CN103739846A - 一种量子点荧光印迹聚合物的制备方法 - Google Patents

一种量子点荧光印迹聚合物的制备方法 Download PDF

Info

Publication number
CN103739846A
CN103739846A CN201310734312.0A CN201310734312A CN103739846A CN 103739846 A CN103739846 A CN 103739846A CN 201310734312 A CN201310734312 A CN 201310734312A CN 103739846 A CN103739846 A CN 103739846A
Authority
CN
China
Prior art keywords
quantum dot
imprinted polymer
preparation
cdte
cyhalothrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310734312.0A
Other languages
English (en)
Other versions
CN103739846B (zh
Inventor
卫潇
孟敏佳
宋志龙
周志平
闫永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201310734312.0A priority Critical patent/CN103739846B/zh
Publication of CN103739846A publication Critical patent/CN103739846A/zh
Application granted granted Critical
Publication of CN103739846B publication Critical patent/CN103739846B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供一种量子点荧光印迹聚合物的制备方法,属环境功能材料制备技术领域。首先,在针管内合成了前驱体碲氢化钠,然后以硫代苹果酸为保护剂合成了水溶性CdTe量子点,最后利用反相微乳法合成了以三氟氯氰菊酯为模板分子的荧光分子印迹聚合物,并用于光学检测三氟氯氰菊酯。制备的荧光分子印迹聚合物具有较高的光学和pH稳定性,且具有选择性识别三氟氯氰菊酯的能力。

