CN103730523B - 一种石墨烯基碲镉汞复合薄膜材料及其制备方法 - Google Patents

一种石墨烯基碲镉汞复合薄膜材料及其制备方法 Download PDF

Info

Publication number
CN103730523B
CN103730523B CN201410005364.9A CN201410005364A CN103730523B CN 103730523 B CN103730523 B CN 103730523B CN 201410005364 A CN201410005364 A CN 201410005364A CN 103730523 B CN103730523 B CN 103730523B
Authority
CN
China
Prior art keywords
graphene
layer
cadmium telluride
mercury cadmium
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410005364.9A
Other languages
English (en)
Other versions
CN103730523A (zh
Inventor
刘玫
满宝元
毕冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Normal University
Original Assignee
Shandong Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Normal University filed Critical Shandong Normal University
Priority to CN201410005364.9A priority Critical patent/CN103730523B/zh
Publication of CN103730523A publication Critical patent/CN103730523A/zh
Application granted granted Critical
Publication of CN103730523B publication Critical patent/CN103730523B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02411Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种石墨烯基碲镉汞复合薄膜材料及其制备方法,包括衬底层,衬底层上有单层或多层石墨烯层,石墨烯层上面沉积有碲镉汞薄膜层,Hg1-xCdxTe,0.2≤x≤0.3。采用化学气相沉积(CVD)方法在铜箔上制备单层石墨烯薄膜,采用湿法转移石墨烯层至所需衬底层上,利用激光分子束外延生长(LMBE)方法在石墨烯层上沉积制备碲镉汞薄膜。本发明材料衬底选择多样化且衬底的改变不会引起碲镉汞膜层性质的改变;具有良高的透明性、更好的电学性能和更低的噪声影响;石墨烯层数可控,可更好地控制调节,其透光性、导电性、噪声、响应。

