CN103715420B - 高压实密度锂镍钴铝氧三元正极材料的制备方法 - Google Patents

高压实密度锂镍钴铝氧三元正极材料的制备方法 Download PDF

Info

Publication number
CN103715420B
CN103715420B CN201310693527.2A CN201310693527A CN103715420B CN 103715420 B CN103715420 B CN 103715420B CN 201310693527 A CN201310693527 A CN 201310693527A CN 103715420 B CN103715420 B CN 103715420B
Authority
CN
China
Prior art keywords
solution
cobalt
nickel cobalt
numbering
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310693527.2A
Other languages
English (en)
Other versions
CN103715420A (zh
Inventor
胡永正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU KING LITHIUM CELL CO Ltd
Original Assignee
JIANGSU KING LITHIUM CELL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU KING LITHIUM CELL CO Ltd filed Critical JIANGSU KING LITHIUM CELL CO Ltd
Priority to CN201310693527.2A priority Critical patent/CN103715420B/zh
Publication of CN103715420A publication Critical patent/CN103715420A/zh
Application granted granted Critical
Publication of CN103715420B publication Critical patent/CN103715420B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂电极正极材料的制备方法,具体是一种高压实密度锂镍钴铝氧三元正极材料的制备方法。该方法包括以下步骤:a.配置硝酸钴溶液,用氨水络合,编号溶液1;配置NaOH溶液,并加入NH3·H2O溶液,编号溶液2;配置硝酸钴、硝酸镍和硝酸铝混合溶液,用氨水络合,编号溶液3;配置NaOH溶液,并加入NH3·H2O溶液,编号溶液4;b.将溶液1和溶液2混合反应,获得钴氧前躯体;c.将钴氧前躯体与溶液3和溶液4反应,得氢氧化镍钴铝前躯体;d.将碳酸锂和氢氧化镍钴铝前躯体球磨混合;e.马弗炉烧结;f.得锂镍钴铝氧正极三元材料。本发明提高了三元材料的压实密度,其材料的电池容量和循环性能均显著提高。

Description

高压实密度锂镍钴铝氧三元正极材料的制备方法
技术领域
本发明涉及锂电极正极材料的制备方法,具体是一种高压实密度锂镍钴铝氧三元正极材料的制备方法。
背景技术
锂镍钴铝氧三元材料已经被广泛用于锂电池的正极材料,但现有三元正极材料压实密度难以提高,限制了三元正极材料电池容量和循环性等性能的进一步提高。
发明内容
本发明所要解决的技术问题是,提供一种具有较高的材料压实密度,同时材料的电池容量和循环性能优良的高压实密度锂镍钴铝氧三元正极材料的制备方法。
本发明的高压实密度锂镍钴铝氧三元正极材料的制备方法包括以下步骤:
a.配置2.0mol/L硝酸钴溶液,用氨水络合至pH为6.6,编号溶液1;
配置6.0mol/LNaOH溶液,并加入0.4mol/LNH3·H2O溶液,二者体积比为10:1,编号溶液2;
配置阳离子总浓度为2.0mol/L的硝酸钴、硝酸镍和硝酸铝混合溶液,其中镍钴铝摩尔比为0.8:0.15:0.05,用氨水络合至pH为8.6,编号溶液3;
配置3.0mol/LNaOH溶液,并加入0.8mol/LNH3·H2O溶液,二者体积比为7:1,编号溶液4;
b.将配置好的溶液1和溶液2混合反应,并控制溶液2使混合溶液pH为13,反应温度28-30℃,反应过程中通入N2保护;待反应分离出沉淀颗粒,用去离子水洗涤后烘干;在380-390℃煅烧6-8h,获得钴氧前躯体;
c.将制备的钴氧前躯体加入反应釜中,并将配置好的溶液3和溶液4同时泵入反应釜,并控制溶液4使混合溶液pH为10.5,搅拌并保持恒温55-60℃,反应过程中通入N2保护;待反应分离出沉淀颗粒,用去离子水洗涤后烘干,得氢氧化镍钴铝前躯体;
d.将碳酸锂和氢氧化镍钴铝前躯体按摩尔比Li/M=1.06球磨混合;其中M是镍钴铝三种元素的摩尔数之和;
e.马弗炉烧结:室温-450℃,升温速率3-4℃/min,450℃时不保温;450-740℃,升温速率1-1.5℃/min,740℃保温18-20h;740-350℃,降温速率1.5-2.5℃/min,后随炉温自然冷却,整个过程中气氛为空气,气流量为8-10L/min;
f.破碎后,得锂镍钴铝氧正极三元材料LiNi0.78Co0.17Al0.05O2
本发明通过特殊的工艺参数和原料选择,能够有效改善材料颗粒的形貌,提高了三元材料的压实密度,进而改善了正极材料的性能,经检测和试验,其材料的电池容量和循环性能均显著提高。
具体实施方式
本发明实施例的方法包括以下步骤:
a.配置2.0mol/L硝酸钴溶液,用氨水络合至pH为6.6,编号溶液1;
配置6.0mol/LNaOH溶液,并加入0.4mol/LNH3·H2O溶液,二者体积比为10:1,编号溶液2;
配置阳离子总浓度为2.0mol/L的硝酸钴、硝酸镍和硝酸铝混合溶液,其中镍钴铝摩尔比为0.8:0.15:0.05,用氨水络合至pH为8.6,编号溶液3;
配置3.0mol/LNaOH溶液,并加入0.8mol/LNH3·H2O溶液,二者体积比为7:1,编号溶液4;
b.将配置好的溶液1和溶液2同时泵入10L的反应釜中,混合溶液流速为200mL/min,0.5h后结束加料,并控制溶液2使混合溶液pH为13,搅拌并保持恒温30℃,反应过程中通入N2保护;待反应进行5h后分离出沉淀颗粒,用去离子水洗涤后烘干;在390℃煅烧8h,获得钴氧前躯体,平均粒径2.3μm;
c.将制备的钴氧前躯体加入反应釜中,并将配置好的溶液3和溶液4同时泵入反应釜,混合溶液流速为40mL/min,并控制溶液4使混合溶液pH为10.5,搅拌并保持恒温55℃,反应过程中通入N2保护;待反应进行15h后分离出沉淀颗粒,用去离子水洗涤后烘干,得氢氧化镍钴铝前躯体,平均粒径8.7μm,化学组成为Ni:Co:Al=0.777:0.171:0.048;
d.将碳酸锂和氢氧化镍钴铝前躯体按摩尔比Li/M=1.06球磨混合,球磨时间为4h;其中M是镍钴铝三种元素的摩尔数之和;
e.马弗炉烧结:室温-450℃,升温速率3-4℃/min,450℃时不保温;450-740℃,升温速率1-1.5℃/min,740℃保温19h;740-350℃,降温速率1.5-2.5℃/min,后随炉温自然冷却,整个过程中气氛为空气,气流量为10L/min;
f.万能破碎后过200目筛网,得锂镍钴铝氧正极三元材料LiNi0.78Co0.17Al0.05O2
本发明实施例制备的正极材料,经检测和试验,结果如下:
1、振实密度:用BT-300振实密度测试仪测试该材料振实密度为2.35g/cm3
2、压实密度:30Mpa下测得该材料的压实密度为3.96g/cm3
2、SEM观察该材料二次颗粒形貌近似球形;
3、液氮吸附法测得该材料比表面积为0.71m2/g;
4、常温下电池测试:3.0~4.4V,1C下,该材料首次放电比容量为198.3mAh/g,效率为90.2%;1C循环100次后容量保持率≥88.6%。

