CN103743621A - 一种基于图像配准的异位数字体积相关方法 - Google Patents

一种基于图像配准的异位数字体积相关方法 Download PDF

Info

Publication number
CN103743621A
CN103743621A CN201410003602.2A CN201410003602A CN103743621A CN 103743621 A CN103743621 A CN 103743621A CN 201410003602 A CN201410003602 A CN 201410003602A CN 103743621 A CN103743621 A CN 103743621A
Authority
CN
China
Prior art keywords
registration
sample
dystopy
label
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410003602.2A
Other languages
English (en)
Other versions
CN103743621B (zh
Inventor
万克树
杨鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410003602.2A priority Critical patent/CN103743621B/zh
Publication of CN103743621A publication Critical patent/CN103743621A/zh
Application granted granted Critical
Publication of CN103743621B publication Critical patent/CN103743621B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种基于图像配准的异位数字体积相关方法,包括如下步骤:将样品和配准用标记物固定在刚性基体上;对样品、配准用标记物以及刚性基体整体进行第一次三维成像,得到第一次三维成像的三维图像数据G1(x,y,z);对样品进行异位变形,同时保持配准用标记物和刚性基体没有变形;对异位变形后的样品以及没有变形的配准用标记物和刚性基体整体进行第二次三维成像,得到第二次三维成像的三维图像数据G2(x,y,z);将配准用标记物的三维图像数据G1(x,y,z)和G2(x,y,z)进行配准,获得6个刚体运动自由度;将步骤5得到的自由度对G1(x,y,z)计算,得到模拟的三维图像数据G3(x,y,z);将G2(x,y,z)和G3(x,y,z)进行原位数字体积相关计算,即可得到样品变形前后的三维位移场。