Description

一种量子点荧光印迹聚合物的制备方法
技术领域
本发明涉及一种量子点荧光印迹聚合物的制备方法,属环境功能材料制备技术领域。
背景技术
溴氰菊酯、甲氰菊酯、三氟氯氰菊酯等拟除虫菊酯类杀虫剂,由于具有杀虫性高、在蔬菜和水果中的残留量较低等特点,在我国广泛使用。除虫菊酯类杀虫剂残留的分析检测主要使用色谱法,如液相色谱法、气相色谱法和液质联用法。色谱法具有高的回收率、好的重现性和较低的检出限,但需要繁琐的样品前处理过程。常用的样品前处理的方法有溶剂萃取技术、超临界萃取技术、微波萃取技术、膜分离技术和固相萃取技术等。这些方法虽然各有独特优点,但也各有其局限性。如溶剂萃取技术大量使用有机溶剂,易产生二次污染;超临界萃取虽然具有容易实现溶剂与目标物分离、无污染的优点,但是操作复杂、成本费用高;膜分离技术存在膜的堵塞问题;固相萃取技术常用的吸附剂选择性较差。因此,针对环境中成分复杂、性质相似和含量偏低的菊酯类污染物残留,建立和完善快速、灵敏和选择性的分析检测方法是做好菊酯类污染物残留监控的当务之急。
随着分析要求的不断提高,特别是药物分析、环境分析、食品分析和产品检测需求的日益增长,传感器作为重要的检测器件,越来越受到人们的关注。有机与生物敏感材料具有良好的分子识别功能,其中的分子印迹聚合物材料可以针对目标物“量体裁衣”定制,实现对目标分子的专一识别,可与天然的生物识别***(酶与底物)相媲美,具有制备简单、稳定性好、寿命长、易保存、造价低廉等特点,在固相萃取、手性分离、模拟生物抗体、催化及以及合成方面得到了广泛的应用,是解决环境、生物等复杂体系内特定目标分子高选择性识别的简捷、可靠手段。
分子印迹技术是制备对某一特定分子具有专一识别能力聚合物的过程,制备的聚合物称为分子印迹聚合物。分子印迹聚合物的制备过程一般先将模板分子与选定的功能单体相互作用形成超分子复合物,再在交联剂作用下形成聚合物,最后用一定手段去除模板分子后,获得的分子印迹聚合物中就留下了对模板分子具有特异性识别的结合位点。近年来,分子印迹聚合物的构效预定性、特异识别性和广泛实用性吸引了愈来愈多的科学工作者的兴趣和青睐。
量子点作为光学材料,因其具有优异的光电性能、较大的比表面积和量子尺寸效应这些年来在生物化学、分子生物学、基因组学、蛋白质组学、生物分子相互作用等研究领域已得到广泛应用。在这些研究中,量子点荧光探针及其在生物体内的成像是目前研究的重点之一。量子点和传统的有机荧光素相比,具有较好的耐光性,较大的斯托克斯位移和荧光光谱窄而对称等一系列特点,并且还具有荧光特性,可望发展成为一类新型的具有发展前景的发光生物标记材料。
经对现有技术的文献检索发现,潘建明等2011年在《The Journal of Physical Chemistry C》(物理化学C)上发表的“Selective Recognition of 2,4,6-TriehloroPhenol by Molecularly Imprinted Polymers Based on Magnetic Halloysite Composites” (埃洛石纳米管磁性复合材料表面印迹选择性识别2,4,6-三氯苯酚),该文成功制备了磁性分子印迹复合材料用于选择性分离2,4,6-三氯苯酚,具有良好的选择性。魏宏等2011年在《化学学报》上发表的“基于CdTe量子点测定烟酸诺氟沙星的新方法研究”,该文成功利用了CdTe量子点的荧光性能简单、快速、灵敏的检测了烟酸诺氟沙星。然而,前者检测过程工作量较大,速度慢,灵敏度较低;后者则缺乏一定的普适性和选择性。因此,将高灵敏的荧光检测与分子印迹技术相结合,利用荧光信号弥补分子印迹聚合物缺乏信号传导的缺陷,制备分子印迹荧光传感器,满足了传感器材的抗干扰、高选择、高灵敏的需求,成为当前传感、分离等领域的研究热点。分子印迹荧光传感器的制备使MIPs在分析检测中的应用范围和使用方法得到进一步扩展,同时MIPs的选择性也使复合型荧光探针的灵敏度和选择性得到显著提高。利用分子印迹荧光传感器进行光学分析从而达到快速、方便检测残留量的研究成为必要。
发明内容
