CN103677469A - 实现电容检测和电磁检测的*** - Google Patents

实现电容检测和电磁检测的*** Download PDF

Info

Publication number
CN103677469A
CN103677469A CN201310601190.8A CN201310601190A CN103677469A CN 103677469 A CN103677469 A CN 103677469A CN 201310601190 A CN201310601190 A CN 201310601190A CN 103677469 A CN103677469 A CN 103677469A
Authority
CN
China
Prior art keywords
touch
wire
horizontally
vertical setting
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310601190.8A
Other languages
English (en)
Inventor
谢循
张耀国
金海鹏
郑明剑
盛文军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Electronics (shanghai) Co Ltd
Telink Semiconductor Shanghai Co Ltd
Original Assignee
Micro Electronics (shanghai) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Electronics (shanghai) Co Ltd filed Critical Micro Electronics (shanghai) Co Ltd
Priority to CN201310601190.8A priority Critical patent/CN103677469A/zh
Publication of CN103677469A publication Critical patent/CN103677469A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

本发明涉及触控领域,公开了一种实现电容检测和电磁检测的***。本发明中,传感天线复用阵列包含的横竖排导线位于触控屏面板的触摸区域内,电容和电磁触控芯片具有TX端、RX端和EM Detect端,这三个端的一端复用一个芯片引脚,另一端与横竖排导线的一端连接,***进行电容触摸检测时,切换开关阵列中所有开关断开,横竖排导线构成电容屏的传感器;***进行电磁触摸检测时,全部开关闭合状态,横竖排导线构成电磁屏的天线回路;当开关中部分断开、部分闭合时,部分横竖排导线构成电容屏的传感器,部分横竖排导线构成电磁屏的天线回路。与现有技术相比,本发明在单颗芯片上实现仅用一组传感天线复用阵列实现电容检测与电磁检测的分时复用。