Description

一种基于图像配准的异位数字体积相关方法
技术领域
本发明涉及一种基于图像配准的异位数字体积相关方法,属于光测实验力学领域。
背景技术
数字体积相关方法(英文全称:Digital Volume Correlation,缩写:DVC)于1999年由初由美国加州大学的B.K.Bay等(Bay B K,Smith T S,Fyherie D P,et al.Digital volume correlation:Three-dimensional strain mapping using X-raytomography[J].Experimental Mechanics,1999,39(3):217~226)在传统的数字图像相关方法DIC(英文全称:Digital Image Correlation,缩写:DIC)的基础上发明的。它通过对变形前后采集的物体内部的三维数字图像进行相关计算,获得样品内各点得位移值,即三维位移场;在原位前提下,物体各点的三维位移场反应了三维变形场,从而实现了三维变形及应变的测量。
相对于传统的DIC只能测量样品表面的二维变形,DVC能够测量样品内部的变形,且测量的位移与应变是三维的。目前,DVC已经成为光测实验力学中的热门研究领域,并在材料力学、结构力学、生物力学等方面有广泛的应用,是目前唯一能直接测量材料内部三维变形的实验方法。
DVC原理要求变形前后的测试必须原位,若有刚***移存在,则DVC计算结果既包含刚***移,又包含变形位移,无法区分。在实际应用中,DVC需要用到三维数字图像数据。现有的三维成像技术包括X射线断层照相,伽马射线断层照相,中子断层照相,共聚焦显微镜等。不管哪一种三维成像技术都存在原位实验的困难性。比如常用的断层照相,其原位实验的困难主要在于断层照相需要样品和射线源/探测器之间要相对转动一圈。虽然有一些原位加载工具,比如中国发明专利ZL201110163456.6(基于X射线断层照相的原位加载装置),但毕竟只能用于简单的加载。而且有些变形问题的原位在线实验非常困难,比如冲击变形,温度变形,化学变形等,均难以在三维成像设备中原位进行。
发明内容
发明目的:本发明所要解决的技术问题是提供一种基于图像配准的异位数字体积相关方法。
发明内容:为解决上述技术问题,本发明所采用的技术方案为:
一种基于图像配准的异位数字体积相关方法,包括如下步骤:
步骤1,将待测样品和配准用标记物固定在刚性基体上;
步骤2,对步骤1的样品、配准用标记物以及刚性基体作为整体进行第一次三维成像,得到样品待测前样品、配准用标记物以及刚性基体的三维图像数据G1(x,y,z);
步骤3,将样品进行异位变形,同时保持配准用标记物和刚性基体没有变形;
步骤4,对异位变形后的样品以及没有变形的配准用标记物和刚性基体整体进行第二次三维成像,得到样品异位变形后样品、配准用标记物以及刚性基体的三维图像数据G2(x,y,z);
步骤5,将配准用标记物在样品待测前的三维图像数据G1(x,y,z)和在样品异位变形后的三维图像数据G2(x,y,z)进行三维数字图像配准,获得6个刚体运动自由度;
步骤6,将步骤5得到的6个刚体运动自由度对G1(x,y,z)计算,得到模拟的三维图像数据G3(x,y,z);
步骤7,将G2(x,y,z)和G3(x,y,z)进行原位数字体积相关计算,即可得到样品变形前后的三维位移场。
其中,步骤2或步骤4中,所述三维成像采用的是X射线断层照相、伽马射线断层照相、中子断层照相或共聚焦显微镜中的任意一种。
其中,所述X射线断层照相包括医用X射线断层照相、工业X射线断层照相、显微X射线断层照相或纳米X射线断层照相。
其中,步骤1中,所述配准用标记物为具有图像衬度的物质。
其中,步骤3中,所述异位变形包括力学变形、温度变形或化学变形。
其中,所述力学变形包括采用拉、压、弯、扭、冲击或者耦合方式。
有益效果:相比于原位数字体积相关方法,本发明的异位数字体积相关方法解决了原位在线实验的难题,可以异位在线研究各种材料与结构的变形,相对于原位加载实验的苛刻要求,异位加载实验可以相对容易实现,从而可以研究各种复杂加载变形,比如各种荷载耦合下的变形另外,本发明还可以应用于各种塑性残余变形;本发明的异位数字体积相关方法不但可以应用于力学变形,还可以应用于需要长时间的化学变形以及条件非常苛刻的高低温变形去进行实验研究;总之本发明的异位数字体积相关方法避免了原位数字体积相关方法要求原位在线实验的困难,大大拓展了数字体积相关方法的应用空间,为数字体积相关方法在实验力学中的广泛应用产生了重要的推动作用。
附图说明
图1为本发明方法的原理示意图,其中,状态(1)是样品变形前的状态,状态(2)是样品异位变形后的状态,状态(3)是虚拟的经配准后的样品变形前的状态,I是配准用标记物,II是待测样品,III是刚性基体;
图2为本发明实施例1中第一次X三维成像(X射线断层照相)获得的三维图像数据G1(x,y,z);
图3为本发明实施例1中第二次X三维成像(X射线断层照相)获得的三维图像数据G2(x,y,z);
图4为本发明实施例1中样品变形前后沿着X方向的位移场;
图5为本发明实施例1中样品变形前后沿着Y方向的位移场;
图6为本发明实施例1中样品变形前后沿着Z方向的位移场。
具体实施方式
下面结合附图和实施例,对本发明的技术方案进行详细说明。
如图1所示,本发明的基于图像配准的异位数字体积相关方法,包括以下步骤:
步骤1,将待测样品II和配准用标记物I固定在一个刚性基体III上,得到状态(1);(该配准用标记物I可以采用和待测样品II一样的物质,刚性基体III要有足够的刚度保证在后续步骤中不能变形,待测样品II、配准用标记物I以及刚性基体III三者间的固定没有松动变形;)
步骤2,设定实验参数,用X射线断层照相方法对待测样品II、配准用标记物I以及刚性基体III整体进行第一次X三维成像,获得状态(1)的三维图像数据G1(x,y,z);本步骤中X射线断层照相方法设定的断层照相测试条件是指设定X射线断层照相设备的加速电压、电流、放大倍数和滤波片参数;
步骤3,将待测样品II进行异位变形,同时保持I和III没有变形,得到状态(2);本步骤中的异位变形可以是各种力学变形,温度变形,化学变形,其中的力学变形包括拉、压、弯、扭、冲击及其耦合方式;变形实验过程要确保I和III没有变形;
步骤4,对待测样品II、配准用标记物I以及刚性基体III整体进行第二次三维成像,获得状态(2)下的三维图像数据G2(x,y,z);
步骤5,利用配准用标记物I在状态(1)和状态(2)中的三维数据进行三维数字图像配准,获得6个刚体运动自由度;本步骤中的三维数字图像配准可以采用各种现有的图像配准技术方法,比如基于特征对象的图像配准方法,以及各种基于灰度的图像配准方法;
步骤6,用步骤5中获得的6个刚体运动自由度对G1(x,y,z)计算获得虚拟状态(3)的三维图像数据G3(x,y,z);
步骤7,对G2(x,y,z)和G3(x,y,z)进行原位数字体积相关计算,即对G1(x,y,z)和G2(x,y,z)的异位数字体积相关计算,本步骤中的原位数字体积相关计算可以采用各种现有的数字体积相关计算方法(DVC计算即为数字体积相关计算)。
结合图1~6,对本发明的方法进行进一步说明,实施例1为泡沫铝的冲击变形研究实验:
步骤1,将购买的商品泡沫铝割切成40mm×40mm×10mm小块作为待测样品II,将数毫米的小块泡沫铝作为配准用标记物I,选择金属铝块作为刚性基体III,用环氧树脂将待测样品II和配准用标记物I固定在刚性基体III上,这是状态(1);
步骤2,设定X射线断层照相实验参数(加速电压195千伏,加速电流0.37毫安,放大倍数2.93倍,每幅投影1秒测量时间),对I、II、III整体进行第一次X射线断层照相成像,获得状态(1)的三维图像数据G1(x,y,z),如图2所示;
步骤3,将待测样品II进行落球冲击变形实验(落球重量175.78克,落球速度4.02米每秒),落球实验过程要确保I和III没有变形;这是状态(2);
步骤4,利用和步骤2相同的X射线断层照相实验参数对I、II、III整体进行第二次三维成像,获得状态(2)的三维图像数据G2(x,y,z),如图3所示;
步骤5,利用I在状态(1)和状态(2)中的三维数据进行三维数字图像配准,用基于灰度的图像配准方法,获得6个刚体运动自由度为(-8.42,-1.80,1.38,-0.05,0.57,0.20);
步骤6,用步骤5中获得的自由度(-8.42,-1.80,1.38,-0.05,0.57,0.20)对G1(x,y,z)配准计算获得虚拟状态(3)的三维图像数据G3(x,y,z);
步骤7,对G2(x,y,z)和G3(x,y,z)进行原位数字体积相关计算,即对G1(x,y,z)和G2(x,y,z)的异位数字体积相关计算,即可获得样品II变形前后的三维位移场,如图4~6所示。
显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而这些属于本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (6)