首先硼氢化钠、碲粉和水在注射器中无氧环境下生成前驱体NaHTe溶液。然后将前驱体注入到通氮除氧的pH为10.5-11.5的有硫代苹果酸(MSA)存在的CdCl2·2.5H2O水溶液中,在氮气保护100-110 oC条件下回流反应,根据回流时间的不同,得到了不同尺寸的量子点。最后利用反相微乳法合成了以三氟氯氰菊酯为模板分子,(3-氨丙基)-三甲氧基硅烷(APTS)为功能单体,正硅酸乙酯(TEOS)为交联剂的荧光分子印迹聚合物,并用于光学检测三氟氯氰菊酯。制备的荧光分子印迹聚合物具有很好的光学和pH稳定性,且具有选择性识别三氟氯氰菊酯的能力。
本发明采用的技术方案是
一种量子点荧光印迹聚合物的制备方法,按照以下步骤:
(1)将硼氢化钠(NaBH4)和碲粉加入到注射器中,然后再加入二次蒸馏水使固体完全溶解;将注射器放置于一个盛满水的容器中,保持反应过夜,最终的白色液体即为所需的前驱体NaHTe溶液。
(2)在通氮除氧的条件下,将步骤(1)得到的前驱体NaHTe溶液注入到有硫代苹果酸(MSA)存在的CdCl2·2.5H2O水溶液中,混合溶液在氮气保护条件下100 oC-110 oC回流反应,根据回流时间的不同,得到不同尺寸的量子点(时间20分钟到6小时,得到波长526nm到650nm的量子点)。
(3)在三口烧瓶中加入环己烷、曲拉通-100和正己醇,然后加入步骤(2)中制备的CdTe量子点的水溶液,继续搅拌15-30 min,然后加入TEOS 和氨水,搅拌1.5-2.0小时.
(4)将APTS和三氟氯氰菊酯(LC)完全溶解在环己烷溶液中,充分混合后将所得混合溶液加入到步骤(3)的混合溶液中密封搅拌过夜;反应结束后,加入丙酮溶液破乳,最后得到沉淀聚合物(CdTeSiO2LC);用洗脱剂将原始模板分子三氟氯氰菊酯从CdTeSiO2LC中洗脱下来,洗脱三次;除去模板分子后,即得到量子点荧光印迹聚合物CdTeSiO2MIPs。
其中,步骤(1)中所述的硼氢化钠和碲粉的摩尔比为2-4:1。
其中,步骤(2)中所述的有硫代苹果酸(MSA)存在的CdCl2·2.5H2O水溶液的pH为10.5-11.5;其中,CdCl2·2.5H2O、MSA和NaHTe的摩尔比为0.4-1:1-1.5:0.2,其中NaHTe的摩尔量根据步骤(1)中碲粉的摩尔量得出;所述回流反应温度为100 oC-110 oC
其中,步骤(3)中所述的环己烷、曲拉通-100和正己醇的体积比为15:3.2-3.6:3.2-3.6;所述加入的CdTe量子点的水溶液与环己烷体积比为0.6-0.8:15;所述TEOS、氨水和环乙烷的体积比为0.1-0.2:0.1:15。
其中,步骤(4)中所述APTS与TEOS的体积比为0.03-0.05:0.1-0.2;所述APTS和三氟氯氰菊酯质量比为3-5:1;所述加入的丙酮溶液与整个混合体系等体积;所述洗脱剂为乙醇和乙腈的混合液,其中乙醇和乙腈的体积比为8:2。
非分子印迹聚合物(CdTeSiO2NIPs)的合成除了不含模板分子外,其他过程与印迹过程相同。
本发明的技术优点:以CdTe作为荧光功能材料,利用反相微乳法合成了荧光分子印迹聚合物;利用本发明获得的荧光分子印迹聚合物具有较好的光学稳定性,能实现快速识别和光学检测三氟氯氰菊酯的能力。分子印迹荧光传感器的制备使MIPs在分析检测中的应用范围和使用方法得到进一步扩展,同时MIPs的选择性也使复合型荧光探针的灵敏度和选择性得到显著提高。为拓展环境分析化学及环境污染化学和环境污染控制化学新的领域的研究提供科学可靠的依据。为进一步从事相关理论研究和实际应用如:现场、快速、选择性识别与可视化检测分析测定水体,食品和生物体中的痕量/超痕量有害物质奠定坚实的理论和实践基础。
附图说明
图1:CdTe QDs (a, b)和CdTeSiO2MIPs (c, d)的透射电镜图以及CdTeSiO2MIPs (e)和CdTeSiO2NIPs (f)的扫描电镜图。
图2:CdTeSiO2NIPs(1)、CdTeSiO2LC(2)和CdTeSiO2MIPs(3)的红外图谱。
图3:pH值对CdTeSiO2MIPs(方框)和CdTeSiO2NIPs(圆圈)的荧光强度的影响。
图4:CdTeSiO2MIPs(方框)和CdTeSiO2NIPs(圆圈)的荧光时间稳定性。
图5:CdTeSiO2MIPs和CdTeSiO2NIPs对LC的响应曲线。
图6:同一浓度下(60 μmol/L)不同菊酯类农药对CdTeSiO2MIPs和CdTeSiO2NIPs的猝灭量。
 
