CN103657590A - 磺酸化石墨烯-TiO2复合材料对酰胺类和有机磷类农药的吸附降解 - Google Patents

磺酸化石墨烯-TiO2复合材料对酰胺类和有机磷类农药的吸附降解 Download PDF

Info

Publication number
CN103657590A
CN103657590A CN201310553285.7A CN201310553285A CN103657590A CN 103657590 A CN103657590 A CN 103657590A CN 201310553285 A CN201310553285 A CN 201310553285A CN 103657590 A CN103657590 A CN 103657590A
Authority
CN
China
Prior art keywords
graphene
composite
tio
acetamide
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310553285.7A
Other languages
English (en)
Inventor
马永强
洪慧杰
潘灿平
武晓丽
关文碧
刘雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201310553285.7A priority Critical patent/CN103657590A/zh
Publication of CN103657590A publication Critical patent/CN103657590A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种水体中残留农药的同时吸附和光催化降解磺酸化石墨烯-二氧化钛复合材料对水体中五种酰胺类除草剂(甲草胺、乙草胺、丙草胺、异丙甲草胺、丁草胺)和七种有机磷类杀虫剂(甲拌磷、灭线磷、甲基嘧啶磷、毒死蜱、马拉硫磷、倍硫磷、杀扑磷)的吸附-降解作用。本发明的优点在于磺酸化石墨烯-二氧化钛复合材料对水体中酰胺类除草剂和有机磷类杀虫剂有较好的吸附效果,同时在模拟太阳光照下具有很好的光催化降解效果。并且与石墨烯-二氧化钛复合材料相比,磺酸化石墨烯-二氧化钛复合材料对酰胺类除草剂和有机磷类杀虫剂的光催化降解效果比石墨烯-二氧化钛复合材料的光催化降解效果好。