Description

实现电容检测和电磁检测的***
技术领域
本发明涉及触控技术领域,特别涉及实现电容检测和电磁检测的***。
背景技术
触摸屏作为一种特殊的计算机外设,能够提供电子***与使用者之间一人机交互界面,并已经广泛应用在许多领域中,例如,在移动电话、个人数字助理(Personal Digital Assistant,PDA)、游戏机、液晶显示器(Liquid Crystal Display,LCD)、等离子显示器(Plasma Display Panel,PDP)等。
目前,触摸屏主要有以下几类:电磁式触摸屏、电容式触摸屏、电组式触摸屏、以及红外线式触摸屏等。
其中,电容式触摸屏一般都采用前附式,其内设置有透明导电材料的(如氧化铟锡材料)电容触控驱动电极和电容触控感应电极,所述电容触控驱动电极和电容触控感应电极之间相互绝缘,在触摸屏幕时,由于人体内存在电场,手指与触摸屏内的电容触控驱动电极、电容触控感应电极之间形成耦合电容;由于触摸点的电容变化,在所述电容触控驱动电极和电容触控感应电极中出现流向触摸点的感应电流,通过相关计算便可准确计算出触摸点的位置。
电磁式触摸屏目前一般都采用背附式的电磁天线板,这种天线板是有横纵交错的金属线构成,当电磁笔在屏幕上滑动时,产生感应电动势,越靠近电磁笔的位置,该处的感应电动势越强,通过相关计算便可准确计算出电磁笔的位置。由于金属线为非透明,因此只能贴附在液晶显示模组(Liquid Crystal DisplayModule,LCM)后侧。
目前,为了实现手、笔双触控,将电容式触控模式和电磁式触控模式叠加在一起使用,以实现手写和笔写结合的触控模式,该电容式触控模式的触控区域需要设置在电磁式触控模式的触控区域之上,也就是说需要在同一个需要触控设备上设置两个相互独立的阵列结构,并使之相互叠加,以便能够实现两种模式的位置信息的识别,然而,每一阵列电路需要连接各自的处理电路,使得整个触控产品的结构复杂,体积较大,制作成本高,并且在触控产品的使用过程中,还会出现电容式触控模式和电磁式触控模式的相互干扰;另外,电容触控驱动电极和电容触控感应电极制作在一个芯片上,电磁天线板制作在另外一个芯片上,导致成品厚度较厚,不符合目前市场的需求,而且成本较高。
发明内容
本发明的目的在于提供一种实现电容检测和电磁检测的***,使得触控产品更加轻薄,结构简单,成本低廉,且能同时实现电容检测和电磁检测。
为解决上述技术问题,本发明第一实施方式提供了一种实现电容检测和电磁检测的***,其特征在于,包含:触控屏面板、电容和电磁触控芯片、传感天线复用阵列;
所述传感天线复用阵列位于所述触控屏面板的触摸区域内,包含切换开关阵列、横排导线和竖排导线;
所述切换开关阵列包含若干电子开关;
每两根所述横排导线或竖排导线通过一个所述电子开关相连;
所述电容和电磁触控芯片具有电容检测发射端TX、电容检测接收端RX和电磁探测端EM Detect;所述TX、RX和EM Detect的一端复用一个所述电容和电磁触控芯片的引脚,另一端分别与所述横排导线或所述竖排导线的一端连接;
当所述切换开关阵列的所有电子开关处于断开状态时,所述横排导线和所述竖排导线中的每一根都单独存在,形成传感器,所述电容和电磁触控芯片通过所述TX向所述传感器发送驱动信号,并通过所述RX接收感应信号,进行触摸点的电容检测;
当所述切换开关阵列的全部电子开关处于闭合状态时,所述横排导线或竖排导线中两两连接,形成天线回路,所述电容和电磁触控芯片通过所述EM Detect接收所述天线回路上的感应信号,进行触摸点的电磁检测。
当所述切换开关阵列的部分电子开关处于断开状态、其余电子开关处于闭合状态时,与所述处于断开状态的电子开关相连的所述横排导线或竖排导线单独存在,所述单独存在的横排导线或竖排导线形成传感器;与所述处于闭合状态的电子开关相连的所述横排导线或竖排导线两两相连,形成天线回路。
与现有技术相比,本发明中的电容和电磁触控芯片是单颗芯片,在单颗芯片上实现电容检测和电磁检测,使触摸产品更加轻薄,大大的降低了产品的成本;传感天线复用阵列与切换开关阵列相互配合使用,使本发明仅需要使用一套横排导线和竖排导线,即可以单独进行电容检测,又可以单独进行电磁检测,也可以电容检测和电磁检测同时进行,使触摸产品结构简单化,而且通过传感天线复用阵列实现电容触控传感器和电磁触控天线的分时复用(即传感天线复用阵列当做传感器使用时,进行电容检测,传感天线复用阵列当做天线使用时,进行电磁检测),有效的避免了现有技术中电容式触控模式和电磁式触控模式的相互干扰的问题;另外,本发明中的电容和电磁触控芯片具有TX、RX和EM Detect,保证了对触摸点电容信号的发射和接收以及电磁信号的探测。
