CN103686987A - 发送和接收同步信道、广播信道的方法和设备 - Google Patents

发送和接收同步信道、广播信道的方法和设备 Download PDF

Info

Publication number
CN103686987A
CN103686987A CN201210365116.6A CN201210365116A CN103686987A CN 103686987 A CN103686987 A CN 103686987A CN 201210365116 A CN201210365116 A CN 201210365116A CN 103686987 A CN103686987 A CN 103686987A
Authority
CN
China
Prior art keywords
ofdm symbol
sch
channel
bch
time slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210365116.6A
Other languages
English (en)
Inventor
孙程君
李迎阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Samsung Telecommunications Technology Research Co Ltd
Samsung Electronics Co Ltd
Original Assignee
Beijing Samsung Telecommunications Technology Research Co Ltd
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Samsung Telecommunications Technology Research Co Ltd, Samsung Electronics Co Ltd filed Critical Beijing Samsung Telecommunications Technology Research Co Ltd
Priority to CN201210365116.6A priority Critical patent/CN103686987A/zh
Priority to US14/038,157 priority patent/US9736836B2/en
Priority to PCT/KR2013/008622 priority patent/WO2014054867A1/en
Publication of CN103686987A publication Critical patent/CN103686987A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/143Two-way operation using the same type of signal, i.e. duplex for modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种发送同步信道的方法,包括:生成在P-SCH和S-SCH信道上发送的同步信号;将所述同步信号复用于特定的OFDM符号形成所述P-SCH和S-SCH信道,其中,所述特定的OFDM符号上不承载以下任意一种信号:MRS、CSI-RS和TRS;发送所述P-SCH和S-SCH信道。本申请还公开了一种发送P-BCH的方法。根据本发明提出的技术方案,避免了P-SCH和S-SCH与DMRS、CSI-RS和TRS的OFDM符号之间的冲突,从而增加了***配置的灵活性,并且降低了UE搜索现有的LTE***和NCT***的同步信道的复杂度。根据本发明提出的技术方案,避免了P-BCH与CSI-RS的OFDM符号之间的冲突,从而增加了***配置CSI-RS的灵活性,并保证NCT***的P-BCH的传输性能。

