法,但后者在成本、安全性方面存在不利因素,因此,通常是将前者的形成方法作为优选的方法。
作为密封材料的材质,目前为止主要使用的是A1050或A3003。A1050虽然加工性能优异,但存在加工后的强度低、且激光焊接性差的缺点,另一方面,A3003虽然加工后的强度高、激光焊接性优异,但防爆阀部在冲压加工中会加工硬化,因此为了调节防爆阀的驱动压力而需要进行热处理,从而其成本成为了突出的问题。
为了解决这些问题,作为密封材料用的铝材,提出了对防爆阀部的裂纹扩展性进行了改善的Al-Mn-Si-Fe类合金、或提高了激光焊接性和降低了加工硬化性的(去除了冲压加工后的热处理工序)Al-Fe-Mn类合金等。然而,与A3003相比,上述的合金材料虽然裂纹扩展性得以提高,加工硬化性得以降低,且不需要冲压加工后的热处理,但由于存在因加工硬化而导致防爆阀部的硬度增大、防爆阀的驱动压力超过设计压力而变高的问题,因此无法满足所要求的特性。
现有技术文献
专利文献
专利文献1:日本特开2006-037129号公报
专利文献2:日本专利4281727号公报
发明内容
发明要解决的问题
在为了得到能够克服密封材料的上述现有问题点的铝材而进行探讨的过程中,本发明人发现,因冷加工导致位错的积累量增大时,与母相不相容的微细的金属间化合物成为位错的湮灭位点,从而能够使得在防爆阀加工区域以外产生加工硬化,而仅在防爆阀加工区域展现软化的状态。
本发明是基于上述的认识进一步反复试验、探讨的结果而获得的,其目的在于,提供可降低防爆阀驱动压力、同时激光焊接性优异的锂离子电池壳体用铝合金板材。
解决问题的方法
为了实现上述的目的,根据本发明1的锂离子电池壳体用铝合金板材,其特征在于,按质量%计,含有Fe:0.5~2.0%、Si:0.03~0.3%,将作为杂质的Cu、Mn、Mg、Zn分别控制在0.10%以下,余量由Al及不可避免的杂质构成,且在基质中分布有1000个/μm3以上的当量圆直径为5~30nm的Al-Fe类金属间化合物,并且,将冷冲压加工前的原有板材的厚度设为T0、冷冲压加工后的厚度设为T1、且冷冲压加工度R(%)=[(T0-T1)/T0]×100时,对R为70%时的拉伸强度TS70(MPa)和R为90%时的拉伸强度TS90(MPa)进行比较时,(TS70-TS90)超过5MPa。此外,在以下的说明中,合金成分全部都用质量%来表示。
根据本发明2的锂离子电池壳体用铝合金板材,其特征在于,在本发明1的所述铝合金板材中,还含有Ti:0.20%以下、Zr:0.20%以下、Cr:0.30%以下中的1种或2种以上的元素。
根据本发明3的锂离子电池壳体用铝合金板材,其特征在于,在本发明1或2的所述铝合金板材中,还含有B:5~100ppm。
发明的效果
根据本发明,虽然至约70%的冷加工度为止会发生加工硬化而***,但由于防爆阀加工区域在90%以上的冷加工度下材料发生加工硬化变难,从而可以提供能够兼顾接合后壳体的高强度化、和防爆阀驱动压力降低的锂离子电池壳体用铝合金板材,尤其是适于作为锂离子电池的密封材料的铝合金板材。
具体实施方式
以下,对本发明的锂离子电池壳体用铝合金板材的合金成分的意义及其限定理由进行说明。
Fe为在母相(基质)中生成不相容且微细的Al-Fe类化合物,从而产生在高加工度区域加工硬化变难的效果的重要元素。并且,也具有提高在锂离子电池的接合中使用的YAG激光的吸收率,增大激光焊接时的熔深的效果。优选的含量在0.5~2.0%的范围,如果小于0.5%,则在高加工度区域所展现的加工硬化变难的特性(以下,简单描述为“加工硬化变难的特性”)和激光焊接时的熔深都不充分,而含量超过2.0%时,则由于生成粗大的金属间化合物而导致冲压加工性降低。Fe的更为优选的含量范围为1.0~1.8%。
Si在制造工序中易于固溶,其含量超过0.3%时,就难以展现加工硬化变难的特性。另一方面,Si是在铝锭中作为不可避免的杂质而含有的元素,当将其含量控制在小于0.03%时,因必需使用高纯度的铝锭而导致成本升高,因此不优选。因此,Si的优选含量为0.03~0.3%的范围,更优选的含量范围为0.05~0.20%。
本发明中,由于作为易于固溶的杂质Cu、Mn、Mg、Zn阻碍加工硬化变难的特性的展现,因此优选将它们分别控制在0.10%以下,更优选控制在0.05%以下。