1.一种基于图像配准的异位数字体积相关方法,其特征在于:包括如下步骤:
步骤1,将样品和配准用标记物固定在刚性基体上;
步骤2,对样品、配准用标记物以及刚性基体作为整体进行第一次三维成像,得到样品待测前样品、配准用标记物以及刚性基体的三维图像数据G1(x,y,z);
步骤3,对样品进行异位变形,同时保持配准用标记物和刚性基体没有变形;
步骤4,对异位变形后的样品以及没有变形的配准用标记物和刚性基体整体进行第二次三维成像,得到样品异位变形后样品、配准用标记物以及刚性基体的三维图像数据G2(x,y,z);
步骤5,将配准用标记物在样品待测前的三维图像数据G1(x,y,z)和在样品异位变形后的三维图像数据G2(x,y,z)进行三维数字图像配准,获得6个刚体运动自由度;
步骤6,将步骤5得到的6个刚体运动自由度对G1(x,y,z)计算,得到模拟的三维图像数据G3(x,y,z);
步骤7,将G2(x,y,z)和G3(x,y,z)进行原位数字体积相关计算,即可得到样品变形前后的三维位移场。
2.根据权利要求1所述的基于图像配准的异位数字体积相关方法,其特征在于:步骤2或步骤4中,所述三维成像采用的是X射线断层照相、伽马射线断层照相、中子断层照相或共聚焦显微镜中的任意一种。
3.根据权利要求2所述的基于图像配准的异位数字体积相关方法,其特征在于:所述X射线断层照相包括医用X射线断层照相、工业X射线断层照相、显微X射线断层照相或纳米X射线断层照相。
4.根据权利要求1所述的基于图像配准的异位数字体积相关方法,其特征在于:步骤1中,所述配准用标记物为具有图像衬度的物质。
5.根据权利要求1所述的基于图像配准的异位数字体积相关方法,其特征在于:步骤3中,所述异位变形包括力学变形、温度变形或化学变形。
6.根据权利要求5所述的基于图像配准的异位数字体积相关方法,其特征在于:所述力学变形包括采用拉、压、弯、扭、冲击或者耦合方式。
CN201410003602.2A 2014-01-03 2014-01-03 一种基于图像配准的异位数字体积相关方法 Expired - Fee Related CN103743621B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410003602.2A CN103743621B (zh) 2014-01-03 2014-01-03 一种基于图像配准的异位数字体积相关方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410003602.2A CN103743621B (zh) 2014-01-03 2014-01-03 一种基于图像配准的异位数字体积相关方法