具体实施方式
下面结合具体实施实例对本发明做进一步说明。
实施例1:
将30.3 mg硼氢化钠和51.04 mg碲粉加入到一个5.0 mL注射器中,然后再加入2.0 mL二次蒸馏水,将注射器放置于一个盛满水的容器中,保持反应过夜,最终的白色液体即为所需的前驱体NaHTe。
将刚得到的前驱体NaHTe注入到通氮除氧的pH为10.5的有硫代苹果酸(MSA)存在的CdCl2水溶液中,其中加入的CdCl2·2.5H2O和MSA的质量分别为182.688 mg和300.3 mg。混合溶液在氮气保护100 oC条件下回流反应60分钟,得到所需波长为558 nm黄绿色量子点。
取15 mL环己烷、3.2 mL曲拉通-100、3.2 mL正己醇加入到三口烧瓶中,搅拌10 min后,加入600 μL 已制备的CdTe量子点水溶液,继续搅拌15 min后,加入100 μL TEOS 和100 μL氨水,搅拌1.5小时后,加入30 μL APTS和10 mg三氟氯氰菊酯(LC)的环己烷溶液,密封搅拌过夜。反应结束后,加入22.23 mL丙酮破乳,最后得到的沉淀即为量子点印迹聚合物(CdTeSiO2LC)。洗脱剂乙醇/乙腈(v/v,8:2)将原始模板分子三氟氯氢菊酯从CdTeSiO2LC中洗脱下来,洗脱三次。除去模板分子后,即得到分子印迹聚合物CdTeSiO2MIPs。非分子印迹聚合物(CdTeSiO2NIPs)的合成除了不含模板分子外,其他过程与印迹过程相同。
实施例2:
将60.6 mg硼氢化钠(NaBH4)和51.04 mg碲粉加入到一个5.0 mL注射器中,然后再加入2.0 mL二次蒸馏水,将注射器放置于一个盛满水的容器中,保持反应过夜,最终的白色液体即为所需的前驱体NaHTe。
将刚得到的前驱体NaHTe注入到通氮除氧的pH为11.5的有硫代苹果酸(MSA)存在的CdCl2水溶液中,其中加入的CdCl2·2.5H2O和MSA的质量分别为456.72 mg和450.45 mg。混合溶液在氮气保护110 oC条件下回流反应20分钟,得到所需波长为526nm绿色量子点。
取15 mL环己烷、3.6 mL曲拉通-100、3.6 mL正己醇加入到三口烧瓶中,搅拌20 min后,加入800 μL 已制备的CdTe量子点水溶液,继续搅拌30 min后,加入200 μL TEOS 和100 μL氨水,搅拌2.0小时后,加入50 μL APTS和10 mg三氟氯氰菊酯(LC)的环己烷溶液,密封搅拌过夜。反应结束后,加入23.35 mL丙酮破乳,最后得到的沉淀即为量子点印迹聚合物(CdTeSiO2LC)。洗脱剂乙醇/乙腈(v/v,8:2)将原始模板分子三氟氯氢菊酯从CdTeSiO2LC中洗脱下来,洗脱三次。除去模板分子后,即得到分子印迹聚合物CdTeSiO2MIPs。非分子印迹聚合物(CdTeSiO2NIPs)的合成除了不含模板分子外,其他过程与印迹过程相同。图1为CdTe QDs (a, b)和CdTeSiO2MIPs (c, d)的透射电镜图以及CdTeSiO2MIPs (e)和CdTeSiO2NIPs (f)的扫描电镜图。从透射图中可以得到CdTe QDs和CdTeSiO2MIPs的尺寸大小,从扫描电镜图中可以看出CdTeSiO2MIPs和CdTeSiO2NIPs的区别,CdTeSiO2MIPs的表面比CdTeSiO2NIPs的表面更粗糙一些。图2为CdTeSiO2NIPs(1)、CdTeSiO2LC(2)和CdTeSiO2MIPs(3)的红外图谱。图谱中出现的1000~1100 cm-1的宽峰对应Si-O-Si的特征峰,790对应Si-O振动。位于1724 cm-1处的峰对应于菊酯的O-C=O伸缩振动峰,位于1489 cm-1处的弱峰对应于苯环的C=C伸缩振动峰。说明三氟氯氰菊酯成功参与到聚合反应中,并且通过溶剂萃取从聚合物中去除。
实施例3:
将45 mg硼氢化钠(NaBH4)和51.04 mg碲粉加入到一个5.0 mL注射器中,然后再加入2.0 mL二次蒸馏水,将注射器放置于一个盛满水的容器中,保持反应过夜,最终的白色液体即为所需的前驱体NaHTe。