Description

发送和接收同步信道、广播信道的方法和设备
技术领域
本发明涉及无线通信***,更具体而言,本发明涉及发送和接收同步信道、广播信道的方法和设备。
背景技术
在3GPP LTE***中,每个无线帧的长度是10ms,等分为10个子帧。一个下行传输时间间隔(TTI)就是定义在一个子帧上。如图1所示是FDD***的帧结构,每个下行子帧包括两个时隙,对一般循环前缀(CP)长度,每个时隙包含7个OFDM符号;对扩展CP长度,每个时隙包含6个OFDM符号。如图2所示是TDD***的帧结构,每个无线帧等分为两个长度为5ms的半帧;子帧1和子帧6分别包含3个特殊域,即下行导频时隙(DwPTS)、保护间隔(GP)和上行导频时隙(UpPTS),这3个特殊域的长度的和是1ms。
图3示出了LTE***中的子帧结构,前n个OFDM符号,n等于1、2或者3,用于传输下行控制信息,包括物理下行控制信道(PDCCH)和其他控制信息;剩余的OFDM符号用来传输PDSCH。资源分配的粒度是物理资源块PRB,一个PRB在频率上包含12个连续的子载波,在时间上对应一个时隙。一个子帧内相同子载波上的两个时隙内的两个PRB称为一个PRB对。在每个PRB对内,每个资源单元(RE)是时频资源的最小单位,即频率上是一个子载波,时间上是一个OFDM符号。RE可以分别用于不同的功能,例如,一部分RE可以分别用于传输小区特定参考信号(CRS)、用户特定的解调参考信号(DMRS)、信道质量指示参考信号(CSI-RS)等。
在LTE***中,同步信道(SCH)是以5ms周期发送的。对FDD***,如图4所示,在一个无线帧内,主同步信道(P-SCH)是位于时隙0和时隙10的最后一个OFDM符号的中间72个子载波上;次同步信道(S-SCH)是位于时隙0和时隙10的倒数第二个OFDM符号的中间72个子载波上。也就是说,FDD***的P-SCH和S-SCH占用相邻的OFDM符号。对TDD***,如图5所示,在一个无线帧内,主同步信道(P-SCH)是位于子帧1和子帧6的DwPTS域的第三个OFDM符号的中间72个子载波上;次同步信道(S-SCH)是位于子帧0和子帧5的最后一个OFDM符号的中间72个子载波上。也就是说,TDD***的P-SCH和S-SCH之间间隔3个OFDM符号。
在LTE***中,主广播信道(P-BCH)的发送周期是40ms,一个周期内分为4个P-BCH突发,并分别映射到一个周期内的4个无线帧的时隙1。如图4和图5所示,对FDD***和TDD***,一个P-BCH突发在时间上都是映射到时隙1的前4个OFDM符号,在频域上都是占用带宽的中间72个子载波。
这样,在LTE***中,UE检测服务小区的过程如下:首先,利用P-SCH和S-SCH进行同步并检测物理小区标识(PID),因为FDD***和TDD***的P-SCH和S-SCH的相对位置是不同的,所以在LTE***中基于上述P-SCH和S-SCH的相对位置区分FDD和TDD***;然后,UE可以检测CRS的位置从而确认检测到的PID是否是个有效的小区;接下来,UE解调P-BCH从而获得小区的主广播信息。
在LTE***的进一步演进***中,降低后续兼容控制信令和CRS的开销,同时减少因为后续兼容控制信令和CRS引入的干扰,有利于提高UE的频谱利用率。因为降低了CRS开销,对于***省电性能也是一个改善。这样的***的PDCCH和PDSCH传输一般是基于DMRS解调的,目前一般称其为新载波类型(NCT)。因为解调是基于DMRS的,这导致所有的现有UE都不能工作于NCT小区。这是因为现有UE都在一定程度上基于CRS来接收控制信息。对现有UE而言,当其在一个工作于NCT模式的小区尝试初始接入时,其初始接入必然失败。按照其是否能够最为一个独立小区来工作,NCT可以分为两类。对不能独立工作的情况(non-standalone),只能作为CA***的一个次小区(Scell)工作,如果NCT小区与其他CA小区之间不同步,P-SCH和S-SCH仍然是需要的,但是可以不再发送P-BCH和其他广播信息,从而降低开销;对能独立工作的情况(standalone),所有的LTE中的信道都需要相应的定义NCT中的替代技术,特别地,P-SCH、S-SCH和P-BCH都是需要发送的。所以,如何在NCT***中发送P-SCH、S-SCH和P-BCH是一个需要解决的问题。
发明内容
本发明提供了对基于OFDM的新载波类型,在这样的***中的发送、接收同步信道和广播信道的方法和设备。
本发明实施例一方面提出了一种发送同步信道的方法,包括以下步骤:
生成在P-SCH和S-SCH信道上发送的同步信号;
将所述同步信号复用于特定的OFDM符号形成所述P-SCH和S-SCH信道,其中,所述特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS;
发送所述P-SCH和S-SCH信道。
本发明实施例另一方面还提出了一种接收同步信道的方法,包括以下步骤:
检测并接收信号;
从特定的OFDM符号中解复用获取P-SCH和S-SCH信道的同步信号,其中,所述特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS;
根据所述同步信号进行***同步。
本发明实施例另一方面还提出了一种基站设备,包括:
信号产生模块,用于生成在P-SCH和S-SCH信道上发送的同步信号;
复用模块,用于将所述同步信号复用于特定的OFDM符号形成所述P-SCH和S-SCH信道,其中,所述特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS;
发送模块,用于发送所述P-SCH和S-SCH信道。
本发明实施例另一方面还提出了一种终端设备,包括:
接收模块,用于检测并接收信号;
解复用模块,用于从特定的OFDM符号中解复用获取P-SCH和S-SCH信道的同步信号,其中,所述特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS;
同步模块,用于根据所述同步信号进行***同步。
根据本发明提出的上述技术方案,避免了P-SCH和S-SCH与DMRS、CSI-RS和TRS的OFDM符号之间的冲突,从而增加了***配置的灵活性,并且降低了UE搜索现有的LTE***和NCT***的同步信道的复杂度。
本发明实施例一方面提出了一种发送广播信道的方法,包括以下步骤:
生成在P-BCH信道上发送的广播信号;
将所述广播信号复用于相应的OFDM符号形成所述P-BCH信道,其中,所述相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
发送所述P-BCH信道。
本发明实施例另一方面还提出了一种接收广播信道的方法,包括以下步骤:
检测并接收信号;
将广播信号从相应的OFDM符号中解复用,获得P-BCH信道上发送的广播信号,其中,所述相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
根据所述广播信号获取广播信息。
本发明实施例另一方面还提出了一种基站设备,包括:
信号产生模块,用于生成在P-BCH信道上发送的广播信号;
复用模块,用于将所述广播信号复用于相应的OFDM符号形成所述P-BCH信道,其中,所述相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
发送模块,用于发送所述P-BCH信道。
本发明实施例另一方面还提出了一种终端设备,包括:
接收模块,用于检测并接收信号;
解复用模块,用于将广播信号从相应的OFDM符号中解复用,获得P-BCH信道上发送的广播信号,其中,所述相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
解析模块,用于根据所述广播信号获取广播信息。
根据本发明提出的上述技术方案,避免了P-BCH与CSI-RS的OFDM符号之间的冲突,从而增加了***配置CSI-RS的灵活性,并保证NCT***的P-BCH的传输性能。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为FDD***帧结构示意图;
图2为TDD***帧结构示意图;
图3为子帧结构示意图;
图4为FDD***的同步信道和P-BCH示意图;
图5为TDD***的同步信道和P-BCH示意图;
图6为同步信道映射示意图1;
图7为同步信道映射示意图2;
图8为同步信道映射示意图3;
图9为同步信道映射示意图4;
图10为P-BCH映射示意图1;
图11为P-BCH映射示意图2;
图12为P-BCH映射示意图3;
图13为P-BCH映射示意图4;
图14为P-BCH映射示意图5;
图15为P-BCH映射示意图6;
图16为P-BCH映射示意图7;
图17为P-BCH映射示意图8;
图18为P-BCH映射示意图9;
图19为P-BCH映射示意图10;
图20为P-BCH映射示意图11;
图21为P-BCH映射示意图12;
图22为P-BCH映射示意图13;
图23为P-BCH映射示意图14;
图24为P-BCH映射示意图15;
图25为P-BCH映射示意图16;
图26为P-BCH映射示意图17;
图27为P-BCH映射示意图18;
图28为P-BCH映射示意图19;
图29为P-BCH映射示意图20;
图30为P-BCH映射示意图21;
图31为P-BCH映射示意图22;
图32为P-BCH映射示意图23;
图33为P-BCH映射示意图24;
图34为P-BCH映射示意图25;
图35为P-BCH映射示意图26;
图36为发送同步信道的基站设备结构示意图;
图37为接收同步信道的UE设备结构示意图;
图38为发送P-BCH的基站设备结构示意图;
图39为接收P-BCH的UE设备结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
在本发明中,所使用的“终端设备”既包括仅具备无发射能力的无线信号接收器的设备,又包括具有能够在双向通信链路上进行双向通信的接收和发射硬件的设备。这种设备可以包括:具有或没有多线路显示器的蜂窝或其他通信设备;可以组合语音和数据处理、传真和/或数据通信能力的个人通信***(PCS);可以包括射频接收器和寻呼机、互联网/内联网访问、网络浏览器、记事本、日历和/或全球定位***(GPS)接收器的个人数字助理(PDA);和/或包括射频接收器的常规膝上型和/或掌上型计算机或其他设备。这里所使用的“终端设备”可以是便携式、可运输、安装在交通工具(航空、海运和/或陆地)中的,或者适合于和/或配置为在本地运行和/或以分布形式在地球和/或空间的任何其他位置运行。
此外,本文所述多个实施例与基站设备有关。基站设备可以用于与一个或多个终端设备通信,而且也被称为接入点、节点B或其它术语。
对如上所述的NCT小区,当它可以作为一个独立的小区工作时,或者虽然是配置为CA***的其中一个单元载波,但是当该NCT小区和其他单元载波不同步时,就需要发送同步信道。按照现有LTE***的同步信道设计,NCT小区的同步信道可以包括P-SCH和S-SCH。现有LTE***中的P-SCH和S-SCH的位置与DMRS所在的位置存在冲突,并且还与一部分CSI-RS的资源也存在冲突。为了增加NCT***调度PDSCH和发送CSI-RS的灵活性,就需要变化P-SCH和S-SCH所占用的OFDM符号。本发明下面描述P-SCH和S-SCH在无线帧中的时间位置,而并非用于限制P-SCH和S-SCH的其他现有设计。例如,P-SCH和S-SCH仍然可以占有带宽中间的72个子载波,并且P-SCH和S-SCH序列可以复用LTE中的现有设计等。
对NCT***而言,一个子帧中的一部分OFDM符号需要用于特定的用途。具体地说,子帧内的一部分OFDM符号用于承载DMRS,用于对下行传输的信号的解调。例如,按照现有LTE***的设计,对一般子帧而言,DMRS是在每个时隙的后两个OFDM符号上传输。子帧中的一部分OFDM符号可能会被配置为传输CSI-RS。例如,按照LTE FDD***的设计,对一般子帧,第一个时隙的后两个OFDM符号以及第二个时隙的第3、4、6和7个OFDM符号可以用于传输CSI-RS。另外,为了在NCT上进行时间和频率的精确同步,还需要发送用于时间和频率同步跟踪的参考信号(TRS)。例如,TRS可以是复用现有CRS端口0的时频映射结构,即对一般CP的子帧而言,TRS是占用每个时隙的第1个和第4个OFDM符号。当需要确定P-SCH和S-SCH在无线帧中的位置时,本发明的技术方案使用子帧内除上述用于或者可能用于DMRS、CSI-RS和TRS的OFDM符号以外的其他OFDM符号。采用该方法,避免了P-SCH和S-SCH与上述DMRS、CSI-RS和TRS的OFDM符号之间的冲突,从而增加***配置的灵活性。这里,在处理CSI-RS的影响时,可以是对每种双工模式(FDD或者TDD)的***,分别保证其所有可用于CSI-RS的OFDM符号都不用于传输P-SCH或者S-SCH;或者,针对FDD和TDD***,可以保证这些在两种***中用于承载CSI-RS的OFDM符号都不被用于传输P-SCH或者S-SCH。