Description

一种石墨烯基碲镉汞复合薄膜材料及其制备方法
技术领域
本发明涉及一种石墨烯基碲镉汞复合薄膜材料及其制备方法,属于红外探测材料技术领域。
背景技术
碲镉汞(Hg1-xCdxTe,MCT)材料是直接带隙半导体材料,具有高量子效率、可高温工作、响应波长可随组分连续变化可调、可探测中波、长波和超长波红外辐射的特点,一直是三代红外焦平面(FPA)探测器件的主要使用材料,被广泛的应用于卫星遥感、气象及环境监测,医学成像以及夜视***等方面。
早期的碲镉汞材料以制备单晶为主,由于在生长中存在着组分不均匀、晶格完整性差、不能大面积生长、重复率低等问题,自20世纪80年代之后,各国的研究小组逐渐将研究重点放到了碲镉汞外延薄膜的研究上。随着各种外延技术的发展,碲镉汞薄膜材料的质量也取得了较大的进展。衬底材料则多采用结晶性较高、质量好的硬质单晶块体材料,材料选择主要集中在以CdZnTe、CdTe为主的同质衬底材料和以GaAs、Al2O3、Si为主的异质衬底材料上,也有很多已用于工业化生产中。但是随着社会的不断进步和技术的不断创新,我们对碲镉汞红外探测器件也有了更高的发展要求:大面阵FPA、降低成本、大尺寸(10.16cm以上)晶片成为目前研制的主导,同时还要求仪器小型化、轻型化。而目前常用的各种硬质单晶衬底材料无法同时满足这些要求,极大地限制了碲镉汞FPA器件的发展,衬底的选择单一、品质要求高、稳定性差等问题已成为碲镉汞薄膜质量、性质、性能进一步改善的关键问题。
发明内容
本发明的目的是克服上述不足而提供一种石墨烯基碲镉汞复合薄膜材料及其制备方法,具有良高的透明性、更好的电学性能和更低的噪声影响。
为实现上述目的,本发明采取以下技术方案:
一种石墨烯基碲镉汞复合薄膜材料,包括衬底层,衬底层上有单层或多层石墨烯层,石墨烯层上面沉积有碲镉汞薄膜层,Hg1-xCdxTe,,0.2≤x≤0.3。
所述的衬底层为CdZnTe、CdTe、GaAs、Al2O3、Si、石英、非晶玻璃等常见硬质耐高温(高于100℃)衬底材料。
采用化学气相沉积(CVD)方法在铜箔上制备单层石墨烯薄膜,采用湿法转移石墨烯层至所需衬底层上,利用激光分子束外延生长(LMBE)方法在石墨烯层上沉积制备碲镉汞薄膜。
一种石墨烯基碲镉汞复合薄膜材料的制备方法,包括步骤如下:
(1)石墨烯层的制备:将铜箔清洗烘干后放入真空化学气相沉积***中,将***密闭抽至10Pa以下,开始升温,随温度升高在小于300℃时首先通入H2,继续升温至1050℃,保持恒温,后通入CH4,保持恒温40-50分钟,之后先后关闭CH4、H2,并迅速冷却得到单层石墨烯;
(2)石墨烯层的转移:将沉积有石墨烯的铜箔剪切成小正方形,在附有石墨烯的方形铜箔上均匀旋涂PMMA,加热烘烤,然后放入腐蚀性溶液中室温浸泡,将铜完全腐蚀,得到石墨烯/PMMA结构材料,将石墨烯+PMMA膜迁移至所需衬底材料上,待自然干燥,加热烘烤,将烘干的PMMA+石墨烯+衬底置于丙酮溶液中,去除PMMA,然后利用乙醇清洗并自然干燥,得到单层石墨烯/衬底结构材料;重复所述转移操作可得多层石墨烯/衬底结构材料;
(3)碲镉汞薄膜层的制备:选择Hg1-xCdxTe,,0.2≤x≤0.3材料制成体靶,采用激光分子束外延(LMBE)设备,将高能量脉冲激光聚焦在靶材表面,以步骤(2)得到的石墨烯/衬底结构材料为基片,激光沉积得碲镉汞薄膜。
步骤(1)所述的H2流量50sccm,CH4流量50sccm。
步骤(2)所述的加热烘烤均为在100-300℃的加热板上烘烤5-50min。
步骤(2)所述的腐蚀性溶液为1-2mol/L的FeCl3溶液。
步骤(3)所述激光沉积:激光波长为248nm,能量为100-150mJ,激光频率:2-10Hz,沉积温度100℃,沉积时背景压强范围10-2-101Pa,沉积时间10-120分钟。
本发明利用具有良好的力学强度、透光性、柔韧性、红外透光性以及优异的电学性能和化学稳定性的石墨烯作为载体采用激光分子束外延法(LMBE)制备生长高质量的石墨烯基碲镉汞复合薄膜。
与目前的碲镉汞薄膜材料相比,本发明具有以下优点:
(1)衬底选择更加多样化,衬底的改变不会引起碲镉汞膜层性质的改变且可保持碲镉汞的结晶性;