Publications (2)

Publication Number Publication Date
CN103743621A true CN103743621A (zh) 2014-04-23
CN103743621B CN103743621B (zh) 2015-10-07

Family

ID=50500659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410003602.2A Expired - Fee Related CN103743621B (zh) 2014-01-03 2014-01-03 一种基于图像配准的异位数字体积相关方法

Country Status (1)

Country Link
CN (1) CN103743621B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271460A (zh) * 2017-04-20 2017-10-20 东南大学 一种多孔材料内部水分饱和度变化空间分布的定量表征方法
CN115511881A (zh) * 2022-11-08 2022-12-23 南京航空航天大学 一种数字图像相关和数字体相关中的相关性调谐法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169590A (ja) * 2009-01-23 2010-08-05 Kobe Steel Ltd 熱変形測定方法及び装置
CN101980304A (zh) * 2010-10-20 2011-02-23 北京大学 一种三维数字体积图像变形测量方法
TW201140494A (en) * 2010-05-03 2011-11-16 Nat Univ Tsing Hua Calibration method of three dimensional digital image correlation (3D-DIC)
CN202177370U (zh) * 2010-12-20 2012-03-28 昆明理工大学 一种双显微数字散斑应变测量装置
US20130070048A1 (en) * 2011-09-21 2013-03-21 National Applied Research Laboratories Formation Apparatus Using Digital Image Correlation
CN103076347A (zh) * 2012-12-27 2013-05-01 东南大学 基于原位x射线断层照相的脆性材料力学损伤的测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169590A (ja) * 2009-01-23 2010-08-05 Kobe Steel Ltd 熱変形測定方法及び装置
TW201140494A (en) * 2010-05-03 2011-11-16 Nat Univ Tsing Hua Calibration method of three dimensional digital image correlation (3D-DIC)
CN101980304A (zh) * 2010-10-20 2011-02-23 北京大学 一种三维数字体积图像变形测量方法
CN202177370U (zh) * 2010-12-20 2012-03-28 昆明理工大学 一种双显微数字散斑应变测量装置
US20130070048A1 (en) * 2011-09-21 2013-03-21 National Applied Research Laboratories Formation Apparatus Using Digital Image Correlation
CN103076347A (zh) * 2012-12-27 2013-05-01 东南大学 基于原位x射线断层照相的脆性材料力学损伤的测量方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
B.K.BAY ET AL.: "《Digital volume correlation: three-dimensional strain mapping using X-ray tomography》", 《EXPERIMENTAL MECHANICS》, vol. 39, no. 3, 30 September 1999 (1999-09-30), pages 217 - 226 *
KESHU WAN ET AL.: "In situ compressive damage of cement paste characterized by lab source X-ray computer tomography", 《MATERIALS CHARACTERIZATION》, vol. 82, 31 August 2013 (2013-08-31), pages 32 - 40, XP028576373, DOI: doi:10.1016/j.matchar.2013.05.004 *
M.GATES ET AL.: "《Towards high performance digital volume correlation》", 《EXPERIMENTAL MECHANICS》, vol. 51, no. 4, 30 April 2011 (2011-04-30), pages 491 - 507 *
TAIT.S. SMITH ET AL.: "《Digital volume correlation including rotational degrees of freedom during minimization》", 《EXPERIMENTAL MECHANICS》, vol. 42, no. 3, 30 September 2002 (2002-09-30), pages 272 - 278 *
戴宜全等: "《基于数字图像相关法的混凝土全场变形测量》", 《东南大学学报(自然科学版)》, vol. 40, no. 4, 31 July 2010 (2010-07-31), pages 829 - 834 *
潘兵等: "《用于物体表面形貌和变形测量的三维数字图像相关方法》", 《实验力学》, vol. 22, no. 6, 31 December 2007 (2007-12-31), pages 556 - 567 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271460A (zh) * 2017-04-20 2017-10-20 东南大学 一种多孔材料内部水分饱和度变化空间分布的定量表征方法
CN107271460B (zh) * 2017-04-20 2020-07-31 东南大学 一种多孔材料内部水分饱和度变化空间分布的定量表征方法
CN115511881A (zh) * 2022-11-08 2022-12-23 南京航空航天大学 一种数字图像相关和数字体相关中的相关性调谐法