基于防止焊接时断裂(因凝固时成核导致的组织的微细化)的目的,可以添加Ti、Zr、Cr、B。优选的含量分别为Ti:0.20%以下、Zr:0.20%以下、Cr:0.30%以下、B:5~100ppm的范围,当分别超过上限值时,则生成粗大的金属间化合物,从而导致冲压加工性的降低。
Al-Fe类金属间化合物的大小和分布数目是展现加工硬化变难的特性所需的重要的要素。为了得到本发明的效果,优选在基质中分布1000个/μm3以上的当量圆直径为5~30nm的Al-Fe类金属间化合物。当量圆直径超过30nm的金属间化合物难以成为位错的湮灭位点,对于加工硬化变难的特性的展现影响小。当量圆直径为5~30nm的粒子的分布数目小于1000个/μm3时,位错的湮灭位点不足,从而造成加工硬化变难的特性展现不充分。
在本发明的锂离子电池壳体用铝合金板材的制造工序中,上述Al-Fe类金属间化合物的大小和分布数目的控制、以及Si固溶量的降低是重要的要素。在制造工序中,铸造可以采用公知的半连续铸造法,但铸锭的均质化处理是促进Al-Fe类金属间化合物的微细析出所需的重要工序。
均质化处理优选在450~540℃的温度区域进行。小于450℃时,Al-Fe类金属间化合物的析出不充分,超过540℃时,Al-Fe类金属间化合物聚集后***大化,同时Fe将再次固溶,因此不优选。均质化处理时间优选为3~24小时。若小于3小时,则Al-Fe类金属间化合物的析出不充分,若超过24小时,则生产成本增大。通过采用上述的均质化处理条件,由于Al-Fe类金属间化合物的微细析出,因此可实现至冷加工度0~70%为止的材料强度的提高。
均质化处理后进行热轧。热轧过程中为了促进Al-Fe类金属间化合物的微细析出,热轧优选在400~450℃开始,至200~250℃结束。在该温度区域结束热轧时,热轧后的组织变为未再结晶组织。
出于提高加工硬化变难的特性的目的,优选热轧后随即进行中间退火。在中间退火过程中,以热轧中导入的加工形变作为析出位点,Al-Fe类金属间化合物的微细得以析出,同时阻碍加工硬化变难特性展现的Si发生析出,通过降低Si的固溶量,从而可以提高加工硬化变难的特性。
退火温度优选为260~400℃。退火温度小于260℃时,Al-Fe类金属间化合物的析出不充分,退火温度超过400℃时,由于Si固溶,因此无法充分得到加工硬化变难的特性。加热至退火温度的加热速度优选为20~100℃/小时。若加热速度小于20℃/小时,则制造成本升高,因而不优选,若超过100℃/小时,则Si的析出不充分,从而无法充分得到加工硬化变难的特性。更为优选的加热速度为30~60℃/小时。关于冷却速度,虽然其对加工硬化变难的特性的展现影响小,但由于加热速度的关系而必须使用分批式炉,因此可以依据常规方法进行炉内冷却。
进行热轧后,或者进行热轧和中间退火后,为了得到规定的板厚而进行冷轧。关于冷轧,由于对加工硬化变难特性的展现影响小,因此可以依据规定方法进行。
冷轧后实施最终退火(H1n调质时为中间退火)。最终退火与均质化处理并列,是为了得到加工硬化变难的特性所需的重要的工序。最终退火的目的在于,通过再结晶促使延伸增加、提高冲压成形性,并以冷轧中导入的加工形变作为析出位点促进Al-Fe类金属间化合物的微细析出,同时使阻碍加工硬化变难特性展现的Si析出,从而降低Si的固溶量。
最终退火的温度优选为260~400℃。若退火温度小于260℃,则再结晶不充分、冲压成形性降低,同时造成Al-Fe类金属间化合物的析出不充分。若为400℃以上,则由于Si固溶,无法充分得到加工硬化变难的特性。
加热至最终退火温度的加热速度优选为20~100℃/小时。若加热速度小于20℃/小时,则制造成本升高,因而不优选,若超过100℃/小时,则Si的析出不充分,从而无法充分得到加工硬化变难的特性。关于冷却速度,虽然其对加工硬化变难特性的展现影响小,但由于加热速度的关系而必须使用分批式炉,因此可以依据常规方法进行炉内冷却。
本发明的锂离子电池壳体用铝合金板材,根据所要求的强度水平在最终退火后实施冷轧,从而可用于H1n调质。即使在H1n调质时,也不难得到加工硬化变难的特性,但由于冲压成形性会随着延伸的减少而降低,因此,考虑到强度和冲压成形性的平衡,有必要对最终退火处理条件、最终退火后的冷轧率进行调整。