Claims (1)

1.一种高压实密度锂镍钴铝氧三元正极材料的制备方法,其特征是:该方法包括以下步骤,
a.配置2.0mol/L硝酸钴溶液,用氨水络合至pH为6.6,编号溶液1;
配置6.0mol/LNaOH溶液,并加入0.4mol/LNH3·H2O溶液,二者体积比为10:1,编号溶液2;
配置阳离子总浓度为2.0mol/L的硝酸钴、硝酸镍和硝酸铝混合溶液,其中镍钴铝摩尔比为0.8:0.15:0.05,用氨水络合至pH为8.6,编号溶液3;
配置3.0mol/LNaOH溶液,并加入0.8mol/LNH3·H2O溶液,二者体积比为7:1,编号溶液4;
b.将配置好的溶液1和溶液2混合反应,并控制溶液2使混合溶液pH为13,反应温度28-30℃,反应过程中通入N2保护;待反应分离出沉淀颗粒,用去离子水洗涤后烘干;在380-390℃煅烧6-8h,获得钴氧前躯体;
c.将制备的钴氧前躯体加入反应釜中,并将配置好的溶液3和溶液4同时泵入反应釜,并控制溶液4使混合溶液pH为10.5,搅拌并保持恒温55-60℃,反应过程中通入N2保护;待反应分离出沉淀颗粒,用去离子水洗涤后烘干,得氢氧化镍钴铝前躯体;
d.将碳酸锂和氢氧化镍钴铝前躯体按摩尔比Li/M=1.06球磨混合;其中M是镍钴铝三种元素的摩尔数之和;
e.马弗炉烧结:室温-450℃,升温速率3-4℃/min,450℃时不保温;450-740℃,升温速率1-1.5℃/min,740℃保温18-20h;740-350℃,降温速率1.5-2.5℃/min,后随炉温自然冷却,整个过程中气氛为空气,气流量为8-10L/min;
f.破碎后,得锂镍钴铝氧正极三元材料LiNi0.78Co0.17Al0.05O2
CN201310693527.2A 2013-12-18 2013-12-18 高压实密度锂镍钴铝氧三元正极材料的制备方法 Expired - Fee Related CN103715420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310693527.2A CN103715420B (zh) 2013-12-18 2013-12-18 高压实密度锂镍钴铝氧三元正极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310693527.2A CN103715420B (zh) 2013-12-18 2013-12-18 高压实密度锂镍钴铝氧三元正极材料的制备方法