对现有UE而言,当其在一个工作于NCT模式的小区尝试初始接入时,其初始接入必然失败。根据现有UE检测到接入NCT小区失败的时间点,可以有不同的同步信道的设计方法。例如,如果P-SCH和S-SCH保持现有LTE***中的相对位置不变时,也就是说,在NCT的FDD***中,保持S-SCH和P-SCH占用相邻的OFDM符号,并且S-SCH排在P-SCH的前面;而在NCT的TDD***中,保持S-SCH和P-SCH之间间隔三个OFDM符号,并且S-SCH排在P-SCH的前面,那么,此时,现有UE在检测到P-SCH和S-SCH后,会认为识别了一个可用的小区,并继续根据小区ID进行后续操作,但是这样的后续操作会以失败结束,从而阻止了现有UE接入NCT小区。因此,为了使得现有UE能够尽可能快速的检测到这是一个不支持其接入的小区,本发明的技术方案提出了NCT小区的P-SCH和S-SCH的相对位置不同于现有LTE***,并且对FDD和TDD的NCT***,采用相同的P-SCH和S-SCH的相对位置。也就是说,在LTE***已经存在的两种P-SCH和S-SCH的相对位置基础上,本发明引入了第三种P-SCH和S-SCH的相对位置,它同时适用于FDD和TDD的NCT***。采用本发明提出的方法,现有UE在检测S-SCH时,就可以发现不能接入NCT小区,从而避免UE的额外搜索工作;并且,因为只对NCT引入了一种新的P-SCH和S-SCH的相对位置,降低了支持NCT***的UE搜索现有LTE***和NCT***的同步信道时的复杂度。
为了实现本发明之目的,在基站设备侧,本发明实施例提出了一种发送同步信道的方法,包括以下步骤:
生成在P-SCH和S-SCH信道上发送的同步信号;
将同步信号复用于特定的OFDM符号形成P-SCH和S-SCH信道,其中,特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS;
发送P-SCH和S-SCH信道。
作为本发明的实施例,上述方法应用于FDD或TDD通信***,且在两种通信***中P-SCH和S-SCH具有相同的相对位置。
作为本发明的实施例,在TDD通信***中,P-SCH和S-SCH信道包括以下任意一种承载方式:
DwPTS的OFDM符号0承载P-SCH信道,DwPTS的前一个子帧的第2个时隙的OFDM符号1承载S-SCH信道;
DwPTS的前两个OFDM符号分别传输P-SCH和S-SCH信道。
作为本发明的实施例,在FDD通信***中,P-SCH和S-SCH信道包括以下任意一种承载方式:
子帧的第2个时隙的OFDM符号1承载P-SCH信道,第1个时隙的OFDM符号2承载S-SCH信道;
子帧的第1个时隙的OFDM符号1和2分别传输P-SCH和S-SCH信道。
作为本发明的实施例,特定的OFDM符号为不包含以下特征的符号:
两种通信***中所有能够用于承载CSI-RS的OFDM符号,或
两种通信***中都能够用于承载CSI-RS的OFDM符号。
为了实现本发明之目的,在终端设备侧,本发明实施例提出了一种接收同步信道的方法,包括以下步骤:
检测并接收信号;
从特定的OFDM符号中解复用获取P-SCH和S-SCH信道的同步信号,其中,特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS;
根据同步信号进行***同步。
作为本发明的实施例,***包括FDD或TDD通信***,且在两种通信***中P-SCH和S-SCH具有相同的相对位置。
作为本发明的实施例,在TDD通信***中,从特定的OFDM符号中解复用获取同步信号包括以下任意一种方式:
从DwPTS的OFDM符号0上获取P-SCH信道的同步信号,从DwPTS的前一个子帧的第2个时隙的OFDM符号1上获取S-SCH信道的同步信号;
从DwPTS的前两个OFDM符号分别获取P-SCH和S-SCH信道的同步信号。
作为本发明的实施例,在FDD通信***中,从特定的OFDM符号中解复用获取同步信号包括以下任意一种方式:
从子帧的第2个时隙的OFDM符号1上获取P-SCH信道的同步信号,第1个时隙的OFDM符号2上获取S-SCH信道的同步信号;
从子帧的第1个时隙的OFDM符号1和2分别获取P-SCH和S-SCH信道的同步信号。
根据上述的设计原则,下面描述本发明重点部分关于配置P-SCH和S-SCH的2个优选实施例。
实施例一
假设复用现有LTE版本中的DMRS的时频结构和CSI-RS的时频结构,并假设TRS是复用现有CRS端口0的时频结构。这里,对FDD和TDD***而言,假设那些在两种***中都可用于承载CSI-RS的OFDM符号才不用于传输P-SCH或者S-SCH。按照本发明的方法,引入不同于现有LTE***的新的P-SCH和S-SCH的相对位置,并在NCT的FDD和TDD***中采用一致的新的相对位置。
图6示出了对一般CP帧结构的同步信道的示意图。在一般子帧内,为了避免与用于DMRS、CSI-RS和TRS的OFDM符号冲突,只有第一个时隙的OFDM符号1、2、3和第二个时隙OFDM符号1可以用于承载P-SCH和S-SCH。对TDD***的DwPTS,因为现有LTE***中DwPTS的第3个OFDM符号可能用于承载DMRS,所以可以考虑在DwPTS的第0和1两个OFDM符号上承载同步信道。如图6所示,对TDD***而言,可以利用DwPTS的OFDM符号0来承载P-SCH,并利用DwPTS的前一个子帧的第二个时隙的OFDM符号1来承载S-SCH。这样,TDD的P-SCH和S-SCH之间的间隔是6个OFDM符号的长度。相应地,在FDD***中保持与TDD***的P-SCH和S-SCH的相对位置,可以是利用子帧的第2个时隙的OFDM符号1来承载P-SCH,并利用第一个时隙的OFDM符号2来承载S-SCH,从而保证P-SCH和S-SCH之间的间隔也是6个OFDM符号。
图7示出了对扩展CP帧结构的同步信道的示意图。在一般子帧内,为了避免与用于DMRS、CSI-RS和TRS的OFDM符号之间的冲突,只有第一个时隙的OFDM符号1、2和第二个时隙OFDM符号1、2可以用于承载P-SCH和S-SCH。对TDD***的DwPTS而言,因为现有LTE***中DwPTS的第3个OFDM符号可能用于承载DMRS,所以可以考虑在DwPTS的第0和1两个OFDM符号上承载同步信道。如图7所示,对TDD***而言,可以在DwPTS的OFDM符号0来承载P-SCH,并在DwPTS的前一个子帧的第二个时隙的OFDM符号1来承载S-SCH。这样,TDD的P-SCH和S-SCH之间的间隔是5个OFDM符号的长度。相应地,在FDD***中保持与TDD***的P-SCH和S-SCH的相对位置,可以是利用子帧的第2个时隙的OFDM符号1来承载P-SCH,并利用第一个时隙的OFDM符号2来承载S-SCH,从而保证P-SCH和S-SCH之间的间隔也是5个OFDM符号。
本领域技术人员理解的是,还可以交换图6和图7所示方法中的P-SCH所占的OFDM符号和S-SCH所占的OFDM符号之间的相对位置关系,即将P-SCH设置在S-SCH的前面。
实施例二
假设复用现有LTE版本中的DMRS的时频结构和CSI-RS的时频结构,并假设TRS是复用现有CRS端口0的时频结构。这里,对每种双工模式(FDD或者TDD)的***,分别保证其所有可用于CSI-RS的OFDM符号都不用于传输P-SCH或者S-SCH。按照本发明的方法,引入不同于现有LTE***的新的P-SCH和S-SCH的相对位置,并在NCT的FDD和TDD***中采用一致的新的相对位置。
图8示出了对一般CP帧结构的同步信道的示意图。对TDD***而言,在DwPTS内同时传输P-SCH和S-SCH,并分别占用DwPTS的OFDM符号0和1。对FDD***而言,如图8所示,P-SCH和S-SCH可以分别占用子帧的第一个时隙的OFDM符号1和2。或者,对FDD***而言,P-SCH和S-SCH也可以分别占用子帧的第一个时隙的OFDM符号2和3。
如图9所示是对扩展CP帧结构的同步信道的示意图。对TDD***而言,仍然在DwPTS内同时传输P-SCH和S-SCH,并分别占用DwPTS的OFDM符号0和1。对FDD***而言,如图8所示,P-SCH和S-SCH可以分别占用子帧的第一个时隙的OFDM符号1和2。
在图8和图9的示意图中,虽然本发明的FDD***和现有的FDD***一致,P-SCH和S-SCH占用相邻的OFDM符号,但是P-SCH和S-SCH分别占用的OFDM符号的先后次序是不同的,所以终端仍然可以区分NCT***和现有LTE***。
对如上所述的NCT小区,当它作为一个独立的小区而工作时,另一个需要传送的信道是P-BCH。下面描述本发明对NCT***的P-BCH的配置方法。在现有LTE***中,P-BCH的位置与一部分CSI-RS占用OFDM符号存在冲突,这将导致在子帧0上配置CSI-RS时会受到限制。尤其是对TDD的上下行配置0而言,因为一个无线帧内只有子帧0和子帧5可以发送CSI-RS,使得可用于发送CSI-RS的资源很有限,所以需要避免在可能用于CSI-RS的OFDM符号上发送P-BCH,有利于增加CSI-RS备选资源的容量,从而增加NCT***配置的灵活性。另外,如果P-BCH占用和同步信道相同的子帧,那么用于同步信道的OFDM符号也不能用于P-BCH。这样,本发明确定P-BCH在无线帧中的时频位置时,使用子帧内除上述用于或者可能用于CSI-RS和同步信道的OFDM符号以外的其他OFDM符号。采用该方法,避免了P-BCH与CSI-RS的OFDM符号之间的冲突,从而增加***配置CSI-RS的灵活性。这里,在处理CSI-RS的影响时,可以是任一种双工模式(FDD或者TDD)的***,并且分别保证其所有可用于CSI-RS的OFDM符号都不用于传输P-BCH;或者,可以是对FDD和TDD***而言,保证在FDD和TDD两种***中用于承载CSI-RS的OFDM符号都不用于传输P-BCH。本发明下面讨论P-BCH在无线帧中的时间位置,而不限制P-BCH其他设计,例如,P-BCH仍然可以占有带宽中间的72个子载波,P-BCH的编码等操作可以复用LTE中的现有设计等。这里,可以是对FDD和TDD***分别独立设计P-BCH映射结构;或者,为了增加一致性,可以在FDD和TDD***中采用相同的P-BCH映射结构。
为了实现本发明之目的,在基站设备侧,本发明实施例提出了一种发送广播信道的方法,包括以下步骤:
生成在P-BCH信道上发送的广播信号;
将广播信号复用于相应的OFDM符号形成P-BCH信道,其中,相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
发送P-BCH信道。
作为本发明的实施例,方法应用于FDD或TDD通信***。
作为本发明的实施例,相应的OFDM符号为不包含以下特征的符号:
两种通信***中所有能够用于承载CSI-RS的OFDM符号,或
两种通信***中都能够用于承载CSI-RS的OFDM符号。
作为本发明的实施例,对每个P-BCH信道的突发,用于P-BCH传输的RE数目由现有LTE***的参数确定。
作为本发明的实施例,P-BCH信道占用的OFDM符号根据DMRS所在的OFDM符号确定。
作为本发明的实施例,P-BCH信道映射到发送TRS的4个OFDM符号上。
作为本发明的实施例,子帧内除用于CSI-RS和同步信道的OFDM符号以外的其他OFDM符号用于传输P-BCH信道。
作为本发明的实施例,传输P-BCH信道包括以下任意一种方式:
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、3、4和第二个时隙的OFDM符号0、1、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、3和第二个时隙的OFDM符号0、1、2、3;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、2、3和第二个时隙的OFDM符号0、3;