实施例
以下,通过对比本发明的实施例与比较例来进行说明,从而实际验证本发明的效果。此外,这些实施例只是示出了本发明的一个实施方式,本发明并不受这些实施例的限定。
实施例1
溶解具有表1所示的组成的铝合金(A~F),通过半连续铸造法制得厚度为500nm的铸锭。把得到的铸锭于500℃下进行8小时均质化处理后,对轧制面各刨削并去除8mm后,随后在440℃开始热轧,在230℃终止热轧,从而得到了厚度为5.0mm的热轧板。
其次,冷轧(冷轧率为84%)至厚度为0.8mm,再于300℃实施3小时(加热速度为50℃/小时)的最终退火,从而制得了试验材料1~6(调质:O材料)。
实施例2
溶解具有表1所示的组成的铝合金(G),与实施例1同样地进行铸造、均质化处理、热轧后,于300℃下进行3小时(加热速度为50℃/小时)的中间退火,随后,冷轧(冷轧率为84%)至厚度为0.8mm,再于300℃实施3小时(加热速度为50℃/小时)的最终退火,从而制得了试验材料7(调质:O材料)。
实施例3
溶解具有表1所示的组成的铝合金(H),与实施例1同样地进行铸造、均质化处理、热轧后,冷轧(冷轧率为36%)至厚度为3.2mm,再于300℃实施3小时(加热速度为50℃/小时)的中间退火后,冷轧(冷轧率为75%)至厚度为0.8mm,从而制得了试验材料8(调质:H16材料)。
表1
Figure BDA0000455665970000061
比较例1
溶解具有表2所示的组成的铝合金(I~M),与实施例1同样地进行铸造,将得到的铸锭于500℃下进行8小时均质化处理后,对轧制面各刨削、并去除8mm后,在440℃开始热轧,在230℃终止热轧,从而得到了厚度为5.0mm的热轧板。表2中,对于脱离本发明条件的数值用下划线进行了标记。
其次,冷轧(冷轧率为84%)至厚度为0.8mm,再于300℃实施3小时(加热速度为50℃/小时)的最终退火,从而制得了试验材料9~13(调质:O材料)。
比较例2
溶解具有表2所示的组成的铝合金(N),与实施例1同样地进行铸造,将得到的铸锭于610℃下进行8小时均质化处理后,与实施例1同样地实施热轧、冷轧、最终退火,从而制得了试验材料14(调质:O材料)。
表2
Figure BDA0000455665970000071
对于由上述实施例1~3、比较例1~2得到的试验材料1~14,按照以下方法评估了金属间化合物分布数目、加工硬化特性。金属间化合物分布数目、加工硬化特性的评估结果示于表3。表3中,对于脱离本发明条件的数值用下划线进行了标记。
金属间化合物分布数目的评估:对于当量圆直径为5~30μm的金属间化合物的分布数目,用透射式电子显微镜进行定量化。由明场像来测定化合物的数目,由测定区域的面积和测定区域的样品厚度算出单位体积(μm3)的化合物数目。利用在透射式电子显微镜观察到的消光条纹,通过观察到的条纹样式的数目和消光距离的乘积来算出样品厚度。
加工硬化特性:作为本发明的铝合金板材,虽然冷冲压加工至约70%的加工度会发生加工硬化而***,但具有防爆阀加工区域的、在90%以上加工度的冷冲压加工中加工硬化变难的材料特性,并且,将冷冲压加工前的原有板材的厚度设为T0、冷冲压加工后的厚度设为T1、且冷冲压加工度R(%)=[(T0-T1)/T0]×100时,对R为70%时的拉伸强度TS70(MPa)和R为90%时的拉伸强度TS90(MPa)进行比较时,具有(TS70-TS90)超过5MPa的特性。
关于试验材料的上述加工硬化特性的评估,是将试验材料在加工度70%及90%进行冷轧,对于得到的冷轧材料进行拉伸试验(JIS标准),进而求出加工度70%的拉伸强度TS70(MPa)和加工度90%的拉伸强度TS90(MPa)的差、即(TS70-TS90),从而将差值超过5MPa的评估为具有加工硬化变难的特性。
表3
Figure BDA0000455665970000081
如表3所示,本发明的试验材料1~8均是在基质中分布有1000个/μm3以上的当量圆直径为5~30nm的Al-Fe类金属间化合物,且与冷加工度为70%的拉伸强度TS70相比,在冷加工度为90%(防爆阀加工区域)的拉伸强度TS90降低10~20MPa,从而具有加工硬化变难的特性。