(2)将具有良高的透明性、更好的电学性能和更低的噪声影响;
(3)石墨烯层数可控,因此可更好地控制调节,其透光性、导电性、噪声、响应;
(4)制备过程简单,且具有成本低、面积大、更易加工、性质稳定等特点。
附图说明
图1单层石墨烯基碲镉汞复合薄膜材料结构示意图;
图2多层石墨烯基碲镉汞复合薄膜材料结构示意图;
图3制备石墨烯基碲镉汞复合薄膜材料的方法流程图;
图4为本发明实施例1制备的(a)非晶玻璃衬底石墨烯基碲镉汞复合薄膜材料与(b)非晶玻璃衬底碲镉汞薄膜材料的X射线衍射光谱,图中标注“●”为碲镉汞材料衍射峰,其他衍射信号为衬底及石墨烯层对应衍射峰;
其中,1.碲镉汞薄膜层,2.单层石墨烯,3.衬底。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅限于说明解释本发明,并不用于限定本发明。所述材料如无特别说明均能从公开商业途径而得。
实施例1
(1)石墨烯的制备
将铜箔放入采用高温管式炉和复合分子泵组成的真空化学气相沉积(CVD)***中,将***密闭抽至10Pa以下,开始升温。升温至300℃时通入H2(流量50sccm),继续升温至1050℃,恒温20分钟后通入CH4(流量50sccm),通气50分钟后关闭通入CH4,保持恒温15分钟后,关闭H2,之后迅速冷却得到单层石墨烯。
(2)利用湿法转移技术将单层石墨烯转移到非晶玻璃衬底上
具体操作为:将沉积有石墨烯的铜箔剪切成15mm*15mm正方形,并将其中一面均匀旋涂PMMA,之后将其置于130℃的加热板上烘烤30min,然后放入1mol/l的FeCl3溶液中室温浸泡,直到石墨烯+PMMA膜从铜基底上脱落,并将铜腐蚀完全。将石墨烯+PMMA膜迁移到去离子水溶液中漂洗30min后迁移到非晶玻璃衬底上,待自然干燥,置于130℃的加热板上烘烤30min。将烘干的PMMA+石墨烯+透明衬底置于丙酮溶液中,直到PMMA去除干净,然后利用乙醇清洗并自然干燥。
(3)碲镉汞薄膜的制备
采用激光分子束外延(LMBE)设备,248nm、150mJ、5Hz准分子高能量脉冲激光作为溅射光源,选择Hg0.8Cd0.2Te材料制成体靶,在步骤(1)中制备的石墨烯/非晶玻璃衬底结构材料上沉积生长碲镉汞薄膜。沉积温度100℃。沉积时背景压强5Pa,沉积时间120分钟。
经X射线衍射测试测定:利用上述方法在非晶玻璃衬底上生长的单层石墨烯基碲镉汞薄膜为多晶结构,同时的结晶质量明显好于直接以非晶玻璃为衬底的碲镉汞薄膜(附图4)。同时经扫描电镜-能量色散X射线能谱(SEM-EDAX)分析,所得碲镉汞薄膜配比,Hg1-xCdxTe中x=0.21。
实施例2
(1)将铜箔放入采用高温管式炉和复合分子泵组成的真空化学气相沉积(CVD)***中,将***密闭抽至10Pa以下,开始升温。升温至300℃时通入H2(流量50sccm),继续升温至1050℃,恒温20分钟后通入CH4(流量50sccm),通气50分钟后关闭通入CH4,保持恒温15分钟后,关闭H2,之后迅速冷却得到单层石墨烯。
(2)利用湿法转移技术转移多层石墨烯到非晶玻璃衬底上
具体操作为:将沉积有石墨烯的铜箔剪切成多个15mm*15mm的正方形,并其中一面均匀旋涂PMMA,之后将其置于130℃的加热板上烘烤30min,然后放入1mol/l的FeCl3溶液中室温浸泡,直到石墨烯+PMMA膜从铜基底上脱落,并将铜腐蚀完全。将迁移到去离子水溶液中漂洗30min后,选取其中一片迁移到非晶玻璃衬底上,待自然干燥,置于130℃的加热板上烘烤30min。将烘干的PMMA+单层石墨烯+透明衬底置于丙酮溶液中,直到PMMA去除干净,然后利用乙醇清洗并自然干燥,得到“单层石墨烯+玻璃衬底”。之后再从去离子水溶液中再选取一片石墨烯+PMMA膜,再次迁移到上述得到的“单层石墨烯+玻璃衬底”上,之后重复上述步骤去除PMMA膜,烘干,得到“两层石墨烯+玻璃衬底”结构材料。
(3)采用激光分子束外延(LMBE)设备,248nm、120mJ、8Hz准分子高能量脉冲激光作为溅射光源,选择Hg0.8Cd0.2Te材料制成体靶,在步骤(1)中制备的石墨烯/非晶玻璃衬底结构材料上沉积生长碲镉汞薄膜。沉积温度100℃。沉积时背景压强5Pa,沉积时间100分钟。