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、1、3、4和第二个时隙的OFDM符号0、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、3和第二个时隙的OFDM符号0、2、3。
作为本发明的实施例,P-BCH信道具有以下一个或多个特性:
占用的子载波数目小于6个PRB的子载波数目,并且相当于整数个PRB的子载波数;
占用频带中部的PRB的资源;
频带中部的6个PRB的频率资源上的两端的PRB资源用于P-BCH信道传输。
为了实现本发明之目的,在终端设备侧,本发明实施例提出了一种接收广播信道的方法,包括以下步骤:
检测并接收信号;
将广播信号从相应的OFDM符号中解复用,获得P-BCH信道上发送的广播信号,其中,相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
根据广播信号获取广播信息。
作为本发明的实施例,方法应用于FDD或TDD通信***。
作为本发明的实施例,相应的OFDM符号为不包含以下特征的符号:
两种通信***中所有能够用于承载CSI-RS的OFDM符号,或
两种通信***中都能够用于承载CSI-RS的OFDM符号。
作为本发明的实施例,子帧内除用于CSI-RS和同步信道的OFDM符号以外的其他OFDM符号用于解复用获取P-BCH信道。
作为本发明的实施例,解复用以下任意一种方式获取P-BCH信道:
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、3、4和第二个时隙的OFDM符号0、1、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、3和第二个时隙的OFDM符号0、1、2、3;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、2、3和第二个时隙的OFDM符号0、3;
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、1、3、4和第二个时隙的OFDM符号0、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、3和第二令时隙的OFDM符号0、2、3。
作为本发明的实施例,解复用获取的P-BCH信道具有以下一个或多个特性:
占用的子载波数目小于6个PRB的子载波数目,并且相当于整数个PRB的子载波数;
占用频带中部的PRB的资源;
频带中部的6个PRB的频率资源上的两端的PRB资源用于P-BCH信道传输。
根据上述的设计原则,下面描述本发明配置P-BCH的3个优选实施例。在下面的实施例中,P-SCH和P-SCH占用的OFDM符号是示例性的,仅用于解释本发明,而非限制本发明的P-BCH映射结构只能用于这样的P-SCH和P-SCH的映射结构。
实施例三
在NCT***中,对每个P-BCH突发而言,本发明的技术方案保证用于P-BCH传输的RE数目与现有LTE***的RE数目接近或者相等。也就是说,本发明的NCT***与现有的LTE***保持一致;而对NCT***而言,其可以在4个OFDM符号上传输P-BCH。这里,所述4个OFDM符号内的一些RE可能用于其他用途,例如承载TRS,这些用作其他用途的RE将不被用于承载P-BCH。这里,可以是对FDD和TDD***分别独立设计P-BCH映射结构;或者,为了增加一致性,可以在FDD和TDD***中采用相同的P-BCH映射结构。
按照现有LTE***的设计,对FDD***的一般CP子帧结构,第一个时隙的OFDM符号5、6和第二个时隙的OFDM符号2、3、5、6可以用于传输CSI-RS。如图10所示,进一步假设P-SCH和S-SCH是通过占用子帧的第一个时隙的OFDM符号1和2进行发送。为了增加P-BCH占用的RE的信道估计精度,可以使P-BCH占用OFDM符号尽可能的接近DMRS所在的OFDM符号,并尽可能避免利用外插的信道估计。如图10所示,P-BCH占用第一个时隙的OFDM符号4和第二个时隙的OFDM符号0、1、4。该P-BCH映射结构可以只用于FDD***;也可以同时应用于NCT的FDD和TDD***,它避免了P-BCH与FDD和TDD***的公共CSI-RS资源之间的冲突。或者,尽可能避免在传送了TRS的OFDM符号上发送P-BCH,从而避免相邻NCT小区之间的TRS和P-BCH之间的相互干扰,例如,如图11所示的P-BCH占用第一个时隙的OFDM符号3和第二个时隙的OFDM符号0、1、4。该P-BCH映射结构最小化了在包含TRS的OFDM符号上发送P-BCH;可以只用于FDD***,也可以同时应用于NCT的FDD和TDD***,它避免了P-BCH与FDD和TDD***的公共CSI-RS资源之间的冲突。或者,考虑到子帧的第二个时隙的OFDM符号1在TDD***中是可以用于发送CSI-RS的,该OFDM符号不用于P-BCH传输,这样,如图12所示,P-BCH占用第一个时隙的OFDM符号3、4和第二个时隙的OFDM符号0、4。该P-BCH映射结构可以只用于TDD***;也可以同时应用于NCT的FDD和TDD***,它避免了P-BCH与FDD和TDD***的所有可能的CSI-RS资源之间的冲突。或者,如图13所示,P-BCH可以映射到发送TRS的4个OFDM符号上,即P-BCH在子帧的两个时隙上分别占用OFDM符号0、4。该P-BCH映射结构可以同时应用于NCT的FDD和TDD***,它避免了P-BCH与FDD和TDD***的所有可能的CSI-RS资源之间的冲突。图13所示的设计原则也同样适用于扩展CP子帧结构,从而增加标准的一致性。
对扩展CP子帧结构而言,按照现有LTE***中的FDD***的设计,两个时隙的OFDM符号4、5可以用于传输CSI-RS。进一步假设P-SCH和S-SCH是通过分别占用子帧的第一个时隙的OFDM符号1和2进行发送。为了增加P-BCH占用的RE的信道估计精度,可以使P-BCH占用OFDM符号尽可能的接近DMRS所在的OFDM符号,并尽可能避免利用外插的信道估计。如图14所示,P-BCH占用第二个时隙的OFDM符号0、1、2、3。对TDD NCT***而言,假设P-SCH和S-SCH都是在DwPTS中进行发送的,并考虑到子帧的第二个时隙的OFDM符号1、2也可用于CSI-RS,例如,如图15所示的TDD***的P-BCH占用第一个时隙的OFDM符号2、3和第二个时隙的OFDM符号0、3。或者,尽可能避免在传送了TRS的OFDM符号上发送P-BCH,从而避免相邻NCT小区之间的TRS和P-BCH之间的相互干扰,例如,如图16所示的P-BCH占用第一个时隙的OFDM符号1、2和第二个时隙的OFDM符号0、3。或者,例如,如图17所示的P-BCH占用两个时隙的OFDM符号0、3。
为了确保***的一致性以便降低UE的复杂度,图14的P-BCH映射结构可以同时应用于NCT的FDD和TDD***,从而避免了P-BCH与FDD和TDD的公共CRI-RS之间的冲突。或者,如图17所示的P-BCH映射结构也可以同时应用于NCT的FDD和TDD***,从而避免了P-BCH与FDD和TDD***的所有可能的CSI-RS资源之间的冲突。
当图14的方法应用于FDD和TDD两种***时,因为第二个时隙的OFDM符号1、2被P-BCH占用,这导致TDD损失了一部分可利用的CSI-RS资源。针对这种问题,本发明提供的一种改进方法是:把第二个时隙的OFDM符号1、2上的CSI-RS资源扩展应用到FDD***中,然后把其他的一些携带DMRS和CSI-RS的OFDM符号用于P-BCH,这样的处理实际上是在图14的基础上增加了CSI-RS的容量,从而增加了CSI-RS配置的灵活性。例如,如图18所示,使FDD和TDD***都可以利用第二个时隙的OFDM符号1、2来发送CSI-RS,并使P-BCH占用第二个时隙的OFDM符号0、3、4、5。
进一步地,对一般CP子帧结构而言,假设P-SCH和S-SCH是通过分别占用子帧的第一个时隙的OFDM符号2和第二个时隙的OFDM符号1进行发送。为了增加P-BCH占用的RE的信道估计精度,可以使P-BCH占用OFDM符号尽可能的接近DMRS所在的OFDM符号,并尽可能避免利用外插的信道估计。如图19所示,P-BCH占用第一个时隙的OFDM符号3、4和第二个时隙的OFDM符号0、4。或者,尽可能避免在传送了TRS的OFDM符号上发送P-BCH,从而避免相邻NCT小区之间的TRS和P-BCH之间的相互干扰,如图20所示,P-BCH占用第一个时隙的OFDM符号1、3和第二个时隙的OFDM符号0、4。图19和图20的P-BCH映射结构可以同时应用于NCT的FDD和TDD***,从而避免了P-BCH与FDD和TDD***的所有可能的CSI-RS资源之间的冲突。
对扩展CP子帧结构而言,进一步假设P-SCH和S-SCH是通过分别占用子帧的第一个时隙的OFDM符号2和第二个时隙的OFDM符号1进行发送。为了增加P-BCH占用的RE的信道估计精度,可以使P-BCH占用OFDM符号尽可能的接近DMRS所在的OFDM符号,并尽可能避免利用外插的信道估计。如图21所示,P-BCH占用第一个时隙的OFDM符号3和第二个时隙的OFDM符号0、2、3。该P-BCH映射结构可以同时应用于NCT的FDD和TDD***,从而避免了P-BCH与FDD和TDD***的公共的CSI-RS资源之间的冲突。或者,尽可能避免在传送了TRS的OFDM符号上发送P-BCH,从而避免相邻NCT小区之间的TRS和P-BCH之间的相互干扰,如图22所示,P-BCH占用第一个时隙的OFDM符号1和第二个时隙的OFDM符号0、2、3。该P-BCH映射结构也可以同时应用于NCT的FDD和TDD***,从而避免了P-BCH与FDD和TDD***的所有可能的CSI-RS资源都不冲突,并且对FDD***最小化了在包含TRS的OFDM符号上发送P-BCH。
实施例四
为了增加P-BCH的可靠性,把子帧内除用于CSI-RS和同步信道的OFDM符号以外的其他OFDM符号用于传输P-BCH。实际上,一般基于DMRS的信道估计精度低于现有LTE***的基于CRS的信道估计精度,本实施例的方法可以使每个P-BCH突发的RE数目多于现有LTE***的RE数目,从而保证NCT***的P-BCH的传输性能。如果是对FDD和TDD***分别独立设计P-BCH映射结构,那么因为两种***的P-SCH和S-SCH的映射位置的不同,导致按照上面的原则,FDD和TDD的P-BCH的映射结构一般是不同的。而且,因为TDD***中很可能在DwPTS发送了至少一部分同步信道的信号,所以在一般子帧内可以有更多的OFDM符号用于映射P-BCH。或者,为了增加一致性,可以在FDD和TDD***中采用相同的P-BCH映射结构。这里,因为TDD***的一般子帧内可用于P-BCH传输的OFDM符号一般多于FDD***的OFDM符号,所以可以按照FDD子帧结构进行设计,把除用于CSI-RS和同步信道的OFDM符号以外的其他OFDM符号用于传输P-BCH,并扩展到TDD***,使得对TDD***来说并没有利用除用于CSI-RS和同步信道的OFDM符号以外的所有其他OFDM符号来传输P-BCH。
按照现有LTE FDD***的设计中的一般CP子帧,第一个时隙的OFDM符号5、6和第二个时隙的OFDM符号2、3、5、6可以用于传输CSI-RS;进一步假设P-SCH和S-SCH是占用子帧的第一个时隙的OFDM符号1和2发送,则如图23所示,P-BCH占用第一个时隙的OFDM符号0、3、4和第二个时隙的OFDM符号0、1、4。
对TDD NCT***,假设P-SCH和S-SCH都是在DwPTS中发送的,并考虑到子帧的第二个时隙的OFDM符号1用于CSI-RS,则如图24所示,TDD***的P-BCH占用第一个时隙的OFDM符号0、1、2、3、4和第二个时隙的OFDM符号0、4。如果只避免P-BCH与FDD和TDD公共的CSI-RS的冲突,那么子帧的第二个时隙的OFDM符号1也可以用于承载P-BCH,即TDD***的P-BCH占用第一个时隙的OFDM符号0、1、2、3、4和第二个时隙的OFDM符号0、1、4。
为了确保***的一致性以便降低UE的复杂度,图23的P-BCH映射结构可以同时应用于NCT的FDD和TDD***,他保证了P-BCH与FDD和TDD的公共CRI-RS不冲突。或者,考虑到子帧的第二个时隙的OFDM符号1在TDD***中是可以用于发送CSI-RS的,该OFDM符号不用于P-BCH传输,这样,如图25所示,P-BCH占用第一个时隙的OFDM符号0、3、4和第二个时隙的OFDM符号0、4。该P-BCH映射结构也可以同时应用于NCT的FDD和TDD***。