相对于此,试验材料9由于Si量多,因此加工硬化变难的特性差。试验材料10由于Fe量少,因此当量圆直径为5~30μm的金属间化合物的分布数目少,且加工硬化变难的特性差。试验材料11由于Fe量多,因此生成粗大的金属间化合物,加工硬化情况严重,加工性能差。试验材料12由于Mn量多,因此加工硬化变难的特性差。试验材料13由于Cu量、Mn量多,因此加工硬化情况严重,加工性能差,且加工硬化变难的特性也差。试验材料14由于均质化处理温度高,因此金属间化合物***大化,同时造成Fe再次固溶,并由这些影响而导致了加工硬化变难的特性差。

Claims (3)

1.锂离子电池壳体用铝合金板材,其特征在于,
按质量%计,含有Fe:0.5~2.0%、Si:0.03~0.3%,将作为杂质的Cu、Mn、Mg、Zn分别控制在0.10%以下,余量由Al及不可避免的杂质构成,且在基质中分布有1000个/μm3以上的当量圆直径为5~30nm的Al-Fe类金属间化合物,并且,将冷冲压加工前的原有板材的厚度设为T0、冷冲压加工后的厚度设为T1、且冷冲压加工度R(%)=[(T0-T1)/T0]×100时,对R为70%时的拉伸强度TS70(MPa)和R为90%时的拉伸强度TS90(MPa)进行比较时,(TS70-TS90)超过5MPa。
2.如权利要求1所述的锂离子电池壳体用铝合金板材,其特征在于,
所述铝合金板材中,按质量%计,还含有Ti:0.20%以下、Zr:0.20%以下、Cr:0.30%以下中的1种或2种以上的元素。
3.如权利要求1或2所述的锂离子电池壳体用铝合金板材,其特征在于,
所述铝合金板材中,按质量%计,还含有B:5~100ppm。
CN201180072252.XA 2011-07-12 2011-07-12 锂离子电池壳体用铝合金板材 Active CN103748245B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065877 WO2013008314A1 (ja) 2011-07-12 2011-07-12 リチウムイオン電池ケース用アルミニウム合金板材

Publications (2)

Publication Number Publication Date
CN103748245A true CN103748245A (zh) 2014-04-23
CN103748245B CN103748245B (zh) 2016-02-17

Family

ID=47505633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180072252.XA Active CN103748245B (zh) 2011-07-12 2011-07-12 锂离子电池壳体用铝合金板材

Country Status (2)

Country Link
CN (1) CN103748245B (zh)
WO (1) WO2013008314A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521246A (zh) * 2016-10-10 2017-03-22 上海华峰新材料研发科技有限公司 用于电池外壳铝合金防爆阀的材料及其制造方法
CN106566958A (zh) * 2016-11-11 2017-04-19 安徽四翔铝业有限公司 一种高强度口琴管
CN106636767A (zh) * 2016-11-11 2017-05-10 安徽四翔铝业有限公司 一种高性能口琴管
CN108368570A (zh) * 2015-12-25 2018-08-03 株式会社Uacj 罐体用铝合金板及其制造方法
CN110106410A (zh) * 2019-04-22 2019-08-09 湖南工业大学 一种制备Al-Cu-Mg合金弹壳的新型冷冲工艺及应用
TWI700377B (zh) * 2018-08-23 2020-08-01 日商日本輕金屬股份有限公司 用於成形一體型防爆閥之電池蓋用鋁合金板及其製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102198154B1 (ko) * 2013-05-25 2021-01-04 가부시키가이샤 유에이씨제이 전지 케이스용 알루미늄 합금판 및 그 제조 방법