Claims (7)

1.一种石墨烯基碲镉汞复合薄膜材料,其特征是,包括衬底层,衬底层上有单层或多层石墨烯层,石墨烯层上面沉积有碲镉汞薄膜层,碲镉汞薄膜层的化学式为Hg1-xCdxTe,0.2≤x≤0.3,所述复合薄膜材料采用化学气相沉积方法在铜箔上制备单层石墨烯薄膜,采用湿法转移石墨烯层至所需衬底层上,利用激光分子束外延生长方法在石墨烯层上沉积制备碲镉汞薄膜。
2.根据权利要求1所述的一种石墨烯基碲镉汞复合薄膜材料,其特征是,所述的衬底层为CdZnTe、CdTe、GaAs、Al2O3、Si、石英或非晶玻璃。
3.一种石墨烯基碲镉汞复合薄膜材料的制备方法,其特征是,包括步骤如下:
(1)石墨烯层的制备:将铜箔清洗烘干后放入真空化学气相沉积***中,将***密闭抽至10Pa以下,开始升温,随温度升高在300℃时首先通入H2,继续升温至1050℃,保持恒温,后通入CH4,保持恒温40-50分钟,之后先后关闭CH4、H2,并迅速冷却得到单层石墨烯;
(2)石墨烯层的转移:将沉积有石墨烯的铜箔剪切成小正方形,在附有石墨烯的方形铜箔上均匀旋涂PMMA,加热烘烤,然后放入腐蚀性溶液中室温浸泡,将铜完全腐蚀,得到石墨烯/PMMA结构材料,将石墨烯+PMMA膜迁移至所需衬底材料上,待自然干燥,加热烘烤,将烘干的PMMA+石墨烯+衬底置于丙酮溶液中,去除PMMA,然后利用乙醇清洗并自然干燥,得到单层石墨烯/衬底结构材料;重复所述转移操作可得多层石墨烯/衬底结构材料;
(3)碲镉汞薄膜层的制备:选择Hg1-xCdxTe,0.2≤x≤0.3材料制成体靶,采用激光分子束外延(LMBE)设备,将高能量脉冲激光聚焦在靶材表面,以步骤(2)得到的石墨烯/衬底结构材料为基片,激光溅射沉积得碲镉汞薄膜。
4.根据权利要求3所述的一种石墨烯基碲镉汞复合薄膜材料的制备方法,其特征是,步骤(1)所述的H2流量50sccm,CH4流量50sccm。
5.根据权利要求3所述的一种石墨烯基碲镉汞复合薄膜材料的制备方法,其特征是,步骤(2)所述的腐蚀性溶液为1-2mol/L的FeCl3溶液的。
6.根据权利要求3所述的一种石墨烯基碲镉汞复合薄膜材料的制备方法,其特征是,步骤(2)所述的加热烘烤均为在100-300℃的加热板上烘烤5-50min。
7.根据权利要求3所述的一种石墨烯基碲镉汞复合薄膜材料的制备方法,其特征是,步骤(3)所述激光沉积:激光波长为:248nm,能量:100-150mJ,激光频率:2-10Hz,沉积温度100-150℃,沉积时背景压强范围10-2-101Pa,沉积时间10-120分钟。
CN201410005364.9A 2014-01-06 2014-01-06 一种石墨烯基碲镉汞复合薄膜材料及其制备方法 Expired - Fee Related CN103730523B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410005364.9A CN103730523B (zh) 2014-01-06 2014-01-06 一种石墨烯基碲镉汞复合薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410005364.9A CN103730523B (zh) 2014-01-06 2014-01-06 一种石墨烯基碲镉汞复合薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103730523A CN103730523A (zh) 2014-04-16
CN103730523B true CN103730523B (zh) 2016-05-11