对扩展CP子帧结构,按照现有LTE***的设计,对FDD***而言,两个时隙的OFDM符号4、5可以用于传输CSI-RS。如图26所示,进一步假设P-SCH和S-SCH是占用子帧的第一个时隙的OFDM符号1和2发送。则P-BCH占用第一个时隙的OFDM符号0、3和第二个时隙的OFDM符号0、1、2、3。
对TDD NCT***而言,假设P-SCH和S-SCH都是在DwPTS中发送的,并考虑到子帧的第二个时隙的OFDM符号1、2也可能用于CSI-RS,则如图27所示,TDD***的P-BCH占用第一个时隙的OFDM符号0、1、2、3和第二个时隙的OFDM符号0、3。如果只避免P-BCH与FDD和TDD公共的CSI-RS的冲突,那么子帧的第二个时隙的OFDM符号1、2也可以用于承载P-BCH,即TDD***的P-BCH占用第一个时隙的OFDM符号0、1、2、3和第二个时隙的OFDM符号0、1、2、3。
为了确保***的一致性以便降低UE的复杂度,图26的P-BCH映射结构可以同时应用于NCT的FDD和TDD***,他保证了P-BCH与FDD和TDD的公共CRI-RS不冲突。实际上,即使FDD和TDD分别采用图26和图27的方法,两种***内用于P-BCH的RE数目相等,也在一定程度保证了FDD和TDD的一致性。
或者,对FDD***,对一般CP子帧子帧,假设P-SCH和S-SCH是占用子帧的第一个时隙的OFDM符号2和第二个时隙的OFDM符号1发送,则如图28所示,P-BCH占用第一个时隙的OFDM符号0、1、3、4和第二个时隙的OFDM符号0、4。对TDD NCT***,假设一般子帧内只有第二个时隙的OFDM符号1用于承载同步信道,则如图29所示,TDD***的P-BCH占用第一个时隙的OFDM符号0、1、2、3、4和第二个时隙的OFDM符号0、4。为了确保***的一致性以便降低UE的复杂度,图28的P-BCH映射结构可以同时应用于NCT的FDD和TDD***,从而避免了P-BCH与FDD和TDD的所有CRI-RS之间的冲突。
对扩展CP子帧结构,按照现有LTE***的设计,对FDD***而言,两个时隙的OFDM符号4、5可以用于传输CSI-RS。如图30所示,进一步假设P-SCH和S-SCH是通过分别占用子帧的第一个时隙的OFDM符号2和第二个时隙的OFDM符号1进行发送;P-BCH占用第一个时隙的OFDM符号0、1、3和第二个时隙的OFDM符号0、2、3。对TDD NCT***而言,假设一般子帧内只有第二个时隙的OFDM符号1用于承载同步信道,则如图31所示,TDD***的P-BCH占用第一个时隙的OFDM符号0、1、2、3和第二个时隙的OFDM符号0、2、3,从而避免TDD***的P-BCH与FDD和TDD公共的CSI-RS资源冲突。为了确保***的一致性以便降低UE的复杂度,图30的P-BCH映射结构可以同时应用于NCT的FDD和TDD***,从而避免了P-BCH与FDD和TDD的所有CRI-RS之间的冲突。
实施例五
在实施例四中描述了在子帧内利用尽可能多的OFDM符号传输P-BCH的方法,这种方法可以增加每个P-BCH突发的链路性能。如图32所示,可以仍然在频带中部的72个子载波(相当于6个PRB)上发送P-BCH。但是,如图32所示的P-BCH资源分配机制可能导致P-BCH的性能高于需要的性能,这时可以减少P-BCH占用的子载波个数,但仍然保证P-BCH占用的子载波数相当于整数个PRB的子载波数。
例如,如果为每个P-BCH突发分配和现有LTE***接近或者相等的RE数目就已经能够满足P-BCH的检测性能,那么可以减少分配用于P-BCH的PRB对数目。假设每个P-BCH突发是映射到一个子帧的6个OFDM符号上传输,那么该P-BCH只需要映射到48个子载波(相当于4个PRB)上就可以保证用于P-BCH的RE总数与现有LTE***接近或者相等。
假设P-BCH占用的子载波数相当于N个PRB的子载波数,并且N小于6。则可以分配P-BCH占用频带中部的相当于N个PRB的资源,例如,如图33所示,P-BCH占用频带中部的相当于4个PRB的子载波;或者,也可以使P-BCH占用的频率资源以PRB为单位分散到频带中部的相当于6个PRB的资源上,并保证频带中部的6个PRB的频率资源上的两端的PRB资源一定用于P-BCH传输,从而保证频率分集性能。例如,如图34所示,P-BCH占用频带中部相当于6个PRB的频率资源上的两块连续的子载波,或者如图35所示,P-BCH占用频带中部相当于6个PRB的频率资源上的三块块连续的子载波。
对应于上述方法,本申请分别提供了相应的设备,下面分别予以描述。
图36为本发明发送同步信道信号的基站设备的结构示意图,包括:信号产生模块110、复用模块120和发送模块130。其中:
信号产生模块110,用于生成在P-SCH和S-SCH信道上发送的同步信号。
复用模块120,用于将同步信号复用于特定的OFDM符号形成P-SCH和S-SCH信道,其中,特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS。
发送模块130,用于发送P-SCH和S-SCH信道。
作为上述基站设备100的实施例,基站设备应用于FDD或TDD通信***,且在两种通信***中P-SCH和S-SCH具有相同的相对位置。
作为上述基站设备100的实施例,在TDD通信***中,复用模块120映射P-SCH和S-SCH信道包括以下任意一种承载方式:
DwPTS的OFDM符号0承载P-SCH信道,DwPTS的前一个子帧的第2个时隙的OFDM符号1承载S-SCH信道;
DwPTS的前两个OFDM符号分别传输P-SCH和S-SCH信道。
作为上述基站设备100的实施例,在FDD通信***中,复用模块120映射P-SCH和S-SCH信道包括以下任意一种承载方式:
子帧的第2个时隙的OFDM符号1承载P-SCH信道,第1个时隙的OFDM符号2承载S-SCH信道;
子帧的第1个时隙的OFDM符号1和2分别传输P-SCH和S-SCH信道。
作为上述基站设备100的实施例,特定的OFDM符号为不包含以下特征的符号:
两种通信***中所有能够用于承载CSI-RS的OFDM符号,或
两种通信***中都能够用于承载CSI-RS的OFDM符号。
图37为本发明接收同步信道信号的UE设备的结构示意图,包括:接收模块210、解复用模块220和同步模块230。其中:
接收模块210,用于检测并接收信号。
解复用模块220,用于从特定的OFDM符号中解复用获取P-SCH和S-SCH信道的同步信号,其中,特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS。
同步模块230,用于根据同步信号进行***同步。
作为上述终端设备200的实施例,***包括FDD或TDD通信***,且在两种通信***中P-SCH和S-SCH具有相同的相对位置。
作为上述终端设备200的实施例,在TDD通信***中,解复用模块220从特定的OFDM符号中解复用获取同步信号包括以下任意一种方式:
从DwPTS的OFDM符号0上获取P-SCH信道的同步信号,从DwPTS的前一个子帧的第2个时隙的OFDM符号1上获取S-SCH信道的同步信号;
从DwPTS的前两个OFDM符号分别获取P-SCH和S-SCH信道的同步信号。
作为上述终端设备200的实施例,在FDD通信***中,解复用模块220从特定的OFDM符号中解复用获取同步信号包括以下任意一种方式:
从子帧的第2个时隙的OFDM符号1上获取P-SCH信道的同步信号,第1个时隙的OFDM符号2上获取S-SCH信道的同步信号;
从子帧的第1个时隙的OFDM符号1和2分别获取P-SCH和S-SCH信道的同步信号。
图38为本发明发送P-BCH的基站设备的结构示意图,该设备包括:信号产生模块310、复用模块320和发送模块330。其中:
信号产生模块310,用于生成在P-BCH信道上发送的广播信号;
复用模块320,用于将广播信号复用于相应的OFDM符号形成P-BCH信道,其中,相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
发送模块330,用于发送P-BCH信道。
作为上述基站设备300的实施例,基站设备应用于FDD或TDD通信***。
作为上述基站设备300的实施例,相应的OFDM符号为不包含以下特征的符号:
两种通信***中所有能够用于承载CSI-RS的OFDM符号,或
两种通信***中都能够用于承载CSI-RS的OFDM符号。
作为上述基站设备300的实施例,复用模块320用于形成的P-BCH信道根据以下一个或多个原则确定:
对每个P-BCH信道的突发,用于P-BCH传输的RE数目由现有LTE***的参数确定;
P-BCH信道占用的OFDM符号根据DMRS所在的OFDM符号确定;
P-BCH信道映射到发送TRS的4个OFDM符号上。
作为上述基站设备300的实施例,复用模块320将子帧内除用于CSI-RS和同步信道的OFDM符号以外的其他OFDM符号用于传输P-BCH信道。
作为上述基站设备300的实施例,复用模块320用于复用P-BCH信道包括以下任意一种方式:
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、3、4和第二个时隙的OFDM符号0、1、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、3和第二个时隙的OFDM符号0、1、2、3;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、2、3和第二个时隙的OFDM符号0、3;
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、1、3、4和第二个时隙的OFDM符号0、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、3和第二个时隙的OFDM符号0、2、3。
作为上述基站设备300的实施例,复用模块320用于复用P-BCH信道具有以下一个或多个特性:
占用的子载波数目小于6个PRB的子载波数目,并且相当于整数个PRB的子载波数;
占用频带中部的PRB的资源;
频带中部的6个PRB的频率资源上的两端的PRB资源用于P-BCH信道传输。
图39为本发明接收P-BCH的UE设备的结构示意图,该设备包括:接收模块410、解复用模块420和解析模块430。其中:
接收模块410,用于检测并接收信号;
解复用模块420,用于将广播信号从相应的OFDM符号中解复用,获得P-BCH信道上发送的广播信号,其中,相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
解析模块430,用于根据广播信号获取广播信息。
作为上述终端设备400的实施例,终端设备400应用于FDD或TDD通信***。
作为上述终端设备400的实施例,相应的OFDM符号为不包含以下特征的符号:
两种通信***中所有能够用于承载CSI-RS的OFDM符号,或
两种通信***中都能够用于承载CSI-RS的OFDM符号。
作为上述终端设备400的实施例,子帧内除用于CSI-RS和同步信道的OFDM符号以外的其他OFDM符号都用于解复用获取P-BCH信道。
作为上述终端设备400的实施例,解复用模块420用于以下任意一种方式获取P-BCH信道:
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、3、4和第二个时隙的OFDM符号0、1、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、3和第二个时隙的OFDM符号0、1、2、3;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、2、3和第二个时隙的OFDM符号0、3;
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、1、3、4和第二个时隙的OFDM符号0、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、3和第二个时隙的OFDM符号0、2、3。
作为上述终端设备400的实施例,解复用模块420用于获取的P-BCH信道具有以下一个或多个特性:
占用的子载波数目小于6个PRB的子载波数目,并且相当于整数个PRB的子载波数;
占用频带中部的PRB的资源;
频带中部的6个PRB的频率资源上的两端的PRB资源用于P-BCH信道传输。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (28)