CN103400945A (zh) * 2013-08-07 2013-11-20 舟山市新龙电子设备有限公司 圆柱形电容型锂离子电池的壳体
JP6780664B2 (ja) * 2017-12-05 2020-11-04 日本軽金属株式会社 一体型円形防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6780679B2 (ja) * 2018-08-23 2020-11-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6780680B2 (ja) * 2018-08-23 2020-11-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6614292B1 (ja) * 2018-08-23 2019-12-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6780685B2 (ja) * 2018-09-21 2020-11-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP6614305B1 (ja) * 2018-09-21 2019-12-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
CN111263826A (zh) * 2018-10-01 2020-06-09 日本轻金属株式会社 一体型防爆阀成形用的电池盖用铝合金板及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262559A (ja) * 2006-03-30 2007-10-11 Sumitomo Light Metal Ind Ltd 電池ケースフタ用アルミニウム合金板
CN101376936A (zh) * 2007-08-29 2009-03-04 住友轻金属工业株式会社 激光可焊性优良的电池壳体盖用铝合金板材
CN101469960A (zh) * 2007-12-27 2009-07-01 株式会社神户制钢所 热交换器用铝合金包覆材及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146694A (ja) * 1985-12-23 1987-06-30 Nippon Light Metal Co Ltd 平版印刷用アルミニウム合金支持体の製造法
JPH03197639A (ja) * 1989-12-26 1991-08-29 Furukawa Alum Co Ltd アルミニウム製熱交換器用フィン材
JP2006216435A (ja) * 2005-02-04 2006-08-17 Nec Tokin Tochigi Ltd 密閉型電池
JP5233607B2 (ja) * 2008-11-19 2013-07-10 日本軽金属株式会社 成形性に優れたアルミニウム合金板およびその製造方法
JP5602445B2 (ja) * 2009-12-11 2014-10-08 株式会社Uacj リチウムイオン電池ケース用アルミニウム合金板材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262559A (ja) * 2006-03-30 2007-10-11 Sumitomo Light Metal Ind Ltd 電池ケースフタ用アルミニウム合金板
CN101376936A (zh) * 2007-08-29 2009-03-04 住友轻金属工业株式会社 激光可焊性优良的电池壳体盖用铝合金板材
CN101469960A (zh) * 2007-12-27 2009-07-01 株式会社神户制钢所 热交换器用铝合金包覆材及其制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368570A (zh) * 2015-12-25 2018-08-03 株式会社Uacj 罐体用铝合金板及其制造方法