另外,本发明中的电容和电磁触控芯片的每一个与横排导线或竖排导线连接的引脚都通过开关元件与一个TX、一个RX和一个EM Detect相连,并通过所述开关元件控制所述引脚与所述TX、RX和EM Detect的连通与断开;
当所述开关元件控制所述引脚与所述TX或所述RX连通,与所述EM Detect断开时,所述电容和电磁触控芯片进行电容触摸检测;
当所述开关元件控制所述引脚与所述TX和所述RX断开,与所述EM Detect连通时,所述电容和电磁触控芯片进行电磁触摸检测。
由于电容和电磁触控芯片的每一个与横排导线或竖排导线连接的引脚都通过开关元件与一个TX、一个RX和一个EM Detect相连,就可以有效地将传感天线复用阵列实现电容传感器和电磁天线的分时复用,保证了本发明中整个技术要点的实现。
另外,所述电容和电磁触控芯片还包含传感控制元件,用于产生控制所述切换开关阵列的控制信号;
当所述电容和电磁触控芯片进行电磁触摸检测时,所述电容和电磁触控芯片依次扫描两根横排导线或两根竖排导线连接起来形成的天线回路,读取所述形成回路的天线上的感应信号;
每一次扫描时,所述传感控制元件根据所述电容和电磁触控芯片指定的欲连接的横排导线或竖排导线的信息,产生控制信号并发送给所述切换开关阵列;所述切换开关阵列根据接收到的控制信号,将所述指定的横排导线或竖排导线连接起来;
其中,所述指定的横排导线或竖排导线包含横排导线或竖排导线中的两两或多组。
正是由于上述传感控制元件的存在,才能使切换开关阵列能够接收到电容和电磁触控芯片发出的控制信号,有效地控制指定的横排导线或竖排导线的连接与断开,实现最终的电容触摸检测或电磁触摸检测。
另外,所述横排导线和竖排导线分别位于两个不同的平面。
横排导线与竖排导线位于不同的平面,使横排导线与竖排导线中任意两条导线彼此绝缘,防止短路,是准确进行电容触摸检测和电磁触摸检测的前提。
另外,所述切换开关阵列包含一根连接线和若干个电子开关,其中,电子开关的个数与横排导线和竖排导线的总数一致。
当电容和电磁触控芯片作为电磁触摸检测***时,切换开关阵列包含一根连接线和若干个电子开关的时候,电磁触摸检测模式就可以扫描横排导线和竖排导线中某两根导线连接形成的天线回路。
作为本发明的进一步改进,所述切换开关阵列包含和若干个电子开关,其中,电子开关的个数与横排导线和竖排导线的总数一致,并且电子开关为多触点开关。
当电容和电磁触控芯片作为电磁触摸检测***时,切换开关阵列包含若干根连接线和若干个电子开关的时候,电磁触摸检测模式就可以扫描横排导线和竖排导线中多组导线连接形成的天线回路。
另外,当所述电容触摸检测为互电容触摸检测时,所述TX和所述RX分别与所述横排导线或所述竖排导线相连。
在横排导线和竖排导线交叉的地方形成电容,在检测互电容大小时,与横排导线相连的TX依次发出发射信号,与竖排导线相连的RX同时接收信号,这样就可以得到所有横排导线和竖排导线交汇点的电容值大小,即整个触摸屏的二维平面的电容大小,根据触摸屏二维电容变化量数据,就可以计算出每一个触摸点的坐标,因此,屏上即使有多个触摸点,也能计算出每个触摸点的真实坐标。
另外,当所述电容触摸检测为自电容触摸检测时,所述TX悬空,所述RX与所述横排导线或所述竖排导线相连。
这些横排导线和竖排导线分别与地构成电容,这个电容就是通常所说的自电容,也就是电极对地的电容。当手指触摸到电容屏时,手指的电容将会叠加到屏体电容上,使屏体电容量增加,再根据触摸前后电容的变化,分别确定横向坐标和纵向坐标,然后组合成平面的触摸坐标。
附图说明
图1是根据本发明第一实施方式的实现电容检测和电磁检测的***中的传感天线复用阵列示意图;
图2是根据本发明第一实施方式的实现电容检测和电磁检测的***中引脚示意图;
图3是根据本发明第一实施方式的实现电容检测和电磁检测的***中切换开关阵列包含一根连接线的示意图;
图4是根据本发明第二实施方式的实现电容检测和电磁检测的***中切换开关阵列包含若干根连接线的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请各权利要求所要求保护的技术方案。