1.一种发送同步信道的方法,其特征在于,包括以下步骤:
生成在P-SCH和S-SCH信道上发送的同步信号;
将所述同步信号复用于特定的OFDM符号形成所述P-SCH和S-SCH信道,其中,所述特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS;
发送所述P-SCH和S-SCH信道。
2.如权利要求1所述的发送同步信道的方法,其特征在于,所述方法应用于FDD或TDD通信***,且在两种通信***中P-SCH和S-SCH具有相同的相对位置。
3.如权利要求2所述的发送同步信道的方法,其特征在于,在TDD通信***中,所述P-SCH和S-SCH信道包括以下任意一种承载方式:
DwPTS的OFDM符号0承载P-SCH信道,DwPTS的前一个子帧的第2个时隙的OFDM符号1承载S-SCH信道;
DwPTS的前两个OFDM符号分别传输P-SCH和S-SCH信道。
4.如权利要求2所述的发送同步信道的方法,其特征在于,在FDD通信***中,所述P-SCH和S-SCH信道包括以下任意一种承载方式:
子帧的第2个时隙的OFDM符号1承载P-SCH信道,第1个时隙的OFDM符号2承载S-SCH信道;
子帧的第1个时隙的OFDM符号1和2分别传输P-SCH和S-SCH信道。
5.如权利要求2所述的发送同步信道的方法,其特征在于,所述特定的OFDM符号为不包含以下特征的符号:
对FDD或者TDD每种通信***,所有能够用于承载CSI-RS的OFDM符号,或
FDD和TDD两种通信***中都能够用于承载CSI-RS的OFDM符号。
6.一种接收同步信道的方法,其特征在于,包括以下步骤:
检测并接收信号;
从特定的OFDM符号中解复用获取P-SCH和S-SCH信道的同步信号,其中,所述特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS;
根据所述同步信号进行***同步。
7.如权利要求6所述的接收同步信道的方法,其特征在于,所述***包括FDD或TDD通信***,且在两种通信***中P-SCH和S-SCH具有相同的相对位置。
8.如权利要求7所述的接收同步信道的方法,其特征在于,在TDD通信***中,从特定的OFDM符号中解复用获取同步信号包括以下任意一种方式:
从DwPTS的OFDM符号0上获取P-SCH信道的同步信号,从DwPTS的前一个子帧的第2个时隙的OFDM符号1上获取S-SCH信道的同步信号;
从DwPTS的前两个OFDM符号分别获取P-SCH和S-SCH信道的同步信号。
9.如权利要求7所述的接收同步信道的方法,其特征在于,在FDD通信***中,从特定的OFDM符号中解复用获取同步信号包括以下任意一种方式:
从子帧的第2个时隙的OFDM符号1上获取P-SCH信道的同步信号,第1个时隙的OFDM符号2上获取S-SCH信道的同步信号;
从子帧的第1个时隙的OFDM符号1和2分别获取P-SCH和S-SCH信道的同步信号。
10.一种发送广播信道的方法,其特征在于,包括以下步骤:
生成在P-BCH信道上发送的广播信号;
将所述广播信号复用于相应的OFDM符号形成所述P-BCH信道,其中,所述相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
发送所述P-BCH信道。
11.如权利要求10所述的方法,其特征在于,所述相应的OFDM符号为不包含以下特征的符号:
对FDD或者TDD每种通信***,所有能够用于承载CSI-RS的OFDM符号,或
FDD和TDD两种通信***中都能够用于承载CSI-RS的OFDM符号。
12.如权利要求10所述的方法,其特征在于,对每个P-BCH信道的突发,用于P-BCH传输的RE数目由现有LTE***的参数确定。
13.如权利要求12所述的方法,其特征在于,所述P-BCH信道占用的OFDM符号根据DMRS所在的OFDM符号确定。
14.如权利要求12所述的方法,其特征在于,所述P-BCH信道映射到发送TRS的4个OFDM符号上。
15.如权利要求10所述的方法,其特征在于,子帧内除用于CSI-RS和同步信道的OFDM符号以外的其他OFDM符号用于传输所述P-BCH信道。
16.如权利要求15所述的方法,其特征在于,传输所述P-BCH信道包括以下任意一种方式:
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、3、4和第二个时隙的OFDM符号0、1、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、3和第二个时隙的OFDM符号0、1、2、3;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、2、3和第二个时隙的OFDM符号0、3;
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、1、3、4和第二个时隙的OFDM符号0、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、3和第二个时隙的OFDM符号0、2、3。
17.如权利要求10所述的方法,其特征在于,所述P-BCH信道具有以下一个或多个特性:
占用的子载波数目小于6个PRB的子载波数目,并且是整数个PRB的子载波数;
占用频带中部的PRB的资源;
频带中部的6个PRB的频率资源上的两端的PRB资源用于所述P-BCH信道传输。
18.一种接收广播信道的方法,其特征在于,包括以下步骤:
检测并接收信号;
将广播信号从相应的OFDM符号中解复用,获得P-BCH信道上发送的广播信号,其中,所述相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
根据所述广播信号获取广播信息。
19.如权利要求18所述的方法,其特征在于,所述相应的OFDM符号为不包含以下特征的符号:对FDD或者TDD每种通信***,所有能够用于承载CSI-RS的OFDM符号,或
FDD和TDD两种通信***中都能够用于承载CSI-RS的OFDM符号。
20.如权利要求18所述的方法,其特征在于,子帧内除用于CSI-RS和同步信道的OFDM符号以外的其他OFDM符号用于解复用获取所述P-BCH信道。
21.如权利要求20所述的方法,其特征在于,解复用以下任意一种方式获取所述P-BCH信道:
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、3、4和第二个时隙的OFDM符号0、1、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、3和第二个时隙的OFDM符号0、1、2、3;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、2、3和第二个时隙的OFDM符号0、3;
对一般CP子帧,P-BCH占用第一个时隙的OFDM符号0、1、3、4和第二个时隙的OFDM符号0、4;
对扩展CP子帧结构,P-BCH占用第一个时隙的OFDM符号0、1、3和第二个时隙的OFDM符号0、2、3。
22.如权利要求18所述的方法,其特征在于,解复用获取的所述P-BCH信道具有以下一个或多个特性:
占用的子载波数目小于6个PRB的子载波数目,并且是整数个PRB的子载波数;
占用频带中部的PRB的资源;
频带中部的6个PRB的频率资源上的两端的PRB资源用于所述P-BCH信道传输。
23.一种基站设备,其特征在于,包括:
信号产生模块,用于生成在P-SCH和S-SCH信道上发送的同步信号;
复用模块,用于将所述同步信号复用于特定的OFDM符号形成所述P-SCH和S-SCH信道,其中,所述特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS;
发送模块,用于发送所述P-SCH和S-SCH信道。
24.如权利要求23所述的基站设备,其特征在于,所述基站设备应用于FDD或TDD通信***,且在两种通信***中P-SCH和S-SCH具有相同的相对位置。
25.一种终端设备,其特征在于,包括:
接收模块,用于检测并接收信号;
解复用模块,用于从特定的OFDM符号中解复用获取P-SCH和S-SCH信道的同步信号,其中,所述特定的OFDM符号上不承载以下任意一种信号:DMRS、CSI-RS和TRS;
同步模块,用于根据所述同步信号进行***同步。
26.如权利要求25所述的终端设备,其特征在于,所述***包括FDD或TDD通信***,且在两种通信***中P-SCH和S-SCH具有相同的相对位置。
27.一种基站设备,其特征在于,包括:
信号产生模块,用于生成在P-BCH信道上发送的广播信号;
复用模块,用于将所述广播信号复用于相应的OFDM符号形成所述P-BCH信道,其中,所述相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
发送模块,用于发送所述P-BCH信道。
28.一种终端设备,其特征在于,包括:
接收模块,用于检测并接收信号;
解复用模块,用于将广播信号从相应的OFDM符号中解复用,获得P-BCH信道上发送的广播信号,其中,所述相应的OFDM符号上不承载以下任意一种信号:CSI-RS和同步信号;
解析模块,用于根据所述广播信号获取广播信息。
CN201210365116.6A 2012-09-26 2012-09-26 发送和接收同步信道、广播信道的方法和设备 Pending CN103686987A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210365116.6A CN103686987A (zh) 2012-09-26 2012-09-26 发送和接收同步信道、广播信道的方法和设备
US14/038,157 US9736836B2 (en) 2012-09-26 2013-09-26 Methods and devices for transmitting and receiving synchronous channels and broadcasting channels
PCT/KR2013/008622 WO2014054867A1 (en) 2012-09-26 2013-09-26 Methods and devices for transmitting and receiving synchronous channels and broadcasting channels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210365116.6A CN103686987A (zh) 2012-09-26 2012-09-26 发送和接收同步信道、广播信道的方法和设备