Also Published As

Publication number Publication date
CN103743621B (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
CN103575227B (zh) 一种基于数字散斑的视觉引伸计实现方法
CN108759699B (zh) 一种大视场砌体结构材料三维全场变形的测量方法及***
CN100429476C (zh) 一种双传感器激光视觉三维测量***校准方法
CN108759665B (zh) 一种基于坐标转换的空间目标三维重建精度分析方法
CN109269466B (zh) 基于特征点的靶面相对位姿测量方法及***
CN103822581B (zh) 一种基于压缩感知的不规则物体体积测量方法
CN104165750A (zh) 立体视觉结合陀螺仪风洞模型位姿测量方法
CN109000558A (zh) 一种大视场非接触三维点坐标测量方法及设备
Guo et al. Digital image correlation for large deformation applied in Ti alloy compression and tension test
CN103913375A (zh) 一种基于数字图像相关的拉伸试样形变测量方法
CN101980304A (zh) 一种三维数字体积图像变形测量方法
Yuan et al. Development of a robust Stereo-PIV system for 3-D soil deformation measurement
CN104732586B (zh) 一种三维人体动态形体和三维运动光流快速重建方法
CN103743621B (zh) 一种基于图像配准的异位数字体积相关方法
CN103954220A (zh) 撞桥试验中船体运动状态数字图像测量方法
CN103900506B (zh) 一种基于位移梯度分解的异位数字体积相关方法
Zhang et al. 3D finite element modeling of nonrigid breast deformation for feature registration in-ray and MR images
CN103745467B (zh) 一种基于数字体积相关法的三维图像配准方法
CN109612391B (zh) 基于单台高速相机的双目测量装置对平地机空间坐标测量方法
CN104007047B (zh) 一种颗粒体系动力链的识别方法
Hu et al. Digital speckle based strain measurement system for forming limit diagram prediction
CN112720469B (zh) 显微立体视觉用于三轴平移运动***零点校准方法
CN110084887B (zh) 一种空间非合作目标相对导航模型三维重建方法
Bogatyrenko et al. Visual stabilization of beating heart motion by model-based transformation of image sequences
Savii Camera calibration using compound genetic-simplex algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151007

Termination date: 20210103