将刚得到的前驱体NaHTe注入到通氮除氧的pH为11.2的有硫代苹果酸(MSA)存在的CdCl2水溶液中,其中加入的CdCl2·2.5H2O和MSA的质量分别为365.376 mg和375.375 mg。混合溶液在氮气保护105 oC条件下回流反应6小时,得到所需波长为650 nm红色量子点。
取15 mL环己烷、3.5 mL曲拉通-100、3.5 mL正己醇加入到三口烧瓶中,搅拌15 min后,加入700 μL 已制备的CdTe量子点水溶液,继续搅拌20 min后,加入150 μL TEOS 和100 μL氨水,搅拌1.8小时后,加入40 μL APTS和10 mg三氟氯氰菊酯(LC)的环己烷溶液,密封搅拌过夜。反应结束后,加入22.99 mL丙酮破乳,最后得到的沉淀即为量子点印迹聚合物(CdTeSiO2LC)。洗脱剂乙醇/乙腈(v/v,8:2)将原始模板分子三氟氯氢菊酯从CdTeSiO2LC中洗脱下来,洗脱三次。除去模板分子后,即得到分子印迹聚合物CdTeSiO2MIPs。非分子印迹聚合物(CdTeSiO2NIPs)的合成除了不含模板分子外,其他过程与印迹过程相同。
实施例4:
本发明具体实施方式中识别和光学检测性能评价按照下述方法进行:将适量荧光聚合物的水溶液和一系列已知浓度的目标物乙醇溶液加入到10 mL比色管中,调节pH值为7.0并用乙醇定容,其中乙醇/水(v/v,1:1),室温下振荡10 min。用分子荧光光度计测量***检测溶液的荧光强度。根据Stern-Volmer equation(                                                
Figure 2013107343120100002DEST_PATH_IMAGE001
)以浓度[c]为横坐标,相对荧光强度(I max /I)为纵坐标绘制荧光响应曲线。选择几种结构和性质类似的菊酯类农药,作为对比物质,参与CdTeSiO2MIPs识别性能的研究。
试验例1:首先考察了pH值对荧光强度的影响(如图3所示,所制得的荧光分子聚合物在pH为6.0-11.0范围内荧光强度保持稳定)和所得聚合物的荧光时间稳定性(如图4所示,所制得的荧光分子聚合物有很好的稳定性)。最后选择对荧光强度影响较小的pH=7.0的溶液做荧光测试实验。将荧光分子印迹材料配置成100 mg/L的水溶液,菊酯类目标物配置成为1 mmol/L的乙醇溶液。取5 mL的聚合物溶液和0-0.6 mL三氟氯氢菊酯的乙醇溶液加入到10 mL比色管中,用稀盐酸或稀氨水调节pH值为7.0并用乙醇定容,其中乙醇/水(v/v,1:1),把测试液室温振荡10 min,然后用荧光分光光度计检测溶液的荧光强度。根据Stern-Volmer equation(
Figure 924733DEST_PATH_IMAGE001
)以浓度[c]为横坐标,相对荧光强度(I max /I)为纵坐标绘制荧光响应曲线。如图5所示,随着LC浓度的升高,荧光强度减弱,根据Stern-Volmer equation(
Figure 585522DEST_PATH_IMAGE001
)以浓度[c]为横坐标,相对荧光强度(I max /I)为纵坐标绘制荧光响应曲线,分别得到相关系数为0.9965和0.9918的直线。结果表明,量子点荧光分子印迹聚合物具有很好的光学检测LC的能力。
试验例2:将荧光分子印迹材料配置成100 mg/L的水溶液,选择三氟氯氰菊酯(LC)氟氯氰菊酯(BC)、氰戊菊酯(FE)、联苯菊酯(BI)四种目标物,将以上几种菊酯类农药配置成为1 mmol/L的乙醇溶液。取5 mL的聚合物水溶液和0.6 mL的菊酯类农药的乙醇溶液加入到10 mL比色管中,用稀盐酸或稀氨水调节pH值为7.0并用乙醇定容,其中乙醇/水(v/v,1:1),把测试液室温振荡10 min,然后用荧光分光光度计检测溶液的荧光强度。如图6所示,由图可知,LC对CdTeSiO2MIPs的猝灭量最大,说明CdTeSiO2MIPs对模板分子LC具有特异性识别能力。结果表明,本发明制备的聚合物对LC有明显的专一识别性,荧光淬灭量(I max /I)高于其它菊酯类农药。