Family

ID=50454528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410005364.9A Expired - Fee Related CN103730523B (zh) 2014-01-06 2014-01-06 一种石墨烯基碲镉汞复合薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103730523B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449859A (zh) * 2016-11-30 2017-02-22 庞倩桃 一种砷化镓量子点增强的红外探测器及其制备方法
CN107014799B (zh) * 2017-03-24 2020-09-01 山东师范大学 一种石墨烯/银纳米花/pmma“三明治”结构柔性sers基底及其制备方法
CN108546995B (zh) * 2018-03-13 2021-07-06 上海大学 在石墨烯衬底上定向生长碲锌镉薄膜的制备方法
CN111736367B (zh) * 2020-06-01 2024-02-09 西安电子科技大学 基于石墨烯的相位调制器、调制方法及制备方法
CN113904589B (zh) * 2021-09-13 2022-09-02 广东墨睿科技有限公司 一种压电薄膜衬底增强的石墨烯发电器件的制备方法
CN115806288B (zh) * 2022-12-19 2024-07-23 南京大学 一种促进石墨烯二次生长的方法和在制备双层石墨烯中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348941A (zh) * 2008-09-02 2009-01-21 中国电子科技集团公司第十一研究所 用于液相外延方法生长碲镉汞材料的衬底材料及制备方法
CN103227217A (zh) * 2013-04-09 2013-07-31 中国电子科技集团公司第十一研究所 Si基中/长波叠层双色碲镉汞材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586619B1 (ko) * 2007-12-20 2016-01-21 시마 나노 테크 이스라엘 리미티드 충전제 재료를 포함하는 투명한 전도성 코팅

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348941A (zh) * 2008-09-02 2009-01-21 中国电子科技集团公司第十一研究所 用于液相外延方法生长碲镉汞材料的衬底材料及制备方法
CN103227217A (zh) * 2013-04-09 2013-07-31 中国电子科技集团公司第十一研究所 Si基中/长波叠层双色碲镉汞材料及其制备方法

Also Published As

Publication number Publication date
CN103730523A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
CN103730523B (zh) 一种石墨烯基碲镉汞复合薄膜材料及其制备方法
Ashraf et al. Effect of annealing on structural and optoelectronic properties of nanostructured ZnSe thin films
Tsoutsouva et al. ZnO thin films prepared by pulsed laser deposition
Fernández et al. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications
CN110510585B (zh) 一种大面积薄层二维碲烯的制备方法
CN105483824A (zh) 制备单晶双层石墨烯的方法
CN108193276A (zh) 制备大面积单一取向六方氮化硼二维原子晶体的方法
CN104195552A (zh) 一种在硅基底上制备高电阻变化率二氧化钒薄膜的方法
Luo et al. The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure
Li et al. Structure and physical properties evolution of ITO film during amorphous-crystalline transition using a highly effective annealing technique
CN101325227A (zh) ZnO/纳米金刚石共面栅紫外光探测器的制备方法
Ho et al. Fabrication of highly oriented (002) ZnO film on glass by sol–gel method
CN103643217A (zh) 一种自支撑类石墨多孔非晶碳薄膜的制备方法
CN103700731B (zh) 一种可转移碲镉汞薄膜的制备方法
Chiu et al. Fabrication of ZnO and CuCrO2: Mg thin films by pulsed laser deposition with in situ laser annealing and its application to oxide diodes
Aono et al. Reversible photo-induced deformation of amorphous carbon nitride thin films
Yan et al. In-situ annealing of In–Se amorphous precursors sputtered at low temperature
Rambu et al. Synthesis and characterization of thermally oxidized ZnO films
CN106784303B (zh) 一种可弯曲的超大不饱和磁阻材料制备方法及制备的材料
Lee et al. A Study of Structural and Photoluminescence for Al‐Doped CdO Thin Films
Guillén et al. Improving conductivity and texture in ZnO: Al sputtered thin films by sequential chemical and thermal treatments
CN103060753B (zh) 一种低温制备六方相ZnS薄膜的工艺方法
Zhou et al. Structure and electronic properties of SiC thin-films deposited by RF magnetron sputtering
Xu et al. Zinc tin oxide thin films prepared by MOCVD with different Sn/Zn ratios
Xie et al. Optical constants of amorphous Sb2Se3 thin films in the spectral range 2.5 to 15 µm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160511

Termination date: 20170106

CF01 Termination of patent right due to non-payment of annual fee