Publications (1)

Publication Number Publication Date
CN103686987A true CN103686987A (zh) 2014-03-26

Family

ID=50322940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210365116.6A Pending CN103686987A (zh) 2012-09-26 2012-09-26 发送和接收同步信道、广播信道的方法和设备

Country Status (3)

Country Link
US (1) US9736836B2 (zh)
CN (1) CN103686987A (zh)
WO (1) WO2014054867A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016115695A1 (zh) * 2015-01-21 2016-07-28 华为技术有限公司 一种同步方法、装置及***
CN105934900A (zh) * 2014-12-31 2016-09-07 华为技术有限公司 信号发送和检测装置、***及方法
CN106464461A (zh) * 2014-05-15 2017-02-22 诺基亚通信公司 用于发射和/或接收参考信号的方法和装置
CN107124767A (zh) * 2016-02-25 2017-09-01 中兴通讯股份有限公司 一种信号配置方法、信息处理方法及装置
WO2018024247A1 (zh) * 2016-08-05 2018-02-08 株式会社Ntt都科摩 映射和检测广播信道的方法、基站和用户设备
CN108738137A (zh) * 2017-04-14 2018-11-02 普天信息技术有限公司 一种发送pbch的处理方法及装置
CN109219982A (zh) * 2017-05-05 2019-01-15 联发科技股份有限公司 移动通信中追踪参考信号及其框架
CN109392075A (zh) * 2017-08-09 2019-02-26 展讯通信(上海)有限公司 时频跟踪参考信号的配置方法、基站及计算机可读介质
CN109831284A (zh) * 2017-11-23 2019-05-31 中兴通讯股份有限公司 信息配置、信道估计方法及装置、译码装置
CN110495112A (zh) * 2017-06-16 2019-11-22 Lg电子株式会社 用于收发同步信号块的方法及其装置
CN111757532A (zh) * 2019-03-27 2020-10-09 电信科学技术研究院有限公司 无线自组网的同步信道冲突检测、消解方法、装置及节点
US11652595B2 (en) 2017-05-05 2023-05-16 Mediatek Inc. Tracking reference signal and framework thereof in mobile communications