Claims (6)

1. 一种量子点荧光印迹聚合物的制备方法,其特征在于,按照以下步骤进行:
(1)将硼氢化钠和碲粉加入到注射器中,然后再加入二次蒸馏水使固体完全溶解;将注射器放置于一个盛满水的容器中,保持反应过夜,最终的白色液体即为所需的前驱体NaHTe溶液;
(2)在通氮除氧的条件下,将步骤(1)得到的前驱体NaHTe溶液注入到有硫代苹果酸存在的CdCl2·2.5H2O水溶液中,混合溶液在氮气保护条件下100 oC-110 oC回流反应,根据回流时间的不同,得到不同尺寸的量子点;
(3)在三口烧瓶中加入环己烷、曲拉通-100和正己醇,然后加入步骤(2)中制备的CdTe量子点的水溶液,继续搅拌15-30 min,然后加入TEOS 和氨水,搅拌1.5-2.0小时;
(4)将APTS和三氟氯氰菊酯完全溶解在环己烷溶液中,充分混合后将所得混合溶液加入到步骤(3)的混合溶液中密封搅拌过夜;反应结束后,加入丙酮溶液破乳,最后得到沉淀聚合物;用洗脱剂将原始模板分子三氟氯氰菊酯从CdTeSiO2LC中洗脱下来,洗脱三次;除去模板分子后,即得到量子点荧光印迹聚合物。
2. 根据权利要求1所述的一种量子点荧光印迹聚合物的制备方法,其特征在于,步骤(1)中所述的硼氢化钠和碲粉的摩尔比为2-4:1。
3. 根据权利要求1所述的一种量子点荧光印迹聚合物的制备方法,其特征在于,步骤(2)中所述的有硫代苹果酸(MSA)存在的CdCl2·2.5H2O水溶液的pH为10.5-11.5;其中,CdCl2·2.5H2O、MSA和NaHTe的摩尔比为0.4-1:1-1.5:0.2,其中NaHTe的摩尔量根据步骤(1)中碲粉的摩尔量得出;所述回流反应温度为100 oC-110 oC
4. 根据权利要求1所述的一种量子点荧光印迹聚合物的制备方法,其特征在于,步骤(3)中所述的环己烷、曲拉通-100和正己醇的体积比为15:3.2-3.6:3.2-3.6;所述加入的CdTe量子点的水溶液与环己烷体积比为0.6-0.8:15;所述TEOS、氨水和环乙烷的体积比为0.1-0.2:0.1:15。
5. 根据权利要求1所述的一种量子点荧光印迹聚合物的制备方法,其特征在于,步骤(4)中所述APTS与TEOS的体积比为0.03-0.05:0.1-0.2;所述APTS和三氟氯氰菊酯质量比为3-5:1;所述加入的丙酮溶液与整个混合体系等体积;所述洗脱剂为乙醇和乙腈的混合液,其中乙醇和乙腈的体积比为8:2。
6. 根据权利要求1所述的一种量子点荧光印迹聚合物的制备方法,其特征在于,按照权利要求1所制备的量子点荧光印迹聚合物应用于光学检测三氟氯氰菊酯。
CN201310734312.0A 2013-12-27 2013-12-27 一种量子点荧光印迹聚合物的制备方法 Expired - Fee Related CN103739846B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310734312.0A CN103739846B (zh) 2013-12-27 2013-12-27 一种量子点荧光印迹聚合物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310734312.0A CN103739846B (zh) 2013-12-27 2013-12-27 一种量子点荧光印迹聚合物的制备方法