本发明的第一实施方式涉及一种实现电容检测和电磁检测的***。包含触控屏面板、电容和电磁触控芯片、传感天线复用阵列(兼备传感器和天线作用的导线阵列)、切换开关阵列。
如图1所示,传感天线复用阵列位于触控屏面板的触摸区域1内,包含横排导线(分别用X1~XN表示)和竖排导线(分别用Y1~YM表示),电容和电磁触控芯片具有电容检测发射端TX、电容检测接收端RX和电磁探测端EM Detect,TX、RX和EM Detect分别与横排导线或竖排导线的一端连接(本实施例中将用横排导线跟TX相连,竖排导线跟RX相连为例来说明)。其中,横排导线和竖排导线分别位于两个不同的平面(图1中横排导线跟竖排导线交叉处用跳线表示不在同一平面),这样横排导线与竖排导线中任意两条导线都将彼此绝缘,防止短路,这是准确进行电容触摸检测或电磁触摸检测的前提。
另外,本实施方式中的电容和电磁触控芯片的每一引脚都通过开关元件3与一个TX、一个RX和一个EM Detect相连,且每一个TX、RX和EM Detect的另一端再分别与横排导线或竖排导线的一端相连,通过开关元件3控制引脚与TX、RX和EM Detect的连通与断开,决定整个***是接收电容检测信息还是接收电磁检测信息或是同时接收电容检测和电磁检测的信息。如图2所示。
当开关元件3控制引脚与TX或RX连通,与EM Detect断开时,电容和电磁触控芯片进行电容触摸检测;
当开关元件3控制引脚与TX和RX断开,与EM Detect连通时,电容和电磁触控芯片进行电磁触摸检测。
当开关元件3同时控制引脚与TX、RX和EM Detect连通时,电容和电磁触控芯片就可以同时进行电容触摸检测和电磁触摸检测。
现有技术中,每一个与横排导线或竖排导线连接的引脚只跟一个TX和一个RX相连,这样的话就只能实现电容触摸检测功能,而本实施例中每一个与横排导线或竖排导线连接的引脚除了跟一个TX和一个RX相连,另外还增加了一个EM Detect,并且能够通过开关元件3控制它们与引脚的连接或断开,进而实现电容传感器和电磁天线的分时复用,保证了本发明中整个技术要点的实现。
本实施方式中,电容和电磁触控芯片还包含传感控制元件,当电容和电磁触控芯片进行电容触摸检测时,如图3所示,传感控制元件接收电容和电磁触控芯片发出的控制信号使切换开关阵列4的所有开关5处于断开状态,横排导线和竖排导线构成电容触控的传感器,每一根都单独使用,电容和电磁触控芯片通过TX向电容触控的传感器发送驱动信号,并通过RX接收感应信号,进行触摸点的检测。也就是说,为了达到电磁触控和电容触控的复用,在触控屏面板里面横竖都布满了传感器/天线,且横排导线和竖排导线不在一个平面上,当这个触控屏面板做电容屏使用时,触控屏面板上的每根导线都是单独的,没有形成回路。横竖导线相交的位置形成互感电容,当人的手指在电容触控面板上滑动时,不同位置的电容值不同,电容触控检测就是根据各点电容值的变化情况来判断人手指的位置的。
本实施方式中的电容触摸检测有互电容触摸检测和自电容触摸检测两种方式:
当电容触摸检测为互电容触摸检测时,TX和RX分别与横排导线和竖排导线相连,在横排导线和竖排导线交叉的地方形成电容,在检测互电容大小时,与横排导线相连的TX依次发出发射信号,与竖排导线相连的RX同时接收信号,这样就可以得到所有横排导线和竖排导线交汇点的电容值大小,即整个触摸屏的二维平面的电容大小,根据触摸屏二维电容变化量数据,就可以计算出每一个触摸点的坐标,因此,屏上即使有多个触摸点,也能计算出每个触摸点的真实坐标。
当电容触摸检测为自电容触摸检测时,TX悬空,RX与横排导线或竖排导线相连,这些横排导线和竖排导线分别与地构成电容,这个电容就是通常所说的自电容,也就是电极对地的电容。当手指触摸到电容屏时,手指的电容将会叠加到屏体电容上,使屏体电容量增加,再根据触摸前后电容的变化,分别确定横向坐标和纵向坐标,然后组合成平面的触摸坐标。
本实施方式中,切换开关阵列4包含一根连接线和若干个电子开关5,如图3所示,其中,电子开关5的个数与横排导线和竖排导线的总数一致。当电容和电磁触控芯片进行电磁触摸检测时,传感控制元件接收电容和电磁触控芯片发出的控制信号使切换开关阵列4的全部电子开关5处于关闭状态,将横排导线或竖排导线中某两根导线的一端连接起来,形成天线回路,电容和电磁触控芯片通过EM Detect接收该天线回路上的感应信号,进行触摸点的检测。也就是说,为了接收电磁笔发射的信号,需要将横排平行天线或者竖排平行天线两两连结起来,形成线圈回路。当线圈所在的磁场发生变化时,线圈上会产生感应信号。随着电磁笔书写位置的改变,电磁笔发出的电磁波信号产生的磁场也随之变化,使得各个线圈上产生的感应信号也发生变化。电磁触摸检测就是根据各个线圈的感应信号的变化来判断电磁笔的书写位置的。