Description

磺酸化石墨烯-TiO2复合材料对酰胺类和有机磷类农药的吸附降解
技术领域
本发明涉及磺酸化石墨烯/石墨烯-TiO2复合材料的吸附和光催化降解农药的方法,属于光催化技术和农药降解技术领域。 
技术背景
自20世纪80年代中后期以来,我国除草剂的使用面积,使用量都大幅度增长,其增长速度已稳居农药(杀虫剂、杀菌剂、除草剂和其他类农药)之首。酰胺类除草剂是我国大量使用的除草剂之一。有机磷类杀虫剂经不断发展,成为主要杀虫剂中的主要类型之一。这些农药的毒性较大、环境释放率较大、影响面也较广,由于品种繁多及可观的生产量和使用量,给人类健康和环境带来了很大程度的危害,如迫使土壤质量下降、生态环境恶化、造成水体污染、食品中农药残留超标等。每年由于农药污染和中毒事故所造成的人畜伤亡和巨大经济损失,已经给我国的农业经济发展带来了严重的负面影响。据统计,我国20世纪90年代后期的农药生产量达76万吨,使用量高达50~60万吨,其中,近80%的农药经过各种途径进入环境中,而大部分农药最后汇集进入水体中,造成各种水体的污染。 
文献调研发现,KexinLi等[J.Hazard.Mater.,2013,250:19-28]利用非离子型表面活性剂和水热法一步合成TiO2-石墨烯纳米离子,成功的用于降解水溶性持久污染物罗丹明B、灭线磷和诺氟沙星。Khalid等[Curr.Appl.Phys.,2012,12:1485-1492]用低温水热法将氮掺杂TiO2纳米粒子修饰在石墨烯上,合成了GR-N/TiO2复合物,YanyanGao等[Carbon,2012,50:4093-4101]以氧化石墨烯(GO)、尿素和硝酸氧钛为原料,用燃烧法一步合成了TiO2-GO纳米材料,与纯TiO2相比,此两种纳米材料对甲基橙染料(MO)的光降解性能更高。但是以上所得到的产品都没有报道其对农药的光催化降解应用。磺酸化石墨烯-TiO2复合材料的水热法合成及对农药的降解也没有报道。 
因此,建立有效的降解水体中农药残留的方法对于保护水资源起着重要的现实意义。 
发明内容
有鉴于此,本发明的目的是提出一种复合材料,使其能吸附解酰胺类除草剂和有机磷类杀虫剂,同时在模拟太阳光催化下又能够降解酰胺类除草剂和有机磷类杀虫剂。 
本发明所采用的技术方案以磺酸化石墨烯、氧化石墨烯和四氯化钛溶液为原料,利用水热反应一步制备磺酸化石墨烯-TiO2复合光催化材料和石墨烯-TiO2复合光催化材料,使其对酰胺类除草剂具有很好的吸附作用,同时在模拟太阳光照下对酰胺类除草剂和有机磷类杀虫剂具有光催化降解作用,其具体制备方法步骤为: 
将磺酸化石墨烯/氧化石墨烯溶于水中,混合均匀。将四氯化钛溶液滴加到磺酸化石墨烯/氧化石墨烯悬浮液中,混合搅拌1h,其中磺酸化石墨烯/氧化石墨烯悬浮液的质量为5.347g、6.684g、13.369g、33.420g、66.840g,四氯化钛为6.127mL,浓度为1.46M。并加热使之反应,得到磺酸化石墨烯-二氧化钛/石墨烯-二氧化钛复合材料悬浮液。 
本发明吸附和光降解过程分为以下步骤: 
(1)富集:取9mL磺酸化石墨烯-TiO2/石墨烯-TiO2加入到20mL含有酰胺类/有机磷类农药的水样中,然后涡旋2min,使目标物被吸附于石墨烯复合材料; 
(2)分离:将步骤(1)的含有酰胺类/有机磷类农药的水样离心,弃去水层,得到沉淀物; 
(3)光照:向所得沉淀物中加入4mL水,涡旋或震荡数秒,移取2mL,置于太阳光模拟器(光解仪)中光照,设置对照实验; 
(4)提取:光照结束,用4mL乙酸乙酯超声提取被吸附于石墨烯-TiO2中未降解的的农药,取1mL上层有机层,除水,过0.22μL有机系膜,等待进样; 
(5)检测:将过膜后的样品进GC-MS(酰胺类除草剂)/GC-FPD(有机磷类杀虫剂)进行检测。 
本发明的有益效果主要体现在步骤简单、成本低廉、操作方便,在水体中酰胺类除草剂和有机磷类杀虫剂的吸附和光催化降解方面有很好的应用前景。 
附图说明
图1为磺酸化石墨烯-TiO2复合材料对五种酰胺类除草剂混剂(含甲草胺、乙草胺、丙草胺、异丙甲草胺、丁草胺)的降解效果柱状图。 
图2为磺酸化石墨烯-TiO2复合材料对七种有机磷类杀虫剂混剂(含灭线磷、甲拌磷、甲基嘧啶磷、毒死蜱、马拉硫磷、倍硫磷、杀扑磷)的降解效果柱状图。 
图3为石墨烯-TiO2复合材料对五种酰胺类除草剂混剂(含甲草胺、乙草胺、丙草胺、异丙甲草胺、丁草胺)的吸附效果图。 
图4为石墨烯-TiO2复合材料对五种酰胺类除草剂混剂(含甲草胺、乙草胺、丙草胺、异丙甲草胺、丁草胺)的降解效果柱状图。 
图5为石墨烯-TiO2复合材料对七种有机磷类杀虫剂混剂(含灭线磷、甲拌磷、甲基嘧啶磷、毒死蜱、马拉硫磷、倍硫磷、杀扑磷)的降解效果柱状图。 
具体实施方式
下面结合具体实施例对本发明进行进一步的描述,但本发明保护范围并不仅限于此: 
实施例1: 
按照文献报道合成磺酸化石墨烯(Chem.Mater.,1998,10,718-722)。 
以磺酸化石墨烯为原料,按照参考文献制备磺酸化石墨烯-TiO2复合材料(Int.J.HydrogenEnerg,2008,37,811-815)。其中磺酸化石墨烯的质量为13.369g,四氯化钛为6.127mL。 
所制备的磺酸化石墨烯-TiO2复合材料去离子水洗涤至中性后,稀释至浓度为3000mg/L的悬浮液,超声使其混合均匀。 
将9mL配置的悬浮液加入到添加有酰胺类除草剂的水样中,涡旋2min,离心5min,弃去水层,再加入4mL哇哈哈水,涡旋30s使其混合均匀。取2mL悬浮液置于模拟太阳光下,分别光照1h、2h、4h和5h,并设置对照实验。 
光照结束后向悬浮液中加入4mL乙酸乙酯,超声5min。静置5min,取1mL上层有机层,除水后,过0.22μm有机相滤膜,进GC-MS检测。 
结果表明磺酸化石墨烯-TiO2复合材料对五种酰胺类除草剂(含甲草胺、乙草胺、丙草胺、异丙甲草胺、丁草胺)的光催化降解效果很好,光照4h后达到降解量达到53.4%~75.5%。 
实施例2: 
按照文献报道合成磺酸化石墨烯(Chem.Mater.,1998,10,718-722)。 
以磺酸化石墨烯为原料,按照参考文献制备磺酸化石墨烯-TiO2复合材料(Int.J.HydrogenEnerg,2008,37,811-815)。其中磺酸化石墨烯的质量为13.369g,四氯化钛为6.127mL。 
所制备的磺酸化石墨烯-TiO2复合材料去离子水洗涤至中性后,稀释至浓度为3000mg/L的悬浮液,超声使其混合均匀。 
将9mL配置的悬浮液加入到添加有有机磷类杀虫剂的水样中,涡旋2min,离心5min,弃去水层,再加入4mL哇哈哈水,涡旋30s使其混合均匀。取2mL悬浮液置于模拟太阳光下,分别光照1h、2h、4h和5h,并设置对照实验。 
光照结束后向悬浮液中加入4mL乙腈,超声5min。静置5min,取1mL上层有机层,除水后,过0.22μm有机相滤膜,进GC-FPD检测。 
结果表明,结果表明磺酸化石墨烯-TiO2复合材料对七种有机磷类杀虫剂(含灭线磷、甲拌磷、甲基嘧啶磷、毒死蜱、马拉硫磷、倍硫磷、杀扑磷)都有一定的光催化降解效果,光照5h后,降解量达到27.0%~39.9%。 
实施例3: 
按照文献报道的方法制备石墨烯-TiO2复合材料(Int.J.HydrogenEnerg,2008,37,811-815)。其中氧化石墨烯的质量为13.369g,四氯化钛为6.127mL。 
所制备的石墨烯-TiO2复合材料去离子水洗涤至中性后,稀释至浓度为3000mg/L的悬浮液,超声使其混合均匀。 
将9mL配置的悬浮液加入到添加有酰胺类除草剂的水样中,涡旋2min,离心5min,弃去水层,再加入10mL乙酸乙酯,3g氯化钠,涡旋2min,离心,取1mL上清液除水后过0.22μm有机相滤膜,进GC-MS检测。 
结果表明石墨烯-TiO2复合材料对五种酰胺类除草剂(含甲草胺、乙草胺、丙草胺、异丙甲草胺、丁草胺)的吸附效果都很好,吸附率都在97.0%~100%之间。 
实施例4: 
将9mL配置的石墨烯-TiO2复合材料悬浮液加入到添加有酰胺类除草剂的水样中,涡旋2min,离心5min,弃去水层,再加入4mL哇哈哈水,涡旋30s使其混合均匀。取2mL悬浮液置于模拟太阳光下,分别光照1h、2h、4h和5h,并设置对照实验。 
光照结束后向悬浮液中加入4mL乙酸乙酯,超声5min。静置5min,取1mL上层有机层,除水后,过0.22μm有机相滤膜,进GC-MS检测。 
结果表明石墨烯-TiO2复合材料对五种酰胺类除草剂(含甲草胺、乙草胺、丙草胺、异丙甲草胺、丁草胺)有一定的光催化降解效果,对异丙甲草胺的光催化降解效果最好,光照4h后达到降解量达到50.9%。 
实施例5: 
将9mL配置的石墨烯-TiO2复合材料悬浮液加入到添加有有机磷类杀虫剂的水样中,涡旋2min,离心5min,弃去水层,再加入4mL哇哈哈水,涡旋30s使其混合均匀。取2mL悬浮液置于模拟太阳光下,分别光照1h、2h、4h和5h,并设置对照实验。 
光照结束后向悬浮液中加入4mL乙腈,超声5min。静置5min,取1mL上层有机层,除水后,过0.22μm有机相滤膜,进GC-FPD检测。 
结果表明石墨烯-TiO2复合材料对七种有机磷类杀虫剂(含灭线磷、甲拌磷、甲基嘧啶磷、毒死蜱、马拉硫磷、倍硫磷、杀扑磷)除毒死蜱外都有一定的光催化降解效果,其中对甲拌磷的光催化降解效果最好。 
综合图1、图2、图4、图5可以看出,磺酸化石墨烯-TiO2复合材料对五种酰胺类除草剂(含甲草胺、乙草胺、丙草胺、异丙甲草胺、丁草胺)和七种有机磷类杀虫剂(含灭线磷、甲拌磷、甲基嘧啶磷、毒死蜱、马拉硫磷、倍硫磷、杀扑磷)的光催化降解效果比石墨烯-TiO2复合材料的光催化效果好。 

Claims (8)

1.一种磺酸化石墨烯-TiO2复合材料光催化剂,其特征在于:所述复合材料对酰胺类除草剂和有机磷类杀虫剂有很好的吸附效果,在模拟太阳光照射下对酰胺类除草剂和有机磷类杀虫剂很好的降解效果。 
2.根据权利要求1所述的酰胺类除草剂为甲草胺、乙草胺、丙草胺、异丙甲草胺和丁草胺。 
3.根据权利要求1所述的有机磷类杀虫剂为灭线磷、甲拌磷、甲基嘧啶磷、毒死蜱、马拉硫磷、倍硫磷和杀扑磷。 
4.根据权利要求1所述的磺酸化石墨烯-TiO2复合材料的制备方法,其特征在于包括以下步骤: 
a)利用天然石墨,通过化学氧化法制备磺酸化石墨烯; 
b)将磺酸化石墨烯分散于水溶液中,逐滴加入1.46M四氯化钛溶液,搅拌1小时; 
c)所得混合溶液于反应釜中180℃搅拌6小时,所得悬浮液以去离子水洗涤,稀释得3000mg/L的悬浮液。 
5.根据权利要求1所述,复合材料对酰胺类除草剂和有机磷类杀虫剂的吸附和降解实验方法如下: 
a)富集:取9mL磺酸化石墨烯-TiO2复合材料加入到20mL含有酰胺类/有机磷类农药的水样中,然后涡旋2min,使目标物被吸附于石墨烯复合材料; 
b)分离:将步骤a)的含有酰胺类/有机磷类农药的水样离心,弃去水层,得到沉淀物; 
c)光照:向所得沉淀物中加入4mL水,涡旋或震荡数秒,移取2mL,置于太阳光模拟器中光照,并设置对照实验; 
d)提取:光照结束,用4mL乙酸乙酯超声提取被吸附于磺酸化石墨烯-TiO2上的未降解的的农药,取1mL上层有机层,除水,过0.22μL有机系膜,等待进样; 
e)检测:将过膜后的样品分别进GC-MS(酰胺类除草剂)/GC-FPD(有机磷类杀虫剂)进行检测。 
6.根据权利要求4所述的方法,也适用于石墨烯-TiO2复合材料的制备。 
7.根据权利要求6所述的石墨烯-TiO2复合材料的制备方法,其特征在于: 
a)将氧化石墨烯分散于水溶液中,逐滴加入1.46M四氯化钛溶液,搅拌1小时; 
b)所得混合溶液于反应釜中180℃搅拌6小时,所得悬浮液以去离子水洗涤,稀释得3000mg/L的悬浮液。 
8.根据权利要求6所述的石墨烯-TiO2复合材料对酰胺类除草剂和有机磷类杀虫剂也具有吸附-光催化降解作用。 
CN201310553285.7A 2013-11-08 2013-11-08 磺酸化石墨烯-TiO2复合材料对酰胺类和有机磷类农药的吸附降解 Pending CN103657590A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310553285.7A CN103657590A (zh) 2013-11-08 2013-11-08 磺酸化石墨烯-TiO2复合材料对酰胺类和有机磷类农药的吸附降解

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310553285.7A CN103657590A (zh) 2013-11-08 2013-11-08 磺酸化石墨烯-TiO2复合材料对酰胺类和有机磷类农药的吸附降解

Publications (1)

Publication Number Publication Date
CN103657590A true CN103657590A (zh) 2014-03-26

Family

ID=50297077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310553285.7A Pending CN103657590A (zh) 2013-11-08 2013-11-08 磺酸化石墨烯-TiO2复合材料对酰胺类和有机磷类农药的吸附降解

Country Status (1)

Country Link
CN (1) CN103657590A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815616A (zh) * 2015-05-05 2015-08-05 河海大学 一种分层磺化石墨烯/二氧化钛复合材料的制备方法及其在污水处理领域的应用
CN107308909A (zh) * 2017-05-16 2017-11-03 江苏城工建设科技有限公司 磺化石墨烯的制备方法及其处理抗生素水体的应用
CN110327853A (zh) * 2019-07-08 2019-10-15 浙江工业大学 一种二氧化钛量子点负载的磺化石墨烯气凝胶及其制备方法和应用
CN110404519A (zh) * 2019-09-04 2019-11-05 安徽省聚科石墨烯科技股份公司 一种用于水中苯脲类除草剂检测的石墨烯气凝胶吸附剂
CN116272957A (zh) * 2023-03-17 2023-06-23 江苏理工学院 一种新型光催化复合膜及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474899A (zh) * 2009-01-16 2009-07-08 南开大学 石墨烯-无机材料复合多层薄膜及其制备方法
US20110121240A1 (en) * 2009-11-23 2011-05-26 Khalil Amine Coated electroactive materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474899A (zh) * 2009-01-16 2009-07-08 南开大学 石墨烯-无机材料复合多层薄膜及其制备方法
US20110121240A1 (en) * 2009-11-23 2011-05-26 Khalil Amine Coated electroactive materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEXIN LI ET AL.: "Preparation of graphene/TiO2 composites by nonionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation", 《 JOURANL OF HAZARDOUS MATERIALS》 *
XIAOYAN ZHANG ET AL.: "A green and facile synthesis of TiO2/grapheme nanocomposites and their photocatalytic activity for hydrogen evolution", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
YANHONG TANG ET AL.: "Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water", 《JOURANL OF HAZARDOUS MATERIALS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815616A (zh) * 2015-05-05 2015-08-05 河海大学 一种分层磺化石墨烯/二氧化钛复合材料的制备方法及其在污水处理领域的应用
CN107308909A (zh) * 2017-05-16 2017-11-03 江苏城工建设科技有限公司 磺化石墨烯的制备方法及其处理抗生素水体的应用
CN110327853A (zh) * 2019-07-08 2019-10-15 浙江工业大学 一种二氧化钛量子点负载的磺化石墨烯气凝胶及其制备方法和应用
CN110327853B (zh) * 2019-07-08 2021-09-07 浙江工业大学 一种二氧化钛量子点负载的磺化石墨烯气凝胶及其制备方法和应用
CN110404519A (zh) * 2019-09-04 2019-11-05 安徽省聚科石墨烯科技股份公司 一种用于水中苯脲类除草剂检测的石墨烯气凝胶吸附剂
CN116272957A (zh) * 2023-03-17 2023-06-23 江苏理工学院 一种新型光催化复合膜及其制备方法与应用

Similar Documents

Publication Publication Date Title
Fiorenza et al. Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts
Bhavya et al. Remediation of emerging environmental pollutants: a review based on advances in the uses of eco-friendly biofabricated nanomaterials
CN103657590A (zh) 磺酸化石墨烯-TiO2复合材料对酰胺类和有机磷类农药的吸附降解
Yaqoob et al. Role of nanomaterials in the treatment of wastewater: A review
Haleem et al. A comprehensive review on adsorption, photocatalytic and chemical degradation of dyes and nitro-compounds over different kinds of porous and composite materials
Xiang et al. Controlling pesticide loss through nanonetworks
Nowack et al. Potential scenarios for nanomaterial release and subsequent alteration in the environment
Mondal et al. Potentiality of waste human hair towards removal of chromium (VI) from solution: kinetic and equilibrium studies
Dwivedi et al. Biocatalytic synthesis pathways, transformation, and toxicity of nanoparticles in the environment
Lu et al. Carbon-shielded three-dimensional Co–Mn nanowire array anchored on Ni foam with dual-enzyme mimic performance for selective detection of ascorbic acid
Chen et al. Aerosol-based self-assembly of a Ag–ZnO hybrid nanoparticle cluster with mechanistic understanding for enhanced photocatalysis
Chu et al. Stable indium pyridylcarboxylate framework with highly selective adsorption of cationic dyes and effective nitenpyram detection
CN109453748A (zh) 高效可逆的脂溶性碳点改性碘吸附材料、制备及应用
Bayat et al. Chromochloris zofingiensis microalgae as a potential dye adsorbent: adsorption thermo-kinetic, isothermal, and process optimization
CN105032155A (zh) 一种甲醛去除剂
Wang et al. Visible light excited graphitic carbon nitride for efficient degradation of thiamethoxam: Removal efficiency, factors effect and reaction mechanism study
Kumar et al. Ultrasound assisted fabrication of InVO4/In2S3 heterostructure for enhanced sonophotocatalytic degradation of pesticides
Tahir et al. Nanomaterials and photocatalysis in chemistry
Shanaah et al. Photocatalytic degradation and adsorptive removal of emerging organic pesticides using metal oxide and their composites: Recent trends and future perspectives
Mohamed et al. Generation of hydrogen gas using CuCr2O4-g-C3N4 nanocomposites under illumination by visible light
Bharti et al. Advanced applications and current status of green nanotechnology in the environmental industry
Fenoll et al. Abatement of spinosad and indoxacarb residues in pure water by photocatalytic treatment using binary and ternary oxides of Zn and Ti
Tan et al. Preparation and photocatalytic activity of heteropolyacid salt (POM)/TiO2 composites synthesized by solid phase combustion method
Fatimah et al. Nickel oxide decorated reduced graphene oxide synthesized using single bioreductor of Pometia pinnata leaves extract as photocatalyst in tetracycline photooxidation and antibacterial agent
Che et al. Efficient adsorption and photocatalysis over a photorenewable uranyl-organic framework for removal of diquat herbicide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140326