Publications (2)

Publication Number Publication Date
CN103739846A true CN103739846A (zh) 2014-04-23
CN103739846B CN103739846B (zh) 2016-04-06

Family

ID=50496923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310734312.0A Expired - Fee Related CN103739846B (zh) 2013-12-27 2013-12-27 一种量子点荧光印迹聚合物的制备方法

Country Status (1)

Country Link
CN (1) CN103739846B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965504A (zh) * 2014-05-13 2014-08-06 江苏联合化工有限公司 稀土掺杂的核壳式荧光印迹聚合物的制备方法
CN104165874A (zh) * 2014-07-24 2014-11-26 江苏大学 一种量子点荧光阿司匹林印迹传感器及其制备方法和应用
CN104403051A (zh) * 2014-07-30 2015-03-11 江苏大学 一种荧光选择识别三氟氯氰菊酯的分子印迹材料制备方法
CN104744649A (zh) * 2015-03-19 2015-07-01 江苏大学 一种CdTe量子点荧光三氟氯氰菊酯印迹传感器的制备方法
CN104877163A (zh) * 2015-04-01 2015-09-02 宁波大学 一种拟除虫菊酯类农药分子印迹-量子点聚合物的制备方法
CN104910385A (zh) * 2015-06-23 2015-09-16 南华大学 一种对去甲二氢愈创木酸有选择性吸附的表面印迹材料及制备方法
CN105062464A (zh) * 2015-07-29 2015-11-18 江苏大学 一种基于溶胀技术的量子点荧光印迹传感器的制备方法
CN105136758A (zh) * 2015-08-28 2015-12-09 合肥学院 一种对农残检测的Eu3+标记分子印记传感器制备方法
CN106198478A (zh) * 2016-08-03 2016-12-07 陕西师范大学 基于量子点比率荧光的分子印迹聚合物检测米托蒽醌的方法
CN106442436A (zh) * 2016-07-12 2017-02-22 江苏大学 用于检测水中痕量4‑硝基苯酚的磁性量子点印迹材料、制备方法及用途
CN106872689A (zh) * 2017-01-10 2017-06-20 宁波大学 一种快速测定磺胺类抗生素残留的仿生酶联免疫检测方法
CN108120707A (zh) * 2018-01-04 2018-06-05 山西大学 分子印迹荧光传感材料的制备及其在高通量检测乐果中的应用
CN109021283A (zh) * 2018-04-19 2018-12-18 华南师范大学 用于检测氧化乐果的CsPbBr3钙钛矿量子点-分子印迹荧光传感器及其制备方法
CN109406473A (zh) * 2018-11-08 2019-03-01 青岛大学 一种基于磁性分子印迹核/壳聚合物的藻红蛋白比率荧光传感器的制备方法
CN110186884A (zh) * 2019-07-09 2019-08-30 南昌大学 一种可视化分子印迹纳米传感器及其制备和应用
CN114957667A (zh) * 2022-05-19 2022-08-30 济南大学 一种姜黄素荧光分子印迹聚合物的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265310A (zh) * 2008-04-18 2008-09-17 杨挺 拟除虫菊酯类农药的分子印迹聚合物及其应用
CN101381438A (zh) * 2007-09-05 2009-03-11 中国科学院上海微***与信息技术研究所 分子印迹和荧光共轭聚合物构建的复合材料、制备及应用
CN101644680A (zh) * 2009-09-01 2010-02-10 济南大学 检测痕量农药残留物的分子印迹化学发光传感器及其应用
CN102070739A (zh) * 2010-12-02 2011-05-25 浙江大学 三氟氯氰菊酯分子印迹聚合物微球的制备方法
CN102070750A (zh) * 2010-12-02 2011-05-25 浙江大学 氰戊菊酯分子印迹聚合物微球的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381438A (zh) * 2007-09-05 2009-03-11 中国科学院上海微***与信息技术研究所 分子印迹和荧光共轭聚合物构建的复合材料、制备及应用
CN101265310A (zh) * 2008-04-18 2008-09-17 杨挺 拟除虫菊酯类农药的分子印迹聚合物及其应用
CN101644680A (zh) * 2009-09-01 2010-02-10 济南大学 检测痕量农药残留物的分子印迹化学发光传感器及其应用
CN102070739A (zh) * 2010-12-02 2011-05-25 浙江大学 三氟氯氰菊酯分子印迹聚合物微球的制备方法
CN102070750A (zh) * 2010-12-02 2011-05-25 浙江大学 氰戊菊酯分子印迹聚合物微球的制备方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965504A (zh) * 2014-05-13 2014-08-06 江苏联合化工有限公司 稀土掺杂的核壳式荧光印迹聚合物的制备方法
CN103965504B (zh) * 2014-05-13 2016-09-14 江苏联合化工有限公司 稀土掺杂的核壳式荧光印迹聚合物的制备方法
CN104165874A (zh) * 2014-07-24 2014-11-26 江苏大学 一种量子点荧光阿司匹林印迹传感器及其制备方法和应用
CN104403051A (zh) * 2014-07-30 2015-03-11 江苏大学 一种荧光选择识别三氟氯氰菊酯的分子印迹材料制备方法
CN104744649A (zh) * 2015-03-19 2015-07-01 江苏大学 一种CdTe量子点荧光三氟氯氰菊酯印迹传感器的制备方法
CN104744649B (zh) * 2015-03-19 2018-06-26 江苏大学 一种CdTe量子点荧光三氟氯氰菊酯印迹传感器的制备方法
CN104877163A (zh) * 2015-04-01 2015-09-02 宁波大学 一种拟除虫菊酯类农药分子印迹-量子点聚合物的制备方法
CN104877163B (zh) * 2015-04-01 2018-05-18 宁波大学 一种拟除虫菊酯类农药分子印迹-量子点聚合物的制备方法
CN104910385A (zh) * 2015-06-23 2015-09-16 南华大学 一种对去甲二氢愈创木酸有选择性吸附的表面印迹材料及制备方法
CN105062464B (zh) * 2015-07-29 2017-06-27 江苏大学 一种基于溶胀技术的量子点荧光印迹传感器的制备方法
CN105062464A (zh) * 2015-07-29 2015-11-18 江苏大学 一种基于溶胀技术的量子点荧光印迹传感器的制备方法
CN105136758B (zh) * 2015-08-28 2017-12-08 合肥学院 一种对农残检测的Eu3+标记分子印记传感器制备方法
CN105136758A (zh) * 2015-08-28 2015-12-09 合肥学院 一种对农残检测的Eu3+标记分子印记传感器制备方法
CN106442436B (zh) * 2016-07-12 2019-11-05 江苏大学 用于检测水中痕量4-硝基苯酚的磁性量子点印迹材料、制备方法及用途
CN106442436A (zh) * 2016-07-12 2017-02-22 江苏大学 用于检测水中痕量4‑硝基苯酚的磁性量子点印迹材料、制备方法及用途
CN106198478A (zh) * 2016-08-03 2016-12-07 陕西师范大学 基于量子点比率荧光的分子印迹聚合物检测米托蒽醌的方法
CN106198478B (zh) * 2016-08-03 2018-12-07 陕西师范大学 基于量子点比率荧光的分子印迹聚合物检测米托蒽醌的方法
CN106872689A (zh) * 2017-01-10 2017-06-20 宁波大学 一种快速测定磺胺类抗生素残留的仿生酶联免疫检测方法
CN108120707A (zh) * 2018-01-04 2018-06-05 山西大学 分子印迹荧光传感材料的制备及其在高通量检测乐果中的应用
CN109021283A (zh) * 2018-04-19 2018-12-18 华南师范大学 用于检测氧化乐果的CsPbBr3钙钛矿量子点-分子印迹荧光传感器及其制备方法
CN109021283B (zh) * 2018-04-19 2021-01-26 华南师范大学 用于检测氧化乐果的CsPbBr3钙钛矿量子点-分子印迹荧光传感器及其制备方法
CN109406473A (zh) * 2018-11-08 2019-03-01 青岛大学 一种基于磁性分子印迹核/壳聚合物的藻红蛋白比率荧光传感器的制备方法
CN109406473B (zh) * 2018-11-08 2019-07-30 青岛大学 一种藻红蛋白比率荧光传感器的制备方法
US10895536B1 (en) 2018-11-08 2021-01-19 Qingdao University Method for preparing a ratiometric fluorescent sensor for phycoerythrin based on a magnetic molecularly imprinted core-shell polymer
CN110186884A (zh) * 2019-07-09 2019-08-30 南昌大学 一种可视化分子印迹纳米传感器及其制备和应用
CN114957667A (zh) * 2022-05-19 2022-08-30 济南大学 一种姜黄素荧光分子印迹聚合物的制备方法及应用