Publications (2)

Publication Number Publication Date
CN103715420A CN103715420A (zh) 2014-04-09
CN103715420B true CN103715420B (zh) 2015-12-02

Family

ID=50408197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310693527.2A Expired - Fee Related CN103715420B (zh) 2013-12-18 2013-12-18 高压实密度锂镍钴铝氧三元正极材料的制备方法

Country Status (1)

Country Link
CN (1) CN103715420B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654251A (zh) * 2016-11-30 2017-05-10 浙江天能能源科技股份有限公司 一种改性富锂锰基正极材料及其制备方法
CN109179518B (zh) * 2018-07-16 2020-12-15 昆明理工大学 一种高密度掺杂氢氧化镍钴前驱体的制备方法
CN111082030B (zh) * 2019-12-31 2023-08-08 河北科技大学 一种双重改性的富镍三元材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074679A (zh) * 2010-12-18 2011-05-25 中南大学 一种锂离子电池正极材料球形掺铝镍钴酸锂的制备方法
CN103296263A (zh) * 2012-12-28 2013-09-11 深圳市天骄科技开发有限公司 一种锂离子电池正极材料球形镍钴铝酸锂的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116572A (ja) * 1997-06-24 1999-01-22 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極材料及びその前駆体組成物の製造方法
US7968221B2 (en) * 2005-12-19 2011-06-28 Panasonic Corporation Lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074679A (zh) * 2010-12-18 2011-05-25 中南大学 一种锂离子电池正极材料球形掺铝镍钴酸锂的制备方法
CN103296263A (zh) * 2012-12-28 2013-09-11 深圳市天骄科技开发有限公司 一种锂离子电池正极材料球形镍钴铝酸锂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 prepared from the precursor Ni0.8Co0.15Al0.05OOH;Guorong Hu et al;《Journal of Power Sources》;20111005;第198卷(第2012期);全文 *

Also Published As

Publication number Publication date
CN103715420A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
CN107681128B (zh) 一种锂离子电池正极材料及其制备方法
CN108878799B (zh) 一种介孔硅酸铝锂包覆的掺杂型单晶三元正极材料及其制备方法
CN106299347B (zh) 镍钴铝三元前驱体及其制备方法和制备的正极材料及方法
US11708280B2 (en) Method of preparing MOF-coated monocrystal ternary positive electrode material
CN108023078A (zh) 一种单晶形貌高镍三元正极材料及其制备方法
CN106159254B (zh) 纳米片状三元或富锂锰基固溶体正极材料前驱体制备方法
CN110233250B (zh) 一种单晶颗粒三元正极材料的制备方法
CN103700845B (zh) 浓度梯度分布锂镍钴锰氧三元锂电池正极材料的制备方法
CN112086616B (zh) 一种大(010)晶面镍钴锰/铝层状正极材料的制备方法
WO2023130779A1 (zh) 一种具有核壳结构的高电压三元正极材料及其制备方法
US7985503B2 (en) Method for preparing spherical nickelous hydroxide which is dopped and multiple metal oxides, and lithium ion secondary battery
CN103367704A (zh) 梯度分布的复合多元材料前驱体及其制备方法和应用
CN104733724A (zh) 高镍型锂离子二次电池正极材料及其制备方法
CN102013481A (zh) 一种球形梯度富锂正极材料的合成方法
CN103700825B (zh) Li(Ni0.4Co0.2Mn0.4)O2锂电池正极材料掺杂包覆方法
CN102623691B (zh) 一种锂电池正极材料镍锰酸锂的制备方法
CN106410182B (zh) 一种高压实密度微米级单晶三元正极材料的制备方法
CN105489881A (zh) 一种提高锂离子电池三元镍钴锰正极材料振实密度的方法
CN102315429A (zh) 锂离子电池正极材料固相法掺杂铝的制备方法
CN102074679A (zh) 一种锂离子电池正极材料球形掺铝镍钴酸锂的制备方法
CN109786736A (zh) 一种镍钴锰酸铷锂材料及其制备方法和应用
CN105958063B (zh) 一种锂离子电池用镍钴铝正极材料的制备方法
CN103715420B (zh) 高压实密度锂镍钴铝氧三元正极材料的制备方法
CN111072075A (zh) 一种锂离子电池正极材料的制备方法
CN111029561A (zh) 三元锂电正极材料前驱体及其制备方法、三元锂电正极材料及制备方法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180329

Address after: 753000 the Ningxia Hui Autonomous Region Shizuishan high tech Industrial Park, medium and small business incubator No. 9 workshop

Patentee after: JIANGSU KING LITHIUM CELL CO., LTD.

Address before: 9 No. 212006 Zhenjiang province Jiangsu City Jingkou Industrial Park Jinyang Avenue

Patentee before: Jiangsu King Lithium Cell Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151202

Termination date: 20181218

CF01 Termination of patent right due to non-payment of annual fee