电容和电磁触控芯片依次扫描两根横排导线或两根竖排导线连接起来形成的天线回路,读取形成回路的天线上的感应信号,每一次扫描时,传感控制元件根据电容和电磁触控芯片指定的欲连接的横排导线或竖排导线的信息,产生控制信号并发送给切换开关阵列4,切换开关阵列4根据接收到的控制信号,将指定某两根横排导线或竖排导线连接起来。
正是由于上述传感控制元件的存在,才能使切换开关阵列4能够接收到电容和电磁触控芯片发出的控制信号,有效地控制指定的横排导线或竖排导线的连接与断开,实现最终的电容触摸检测或电磁触摸检测。
本实施方式中的电容检测和电磁检测的***可以单独进行电容触控检测或电磁触控检测,也可电容触控检测和电磁触控检测同时进行。
当触控屏面板受到电磁触摸时,传感控制元件通过电容和电磁触控芯片发出的控制信号,控制切换开关阵列4将指定的横排导线和竖排导线连接起来形成电磁天线回路,此时电磁触摸检测模式工作,电容触摸检测模式不工作;
当触控屏面板受到电容触摸时,传感控制元件通过电容和电磁触控芯片发出的控制信号控制切换开关阵列4全部断开,横排导线和竖排导线构成电容传感器,此时电容触摸检测模式工作,电磁触摸检测模式不工作。
当触控面板同时受到电容触摸和电磁触摸时,开关元件3同时控制引脚与TX、RX和EM Detect连通,传感控制元件通过电容和电磁触控芯片发出的控制信号,控制切换开关阵列4将部分横排导线和竖排导线连接起来形成电磁天线回路,并将另一部分横排导线和竖排导线连接起来形成电容传感器,此时电容触摸检测模式和电磁触摸检测模式同时工作。
电容触摸检测功能与电磁触摸检测功能兼备,可以单独使用,也可以同时使用,彼此互不干扰,使整个***功能更加全面,更加人性化,实用性更强。
与现有技术相比,本发明中的电容检测和电磁检测***是制作在单颗芯片上的,在单颗芯片上实现电容检测和电磁检测,减小触摸屏幕的整体厚度,使触摸产品更加轻薄,大大的降低了产品的成本;传感天线复用阵列与切换开关阵列4相互配合使用,使本发明仅需要使用一套横排导线和竖排导线,即可以单独进行电容检测,又可以单独进行电磁检测,也可以电容检测和电磁检测同时进行,使触摸产品结构简单化,而且通过传感天线复用阵列实现传感器和天线的分时复用(即传感天线复用阵列当做传感器使用时,进行电容检测,传感天线复用阵列当做天线使用时,进行电磁检测),有效的避免了现有技术中电容式触控模式和电磁式触控模式的相互干扰的问题;另外,本发明中的电容和电磁触控芯片具有发射端TX、接收端RX和电磁探测端EM Detect,保证了对触摸点电容信号的发射和接收以及电磁信号的探测。
本发明的第二实施方式涉及一种实现电容检测和电磁检测的***。第二实施方式与第一实施方式大致相同,主要区别之处在于:在第一实施方式中,切换开关阵列4包含一根连接线和若干个电子开关5,当电容和电磁触控芯片进行电磁触摸检测时,切换开关阵列4将横排导线或竖排导线中某两根导线的一端连接起来,形成天线回路,电容和电磁触控芯片通过接收该天线回路上的感应信号,进行触摸点的检测。而在本发明第二实施方式中,切换开关阵列4包含若干根连线和若干个电子开关5,当电容和电磁触控芯片进行电磁触摸检测时,切换开关阵列4将横排导线或竖排导线中两两或多组导线的一端连接起来,形成若干天线回路,电容和电磁触控芯片通过接收这些天线回路上的感应信号,进行触摸点的检测。
具体地说,切换开关阵列4包含若干根连线和若干个电子开关5,其中,电子开关5的个数与横排导线和竖排导线的总数一致,并且电子开关5为多触点开关。如图4所示,当电容和电磁触控芯片作为电磁触摸检测***时,电容和电磁触控芯片依次扫描多组横排导线或竖排导线连接起来形成的天线回路,读取形成回路的天线上的感应信号,每一次扫描时,传感控制元件根据电容和电磁触控芯片指定的欲连接的横排导线或竖排导线的信息,产生控制信号并发送给切换开关阵列4,切换开关阵列4根据接收到的控制信号,将指定的横排导线或竖排导线连接起来,形成天线阵列,电磁屏主芯片依次读取每一个天线回路上的感应信号。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (8)