Also Published As

Publication number Publication date
CN103739846B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
CN103739846B (zh) 一种量子点荧光印迹聚合物的制备方法
Wang et al. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water
Ge et al. Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots
CN105385438A (zh) 一种氨基碳量子点荧光硅基印迹传感器的制备方法
CN103756004A (zh) 一种量子点磷光印迹聚合物的制备方法
CN104237182B (zh) 一种Mn掺杂的ZnS量子点印迹传感器的制备方法和应用
CN104165874A (zh) 一种量子点荧光阿司匹林印迹传感器及其制备方法和应用
Borelli et al. Fluorescent polystyrene films for the detection of volatile organic compounds using the twisted intramolecular charge transfer mechanism
Sun et al. Construction of biomass carbon dots@ molecularly imprinted polymer fluorescent sensor array for accurate identification of 5-nitroimidazole antibiotics
CN103695551A (zh) 基于聚合物电化学发光信号放大的核酸检测方法
CN106967416B (zh) 用于ddt检测的二氧化钛纳米粒子荧光探针的制备方法
CN106916159B (zh) 一种开关纳米卟啉荧光传感器可控制备方法
CN102353661A (zh) 基于苝酰亚胺胆固醇衍生物荧光传感薄膜的制备方法
CN104237183B (zh) 一种ZnS量子点硅基表面分子印迹传感器的制备方法及应用
CN104359880A (zh) 对痕量百草枯检测的CdTe量子点荧光探针的化学制备方法
CN103992450A (zh) 一种三氟氯氰菊酯磁性荧光分子印迹材料的制备方法
CN105466898A (zh) 一种氨基碳量子点荧光对硝基苯酚印迹传感器的制备方法
Yang et al. A novel luminescent sensor based on Tb@ UiO-66 for highly detecting Sm3+ and teflubenzuron
CN106124475A (zh) 一种基于核酸适配体的痕量农药残留表面增强拉曼光谱检测方法
CN104672476A (zh) 一种稀土荧光分子印迹膜的制备方法及其应用
CN109283164B (zh) 一种镧系mof纺丝纤维膜作为检测尿酸传感器及制备
CN109900674A (zh) 一种纳米金阵列表面增强拉曼芯片及其制备方法与应用
CN104237184B (zh) 一种ZnO纳米棒分子印迹荧光传感器的制备方法
CN101788489A (zh) 一种用于高效检测毒品的敏感薄膜材料及制备方法
Zhao et al. Chiral induction in carbazole-conjugated covalent organic frameworks: a supersensitive fluorescence sensing platform for chiral recognition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160406

Termination date: 20161227

CF01 Termination of patent right due to non-payment of annual fee