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970103B (zh) * 2014-12-30 2023-07-11 北京三星通信技术研究有限公司 一种下行信道和/或下行参考信号的接收方法和设备
WO2016129900A1 (ko) * 2015-02-10 2016-08-18 엘지전자 주식회사 기계타입통신을 지원하는 무선접속시스템에서 물리방송채널을 송수신하는 방법 및 장치
US9860030B2 (en) 2015-03-26 2018-01-02 Samsung Electronics Co., Ltd. Transmission of system information for low cost user equipment
CN106160969B (zh) * 2015-04-01 2019-04-16 南京扬舟信息科技有限公司 一种lte下行同步数据发射配置与接收方法
US10848223B2 (en) * 2015-09-01 2020-11-24 Lg Electronics Inc. Method for reporting channel state and apparatus therefor
KR102124050B1 (ko) * 2016-07-22 2020-06-17 에스케이텔레콤 주식회사 참조신호 전송 장치 및 참조신호 전송 방법
US20180132223A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Techniques for configuring reference signal patterns in wireless communications
CN108282871B (zh) * 2017-01-06 2023-11-21 华为技术有限公司 接收节点、发送节点和传输方法
RU2647641C1 (ru) * 2017-02-13 2018-03-16 Общество с ограниченной ответственностью "КАСКАД" Система передачи данных в заданных интервалах времени
US20190059012A1 (en) * 2017-08-21 2019-02-21 Qualcomm Incorporated Multiplexing channel state information reference signals and synchronization signals in new radio
KR102231273B1 (ko) * 2018-04-06 2021-03-23 엘지전자 주식회사 무선 통신 시스템에서 단말의 슬롯 포맷 결정 방법 및 상기 방법을 이용하는 단말
CN113543319B (zh) * 2020-04-15 2023-06-23 大唐移动通信设备有限公司 一种解信道复用方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649401B2 (en) * 2007-05-01 2014-02-11 Qualcomm Incorporated Generation and detection of synchronization signal in a wireless communication system
US8135359B2 (en) * 2008-01-04 2012-03-13 Nokia Corporation Method and apparatus for conveying antenna configuration information
JP5205093B2 (ja) * 2008-03-21 2013-06-05 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置及び基地局装置
US8885739B2 (en) * 2009-03-24 2014-11-11 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
US8953642B2 (en) * 2009-09-15 2015-02-10 Lg Electronics Inc. Method and apparatus for transmitting a downlink reference signal in a wireless communication system supporting multiple antennas
EP2464076A4 (en) * 2009-10-16 2015-02-25 Lg Electronics Inc METHOD AND APPARATUS FOR TRANSMITTING MULTI-USER MIMO REFERENCE SIGNAL IN WIRELESS COMMUNICATION SYSTEM FOR RELAY ASSISTANCE
KR101053635B1 (ko) * 2010-01-28 2011-08-03 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 기지국이 릴레이 노드로 제어 신호를 송신하는 방법 및 이를 위한 장치
US9591597B2 (en) * 2011-12-02 2017-03-07 Lg Electronics Inc. Method for indicating control channel in wireless access system, and base station and user equipment for the same
US9681428B2 (en) * 2012-03-16 2017-06-13 Intel Corporation Down-sampling of cell-specific reference signals (CRS) for a new carrier type (NCT)
US20140204851A1 (en) * 2013-01-18 2014-07-24 Qualcomm Incorporated Enhanced physical broadcast channel for new carrier type in long term evolution

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464461A (zh) * 2014-05-15 2017-02-22 诺基亚通信公司 用于发射和/或接收参考信号的方法和装置
CN109005019B (zh) * 2014-12-31 2020-01-03 华为技术有限公司 信号发送和检测装置、***及方法
US10892934B2 (en) 2014-12-31 2021-01-12 Huawei Technologies Co., Ltd. Signal sending apparatus, signal detection apparatus, signal sending and detection system, signal sending method, and signal detection method
US10554467B2 (en) 2014-12-31 2020-02-04 Huawei Technologies Co., Ltd. Signal sending apparatus, signal detection apparatus, signal sending and detection system, signal sending method, and signal detection method
CN108667587A (zh) * 2014-12-31 2018-10-16 华为技术有限公司 信号发送和检测装置、***及方法
CN110740026A (zh) * 2014-12-31 2020-01-31 华为技术有限公司 信号发送和检测装置、***及方法
CN109005019A (zh) * 2014-12-31 2018-12-14 华为技术有限公司 信号发送和检测装置、***及方法
CN105934900A (zh) * 2014-12-31 2016-09-07 华为技术有限公司 信号发送和检测装置、***及方法
CN110740026B (zh) * 2014-12-31 2020-08-21 华为技术有限公司 信号发送和检测装置、***及方法
CN108667587B (zh) * 2014-12-31 2019-08-23 华为技术有限公司 信号发送和检测装置、***及方法
US10447522B2 (en) 2014-12-31 2019-10-15 Huawei Technologies Co., Ltd. Signal sending apparatus, signal detection apparatus, signal sending and detection system, signal sending method, and signal detection method
US10567206B2 (en) 2015-01-21 2020-02-18 Huawei Technologies Co., Ltd. Synchronization method, apparatus, and system
WO2016115695A1 (zh) * 2015-01-21 2016-07-28 华为技术有限公司 一种同步方法、装置及***
CN107124767B (zh) * 2016-02-25 2021-11-23 中兴通讯股份有限公司 一种信号配置方法、信息处理方法及装置
CN107124767A (zh) * 2016-02-25 2017-09-01 中兴通讯股份有限公司 一种信号配置方法、信息处理方法及装置
WO2018024247A1 (zh) * 2016-08-05 2018-02-08 株式会社Ntt都科摩 映射和检测广播信道的方法、基站和用户设备
CN108738137B (zh) * 2017-04-14 2021-08-03 普天信息技术有限公司 一种发送pbch的处理方法及装置
CN108738137A (zh) * 2017-04-14 2018-11-02 普天信息技术有限公司 一种发送pbch的处理方法及装置
CN109219982A (zh) * 2017-05-05 2019-01-15 联发科技股份有限公司 移动通信中追踪参考信号及其框架
CN109219982B (zh) * 2017-05-05 2023-06-09 联发科技股份有限公司 移动通信中追踪参考信号及其框架设定方法及其装置
US11652595B2 (en) 2017-05-05 2023-05-16 Mediatek Inc. Tracking reference signal and framework thereof in mobile communications
CN110495112B (zh) * 2017-06-16 2021-03-02 Lg 电子株式会社 用于收发同步信号块的方法及其装置
US11343783B2 (en) 2017-06-16 2022-05-24 Lg Electronics Inc. Method and apparatus for transmitting and receiving synchronization signal block
CN110495112A (zh) * 2017-06-16 2019-11-22 Lg电子株式会社 用于收发同步信号块的方法及其装置
CN109392075B (zh) * 2017-08-09 2021-04-16 展讯通信(上海)有限公司 时频跟踪参考信号的配置方法、基站及计算机可读介质
CN109392075A (zh) * 2017-08-09 2019-02-26 展讯通信(上海)有限公司 时频跟踪参考信号的配置方法、基站及计算机可读介质
CN109831284B (zh) * 2017-11-23 2022-08-02 中兴通讯股份有限公司 信息配置、信道估计方法及装置、译码装置
CN109831284A (zh) * 2017-11-23 2019-05-31 中兴通讯股份有限公司 信息配置、信道估计方法及装置、译码装置
CN111757532A (zh) * 2019-03-27 2020-10-09 电信科学技术研究院有限公司 无线自组网的同步信道冲突检测、消解方法、装置及节点

Also Published As

Publication number Publication date
US9736836B2 (en) 2017-08-15
US20140086111A1 (en) 2014-03-27
WO2014054867A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
CN103686987A (zh) 发送和接收同步信道、广播信道的方法和设备
US8654734B2 (en) Multi-cell channel state information-reference symbol patterns for long term evolution extended cyclic prefix and code division multiplexing-time multiplexing
CN102340379B (zh) 一种csi-rs的发送方法、检测方法及其装置
EP2752061B1 (en) Time and frequency synchronization
US20210195547A1 (en) Updating cell and timing advance (ta) and/or timing advance group identification (tag-id) per cell in l1/l2-based inter-cell mobility
CN108282325B (zh) 一种lte tdd的特殊子帧信号传输方法和设备
EP2408162B1 (en) Method, device and system for identifying different frame structures
CN103944668A (zh) 一种处理灵活子帧的上下行传输的方法和设备
CN102014462B (zh) 一种小区搜索方法及设备
WO2013133682A1 (ko) 참조 신호 설정 방법 및 장치
US20110032855A1 (en) Method of communicating according to time division duplex
CN109257821B (zh) 用于基于信道状态指示符-基准信号的波束管理的装置和方法
KR20150135268A (ko) 통신 디바이스 및 방법
CN105099631A (zh) 一种处理灵活双工的方法和设备
EP3361801A1 (en) Data transmission method
KR20150135272A (ko) 인프라 장비, 이동 통신 네트워크, 시스템 및 방법
US11516652B2 (en) User equipment capability and enablement indication for downlink control information (DCI) based beam and path loss (PL) reference signal (RS) activation
CN109906569B (zh) 用于针对新无线电接入技术配置同步信号的方法和设备
CN103856310A (zh) 信道状态信息参考信号的传输方法和设备
CN104009827A (zh) 一种用户设备专用解调参考信号的传输方法及设备
CN104113906B (zh) 一种lte-a***中同步新类型载波的配置方法及***
CN109075925A (zh) 共同相位误差补偿
KR20230071203A (ko) 데이터 전송 방법 및 장치
CN107006041A (zh) 下行控制信息的接收、发送方法及装置
CN101102148A (zh) 一种时分双工***下行链路信号的发送方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140326