1.一种实现电容检测和电磁检测的***,其特征在于,包含:触控屏面板、电容和电磁触控芯片、传感天线复用阵列;
所述传感天线复用阵列位于所述触控屏面板的触摸区域内,包含切换开关阵列、横排导线和竖排导线;
所述切换开关阵列包含若干电子开关;
每两根所述横排导线或竖排导线通过一个所述电子开关相连;
所述电容和电磁触控芯片具有电容检测发射端TX、电容检测接收端RX和电磁探测端EM Detect;所述TX、RX和EM Detect的一端复用一个所述电容和电磁触控芯片的引脚,另一端分别与所述横排导线或所述竖排导线的一端连接;
当所述切换开关阵列的所有电子开关处于断开状态时,所述横排导线和所述竖排导线中的每一根都单独存在,形成传感器,所述电容和电磁触控芯片通过所述TX向所述传感器发送驱动信号,并通过所述RX接收感应信号,进行触摸点的电容检测;
当所述切换开关阵列的全部电子开关处于闭合状态时,所述横排导线或竖排导线中两两连接,形成天线回路,所述电容和电磁触控芯片通过所述EM Detect接收所述天线回路上的感应信号,进行触摸点的电磁检测。
当所述切换开关阵列的部分电子开关处于断开状态、其余电子开关处于闭合状态时,与所述处于断开状态的电子开关相连的所述横排导线或竖排导线单独存在,所述单独存在的横排导线或竖排导线形成传感器;与所述处于闭合状态的电子开关相连的所述横排导线或竖排导线两两相连,形成天线回路。
2.根据权利要求1所述的实现电容检测和电磁检测的***,其特征在于,所述电容和电磁触控芯片的每一个与横排导线或竖排导线连接的引脚都通过开关元件与一个TX、一个RX和一个EM Detect相连,并通过所述开关元件控制所述引脚与所述TX、RX和EM Detect的连通与断开;
当所述开关元件控制所述引脚与所述TX或所述RX连通,与所述EM Detect断开时,所述电容和电磁触控芯片进行电容触摸检测;
当所述开关元件控制所述引脚与所述TX和所述RX断开,与所述EM Detect连通时,所述电容和电磁触控芯片进行电磁触摸检测。
3.根据权利要求1所述的实现电容检测和电磁检测的***,其特征在于,所述电容和电磁触控芯片还包含传感控制元件,用于产生控制所述切换开关阵列的控制信号;
当所述电容和电磁触控芯片进行电磁触摸检测时,所述电容和电磁触控芯片依次扫描两根横排导线或两根竖排导线连接起来形成的天线回路,读取所述形成回路的天线上的感应信号;
每一次扫描时,所述传感控制元件根据所述电容和电磁触控芯片指定的欲连接的横排导线或竖排导线的信息,产生控制信号并发送给所述切换开关阵列;所述切换开关阵列根据接收到的控制信号,将所述指定的横排导线或竖排导线连接起来;
其中,所述指定的横排导线或竖排导线包含横排导线或竖排导线中的两两或多组。
4.根据权利要求1所述的实现电容检测和电磁检测的***,其特征在于,所述横排导线和竖排导线分别位于两个不同的平面。
5.根据权利要求1所述的实现电容检测和电磁检测的***,其特征在于,所述切换开关阵列包含一根连接线和若干个电子开关,其中,电子开关的个数与横排导线和竖排导线的总数一致。
6.根据权利要求1所述的实现电容检测和电磁检测的***,其特征在于,所述切换开关阵列包含若干根连接线和若干个电子开关,其中,电子开关的个数与横排导线和竖排导线的总数一致,并且电子开关为多触点开关。
7.根据权利要求1所述的实现电容检测和电磁检测的***,其特征在于,当所述电容触摸检测为互电容触摸检测时,所述TX和所述RX分别与所述横排导线或所述竖排导线相连。
8.根据权利要求6所述的实现电容检测和电磁检测的***,其特征在于,当所述电容触摸检测为自电容触摸检测时,所述TX悬空,所述RX与所述横排导线或所述竖排导线相连。
CN201310601190.8A 2013-11-25 2013-11-25 实现电容检测和电磁检测的*** Pending CN103677469A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310601190.8A CN103677469A (zh) 2013-11-25 2013-11-25 实现电容检测和电磁检测的***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310601190.8A CN103677469A (zh) 2013-11-25 2013-11-25 实现电容检测和电磁检测的***

Publications (1)

Publication Number Publication Date
CN103677469A true CN103677469A (zh) 2014-03-26

Family

ID=50315231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310601190.8A Pending CN103677469A (zh) 2013-11-25 2013-11-25 实现电容检测和电磁检测的***

Country Status (1)

Country Link
CN (1) CN103677469A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104699317A (zh) * 2015-04-01 2015-06-10 上海中航光电子有限公司 阵列基板、显示面板及显示装置
WO2015168857A1 (en) * 2014-05-06 2015-11-12 Texas Instruments Incorporated Capacitive touch sensor and method
WO2019007056A1 (zh) * 2017-07-04 2019-01-10 京东方科技集团股份有限公司 触控面板及其驱动方法和触控装置
CN110753139A (zh) * 2019-09-25 2020-02-04 维沃移动通信有限公司 一种输入方法、移动终端
WO2020062077A1 (zh) * 2018-09-28 2020-04-02 深圳市汇顶科技股份有限公司 一种电路及电子设备
CN111555748A (zh) * 2019-02-08 2020-08-18 代傲阿扣基金两合公司 触摸和/或接近感应的输入装置
CN111610890A (zh) * 2015-02-02 2020-09-01 苹果公司 柔性自电容和互电容触摸感测***架构
CN113050831A (zh) * 2021-03-17 2021-06-29 深圳市华星光电半导体显示技术有限公司 触控装置
CN113471697A (zh) * 2020-03-31 2021-10-01 昇佳电子股份有限公司 一种天线与近接感测电路的传输架构
CN113567752A (zh) * 2021-07-22 2021-10-29 之江实验室 面向触觉感知的高动态阵列式电容测量电路及其测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120154327A1 (en) * 2010-12-16 2012-06-21 Liu Hung-Ta Touch sensor and touch display apparatus and driving method thereof
CN102609128A (zh) * 2010-12-16 2012-07-25 刘鸿达 双模式触控感应元件暨其触控显示器相关装置及其触控驱动方法
CN202523040U (zh) * 2011-10-18 2012-11-07 台均科技(深圳)有限公司 触控阵列、触控传感器、触控显示屏及触控设备
CN203606817U (zh) * 2013-11-25 2014-05-21 泰凌微电子(上海)有限公司 实现电容检测和电磁检测的***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120154327A1 (en) * 2010-12-16 2012-06-21 Liu Hung-Ta Touch sensor and touch display apparatus and driving method thereof
CN102609128A (zh) * 2010-12-16 2012-07-25 刘鸿达 双模式触控感应元件暨其触控显示器相关装置及其触控驱动方法
CN202523040U (zh) * 2011-10-18 2012-11-07 台均科技(深圳)有限公司 触控阵列、触控传感器、触控显示屏及触控设备
CN203606817U (zh) * 2013-11-25 2014-05-21 泰凌微电子(上海)有限公司 实现电容检测和电磁检测的***

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575186B (zh) * 2014-05-06 2020-02-07 德克萨斯仪器股份有限公司 电容式触摸传感器及方法
WO2015168857A1 (en) * 2014-05-06 2015-11-12 Texas Instruments Incorporated Capacitive touch sensor and method
CN106575186A (zh) * 2014-05-06 2017-04-19 德克萨斯仪器股份有限公司 电容式触摸传感器及方法
US11716082B2 (en) 2014-05-06 2023-08-01 Texas Instruments Incorporated Capacitive touch sensor and method
US11233508B2 (en) 2014-05-06 2022-01-25 Texas Instruments Incorporated Capacitive touch sensor and method
US10534491B2 (en) 2014-05-06 2020-01-14 Texas Instruments Incorporated Capacitive touch sensor and method
CN111610890A (zh) * 2015-02-02 2020-09-01 苹果公司 柔性自电容和互电容触摸感测***架构
US12014003B2 (en) 2015-02-02 2024-06-18 Apple Inc. Flexible self-capacitance and mutual capacitance touch sensing system architecture
CN104699317A (zh) * 2015-04-01 2015-06-10 上海中航光电子有限公司 阵列基板、显示面板及显示装置
CN104699317B (zh) * 2015-04-01 2017-10-13 上海中航光电子有限公司 阵列基板、显示面板及显示装置
WO2019007056A1 (zh) * 2017-07-04 2019-01-10 京东方科技集团股份有限公司 触控面板及其驱动方法和触控装置
US11216120B2 (en) 2017-07-04 2022-01-04 Boe Technology Group Co., Ltd. Touch panel and driving method thereof, and touch device
WO2020062077A1 (zh) * 2018-09-28 2020-04-02 深圳市汇顶科技股份有限公司 一种电路及电子设备
CN111555748A (zh) * 2019-02-08 2020-08-18 代傲阿扣基金两合公司 触摸和/或接近感应的输入装置
CN110753139B (zh) * 2019-09-25 2021-02-26 维沃移动通信有限公司 一种输入方法、移动终端
CN110753139A (zh) * 2019-09-25 2020-02-04 维沃移动通信有限公司 一种输入方法、移动终端
CN113471697A (zh) * 2020-03-31 2021-10-01 昇佳电子股份有限公司 一种天线与近接感测电路的传输架构
CN113471697B (zh) * 2020-03-31 2023-12-15 昇佳电子股份有限公司 天线与近接感测电路的传输架构
CN113050831A (zh) * 2021-03-17 2021-06-29 深圳市华星光电半导体显示技术有限公司 触控装置
WO2022193442A1 (zh) * 2021-03-17 2022-09-22 深圳市华星光电半导体显示技术有限公司 触控装置
CN113567752A (zh) * 2021-07-22 2021-10-29 之江实验室 面向触觉感知的高动态阵列式电容测量电路及其测量方法
CN113567752B (zh) * 2021-07-22 2024-04-23 之江实验室 面向触觉感知的高动态阵列式电容测量电路及其测量方法

Similar Documents

Publication Publication Date Title
CN103677469A (zh) 实现电容检测和电磁检测的***
US11271608B2 (en) Method and apparatus for data transmission via capacitance sensing device
US10534485B2 (en) Display device having an integrated sensing device with improved proximity sensing
CN103941946B (zh) 一种触摸屏及显示装置
CN104272228B (zh) 在电容式触摸控制器和手势检测装置之间共享电极的***和方法
US20150002446A1 (en) Wireless communication enabling capacitive imaging sensor assembly
CN102576276A (zh) 电容扫描邻近侦测
CN105518599B (zh) 多用户多触摸的感应电容式触摸传感器
CN103389804B (zh) 坐标指示设备和用于测量其输入位置的坐标测量设备
CN108121482A (zh) 一种触摸屏、电子设备、无线充电方法及***
CN203606817U (zh) 实现电容检测和电磁检测的***
CN105531655A (zh) 翻转的单元传感器图案
WO2013066632A1 (en) Single substrate touch sensor
US20130162517A1 (en) Gesturing Architecture Using Proximity Sensing
CN105518572B (zh) 可穿戴计算设备
CN105184200B (zh) 输入对象识别装置、方法及具有rfid标签的装置
KR20160071450A (ko) 인-셀 저전력 모드들
CN102662524A (zh) 电子装置
CN104679357A (zh) 混合型触摸屏
CN211878371U (zh) 显示装置及电子设备
CN210744172U (zh) 天线装置、触控屏和终端设备
EP3371682B1 (en) Multi-modal sensing surface
CN107967085A (zh) 显示装置
CN110515495A (zh) 触控显示面板、触控显示装置及触控检测方法
CN206363280U (zh) 具有指纹识别功能的显示屏及终端

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140326