CN106521246A (zh) * 2016-10-10 2017-03-22 上海华峰新材料研发科技有限公司 用于电池外壳铝合金防爆阀的材料及其制造方法
CN106521246B (zh) * 2016-10-10 2018-01-02 上海华峰新材料研发科技有限公司 用于电池外壳铝合金防爆阀的材料及其制造方法
CN106566958A (zh) * 2016-11-11 2017-04-19 安徽四翔铝业有限公司 一种高强度口琴管
CN106636767A (zh) * 2016-11-11 2017-05-10 安徽四翔铝业有限公司 一种高性能口琴管
TWI700377B (zh) * 2018-08-23 2020-08-01 日商日本輕金屬股份有限公司 用於成形一體型防爆閥之電池蓋用鋁合金板及其製造方法
CN110106410A (zh) * 2019-04-22 2019-08-09 湖南工业大学 一种制备Al-Cu-Mg合金弹壳的新型冷冲工艺及应用

Also Published As

Publication number Publication date
CN103748245B (zh) 2016-02-17
WO2013008314A1 (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
CN103748245B (zh) 锂离子电池壳体用铝合金板材
KR101798278B1 (ko) 배터리 케이스용 알루미늄 합금판 및 그 알루미늄 합금판으로 제작된 배터리 케이스
JP5602445B2 (ja) リチウムイオン電池ケース用アルミニウム合金板材
KR101039206B1 (ko) 전지 케이스용 알루미늄 합금판 및 그의 제조방법
CN105838993B (zh) 具有增强弹性模量特征的轻质钢、钢板及其制造方法
CA2871843C (en) Aluminum alloy sheet for battery case use excellent in formability, heat dissipation, and weldability
TWI709650B (zh) 用於成形一體型防爆閥之電池蓋用鋁合金板及其製造方法
CN101376936A (zh) 激光可焊性优良的电池壳体盖用铝合金板材
JP5057448B2 (ja) 電池ケース蓋用アルミニウム合金板材
CN102978484B (zh) 一种动力电池外壳用Al-Fe合金板及其制备方法
CN103255323B (zh) 一种Al-Mg-Zn-Cu合金及其制备方法
TW202009312A (zh) 用於成形一體型防爆閥的電池蓋用鋁合金板及其製造方法
CN107299259B (zh) 一种xr348铝合金的汽车散热翅片铝箔及其制备方法
TWI700377B (zh) 用於成形一體型防爆閥之電池蓋用鋁合金板及其製造方法
JP4347137B2 (ja) 二次電池ケース用高強度アルミニウム合金板の製造方法
TW202010168A (zh) 用於成形一體型防爆閥之電池蓋用鋁合金板及其製造方法
JP4539913B2 (ja) 二次電池ケース用アルミニウム合金板およびその製造方法
JP2009249708A (ja) 電池ケース用アルミニウム合金板材およびその製造方法
JP2003007260A (ja) 二次電池ケース用アルミニウム合金板
TWI696706B (zh) 用於成形一體型防爆閥之電池蓋用鋁合金板及其製造方法
CN105189797A (zh) 电池壳体用铝合金板及其制造方法
CN103409668B (zh) 锂离子电池壳体用Al-Mn合金
KR20120028257A (ko) 전지 케이스용 알루미늄 합금판 및 전지 케이스
JP2001131666A (ja) ケース成形用Al−Mn−Mg系合金板およびその製造方法
CN103361521A (zh) 具有优异激光焊接性能的铝合金板及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant