CN103562654A - 热接收管、用于制造热接收管的方法、具有接收管的抛物形槽式集热器以及抛物形槽式集热器的用途 - Google Patents

热接收管、用于制造热接收管的方法、具有接收管的抛物形槽式集热器以及抛物形槽式集热器的用途 Download PDF

Info

Publication number
CN103562654A
CN103562654A CN201180069726.5A CN201180069726A CN103562654A CN 103562654 A CN103562654 A CN 103562654A CN 201180069726 A CN201180069726 A CN 201180069726A CN 103562654 A CN103562654 A CN 103562654A
Authority
CN
China
Prior art keywords
hot joining
closed tube
joining closed
tube
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180069726.5A
Other languages
English (en)
Other versions
CN103562654B (zh
Inventor
H·阿兰
M·巴凯
G·科亨
R·埃泽尔
E·利普曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Concentrated Solar Power Ltd
Original Assignee
Siemens Concentrated Solar Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Concentrated Solar Power Ltd filed Critical Siemens Concentrated Solar Power Ltd
Publication of CN103562654A publication Critical patent/CN103562654A/zh
Application granted granted Critical
Publication of CN103562654B publication Critical patent/CN103562654B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49355Solar energy device making

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及用于吸收太阳能的热接收管(1),其中热接收管(1)包括中心管(10),中心管(10)具有至少一个第一局部热接收管表面(11)、至少一个第二局部热接收管表面(12)和至少一个另一局部热接收管表面(13),其中第一局部热接收管表面(11)由沉积在中心管(10)的第一局部中心管表面(101)上的第一太阳能吸收涂层(111)形成,用于吸收太阳光的第一光谱的辐射,其中第二局部热接收管表面(12)由沉积在中心管(10)的第二中心管表面(102)上的至少一个发射辐射抑制涂层(14)形成,其中另一局部热接收管表面(13)由沉积在中心管(10)的另一局部中心管表面(103)上的至少一个另一太阳能吸收涂层(131)形成,用于吸收太阳光的另一光谱的辐射(1311),并且其中另一局部热接收管表面(13)设置在第二局部热接收管表面(12)的辐射窗口(1211)中,使得辐射(1311)可以撞击另一局部热接收管表面(13)。

Description

热接收管、用于制造热接收管的方法、具有接收管的抛物形槽式集热器以及抛物形槽式集热器的用途
技术领域
本发明涉及热接收管和用于制造热接收管的方法。此外提供具有热接收管的抛物形槽式集热器和抛物形槽式集热器的用途。
背景技术
基于聚集太阳能技术的太阳场发电厂的太阳能收集单元包括例如具有至少一个抛物面镜和至少一个热接收管的抛物形槽式集热器。热接收管设置在镜的焦线上。通过镜的太阳光反射表面,太阳光聚焦于热接收管,其充满传热流体,例如导热油或熔盐。通过热接收管,太阳光的能量耦合到传热流体中。太阳能转换成热能。
为了使效率最大化,太阳光的能量耦合到传热流体,太阳能吸收涂层附在热接收管的中心管表面。这种吸收涂层通常包括多层的组,其带有按顺序沉积的薄膜层,这些薄膜层具有不同的光学特性。例如,沉积薄膜层通过溅射法完成。
吸收涂层必要的总光学特性是用于太阳光谱波长(吸收辐射)的高太阳吸收率(低太阳反射率)。此外,用于红外辐射的低发射率(高反射率)也是必要的。具有这些光学特性的涂层叫做选择性太阳涂层。
发明内容
本发明的一个目的是提供具有能量输出的热接收管,其与现有技术相比具有改进。这应该在400℃以及更高的高温下得以实现。
本发明的另一个目的是提供具有热接收管的抛物形槽式集热器。
本发明的又一个目的是提供抛物形槽式集热器的用途。
这些目的通过由权利要求中规定的本发明实现。
提供一种用于吸收太阳能以及传递吸收的太阳能给传热流体的热接收管,传热流体可以位于热接收管的中心管内部。热接收管包括至少一个第一局部热接收管表面、至少一个第二局部热接收管表面、和至少一个另一局部热接收管表面。第一局部热接收管表面通过第一太阳能吸收涂层形成,用于吸收太阳光的第一特定光谱的第一吸收辐射,其中第一太阳能吸收涂层沉积在中心管的第一局部中心管表面上。第二局部热接收管表面通过至少一个发射辐射抑制涂层形成,用于抑制红外辐射发射率,其中发射辐射抑制涂层沉积在中心管的第二中心管表面上。另一局部热接收管表面通过至少一个另一太阳能吸收涂层形成,用于吸收太阳光的另一特定光谱的另一吸收辐射,其中另一太阳能吸收涂层沉积在中心管的另一局部中心管表面上。另一局部热接收管表面设置在第二局部热接收管表面的辐射窗口中,使得另一吸收辐射可以撞击另一局部热接收管表面。
例如,第一局部表面通过具有90°和270°之间的第一圆周(扇形角)的第一扇形形成,而第二局部表面通过具有270°和90°之间的第二圆周的第二扇形形成。在第二扇形中设置有具有10°和40°之间的另一圆周的另一扇形。
此外,公开一种用于制造热接收管的方法。方法包括以下步骤:
a)提供一种用于热接收管的无覆盖的中心管,热接收管具有第一局部中心管表面、第二局部中心管表面和另一局部中心管表面;以及b)将第一太阳能吸收涂层附在第一局部中心管表面,将发射辐射抑制涂层附在第二局部中心管表面上,并且将另一太阳能吸收涂层附在另一局部中心管表面。实施发射抑制涂层的附着和另一太阳能吸收涂层的附着,使得另一太阳能吸收涂层设置在发射辐射抑制涂层的内部侧向区域中。另一太阳能吸收涂层至少部分由发射辐射抑制涂层包围,使得另一吸收辐射撞击另一太阳能吸收层变得可能。
还提供一种包括至少一个抛物面镜和至少一个热接收管的抛物形槽式集热器,至少一个抛物面镜具有太阳光反射表面用于将太阳光聚集在抛物面镜焦线上,至少一个热接收管设置在抛物面镜的焦线上。热接收管设置在焦线上使得具有第一太阳能吸收涂层的第一局部热接收管表面至少部分地位于抛物面镜的太阳光反射表面的对面,而具有发射抑制涂层的第二局部热接收管表面和第二局部热接收管表面的辐射窗口中的另一局部热接收管表面至少部分地转向抛物面镜的太阳光反射表面。优选地,许多热接收管和抛物面镜设置在一起。
最后公开发电厂中抛物形槽式集热器的用途,其用于将太阳能转换成电能。
本发明中的太阳光(吸收辐射)具体意味着太阳光可见(特定)光谱中的大约270nm到2500nm的电磁辐射。但是也覆盖具有大于2500nm的更长波长的发射辐射。
本发明的构思是通过第一局部热接收管表面和另一局部热接收管表面最大限度地将太阳能(集中辐射能)耦合到热接收管使热接收管的热特性最优化,而通过第二局部热接收管表面实现热能损失的最小化。形成第一局部热接收管表面的第一太阳能吸收涂层和形成另一局部热接收管表面的另一太阳能吸收涂层设计成尽可能多地吸收太阳辐射(吸收多于90%并且优选地多于92%或者甚至多于95%)。这些太阳能吸收涂层是“选择性涂层”。相反,通过由发射辐射抑制涂层形成的第二局部热接收管的发射率降低。发射辐射抑制涂层是“非选择性”涂层。
优选地,用于吸收太阳光的第二特定光谱的第二吸收辐射的第二选择性太阳能涂层设置在第二局部中心管表面和发射辐射抑制涂层之间。辐射抑制涂层优选地直接附在第二太阳能吸收涂层上,导致设置在中心管的第二局部中心管表面上的层组。该层组包括第二太阳能吸收涂层和发射辐射抑制涂层。
优选地,第一太阳能吸收涂层和/或第二太阳能吸收涂层和/或另一太阳能吸收涂层形成共同太阳能吸收涂层。只有一种太阳能吸收涂层附在中心管的侧部区域。这种共同太阳能吸收涂层具有全部相同的或几乎相同的化学和物理特性。因而,太阳光的第一特定光谱的第一吸收辐射,太阳光的第二特定光谱的第二吸收辐射和/或太阳光的另一特定光谱的另一吸收辐射是相同的或几乎相同的。只有一种太阳能吸收涂层的使用对于热接收管的制造是有利的。只沉积一种太阳能吸收涂层到中心管的全部中心管表面比沉积多种太阳能吸收涂层到多个局部中心管表面容易。
在一个优选实施例中,关于制造,附着第一太阳能吸收涂层、附着第二太阳能吸收涂层和/或附着另一太阳能吸收涂层在一个步骤中实施。例如,热接收管的制造的实施如下:在第一步骤,共同太阳能吸收涂层沉积在中心管的(全部)侧部区域上。在第二步骤,发射辐射抑制涂层沉积在共同太阳能吸收涂层上,就在第二局部中心管表面的区域中。在第一局部中心管表面的区域中,共同太阳能吸收涂层通过发射辐射抑制涂层保持无覆盖。
当沉积发射辐射抑制涂层时,另一局部中心管表面可以被覆盖,使得形成发射辐射抑制涂层中的辐射窗口。为了该步骤要使用掩膜法。
可选地,发射辐射抑制涂层沉积在第二局部中心管表面的全部区域上。沉积发射辐射抑制涂层后,发射辐射抑制涂层中产生辐射窗口。这通过移除发射辐射抑制涂层的材料完成。下面的共同太阳能吸收涂层无覆盖并且形成另一局部热接收管表面。
在热接收管的一个可选的优选实施例中,第二局部中心管表面基本不被第一太阳能吸收涂层覆盖和/或基本不被另一太阳能吸收涂层覆盖。发射辐射抑制涂层优选地直接沉积在第二中心管表面上。当然,至少一个不同于第一太阳能吸收涂层和/或不同于另一太阳能吸收涂层的隔层,可以设置在发射辐射抑制涂层和第二局部中心管表面之间。这种隔层可以是IRR(红外辐射)层,其是第一局部热接收管表面、第二局部热接收管表面和另一局部热接收管表面的层组的一部分。这种隔层可以改善随后沉积层的粘附。例如,隔层改善第二局部中心管表面上的发射辐射抑制涂层的粘附。
热接收管可以设置在抛物面镜的焦线上使得由抛物面镜的反射表面聚集的太阳能辐射撞击第一局部热接收管表面的第一太阳能吸收涂层。不被该聚集的太阳能辐射(也就是通常面对太阳的区域)加热的热接收管的区域由发射辐射抑制涂层涂覆。除此之外,辐射抑制涂层的窗口的另一局部吸热表面也面对太阳。因此,直接太阳辐射可以撞击另一局部热接收表面。
优选地,第一局部热接收管表面和/或第二局部热接收管表面和/或另一局部热接收管表面沿热接收管的纵向对准线对准。该特性也应用到第一中心管表面和/或第二中心管表面和/或另一中心管表面。沿热接收管纵向对准线的对准和沿中心管纵向对准线的对准分别有利于热接收管布置在抛物面镜的焦线中。
太阳聚集的辐射能量耦合到热接收管被最大化并且热接收管的热能损失最小化。
在一个优选实施例中,第一局部热接收管表面包括具有第一圆周的热接收管的侧部区域的第一扇形,其选择范围在150°和300°之间并且优选地在180°和270°之间。在一个进一步的优选实施例中,第二局部热接收管表面包括具有第二圆周的热接收管的侧部区域的第二扇形,其选择范围在210°和60°之间并且优选地在180°和90°之间。在又一优选实施例中,另一局部热接收管表面包括具有另一圆周的热接收管的侧部区域的另一扇形,其选择范围在10°和40°之间并且优选地在15°和30°之间。另一扇形设置在第二扇形中。扇形的角度关于热接收管的能量平衡被优化(例如通过RIM角)。
由于发射辐射抑制涂层,红外辐射的发射率的大小减小。辐射抑制涂层的红外辐射的发射率少于30%。优选地,发射辐射抑制涂层包括小于20%的红外辐射的发射率。
在一个优选实施例中,发射辐射抑制涂层包括金属,其从由铝、铜、银、金和钼构成的组中选择。其它金属或合金也是可能的。发射辐射抑制涂层可以是金属的并且可以包括一种金属或多种金属。例如,发射辐射抑制涂层是由铜组成的层。这种具有铜的涂层阻碍热接收管的“上部”部分的热辐射(发射率),其通过直接太阳辐射撞击。这很强地降低了热接收管的总体热损失,同时损失了在其上的一些总辐射撞击。
局部热接收管表面的区域无需具有相同的范围。局部热接收管表面的范围容易被优化,并且它们在热接收管的侧部表面上的位置被优化(例如由于RIM)。
单独的局部热接收管表面可以分成两个或多个子部分。例如,第二局部热接收管表面通过由另一热接收管表面形成的辐射窗口分成两部分。但是优选地,这些局部表面不被分开。因此,局部热接收管表面的至少一个形成连续区域。热接收管设置在平行于镜的纵向对准线的焦线上。由此,太阳能的吸收非常有效率。聚集的太阳辐射总是撞击第一局部热接收管表面的太阳吸收涂层(大约52太阳强度)。另外,能被聚集的直接太阳辐射(见下文)也撞击另一局部热接收表面。第二局部热接收管表面不被聚集的太阳辐射(大约0.6太阳强度)撞击。可能浪费非常少的能量,而由于总的发射率获得的更多的热损失。
在一个优选实施例中,太阳光聚集装置设置成与热接收管有一聚集距离,使得另一吸收辐射可以聚集在热接收管的另一局部热接收管表面上。例如,这种太阳光聚集装置是透镜。优选地,太阳光聚集装置是菲涅耳透镜。透镜的其它类型也是可能的。借助于太阳光聚集装置,直接太阳光(另一太阳吸收辐射)聚焦在具有另一太阳吸收涂层的另一热接收管表面上。这通过另一太阳吸收涂层增加了另外的太阳辐射的吸收。
通过这一措施,热接收管的吸收与发射率的总体比率增加。用于吸收的直接太阳辐射损失降低,这将无需另一局部热接收管表面而发生。
为了改善热接收管的物理和化学稳定性以及热特性,额外实施其它一些措施。优选地,热接收管包括至少一个封装体用于包围局部热接收管表面的至少一个,其中封装体包括至少一个透明的封装壁,其至少部分透明用于第一吸收辐射和/或至少部分透明用于第二吸收辐射和/或至少部分透明用于另一吸收辐射。在这种情况下所说的至少部分透明是指吸收辐射的透射率大于80%,并且优选地大于90%。
例如,封装体是由亚克力玻璃组成的管。在一个优选实施例中,封装体是玻璃(SiO2)管并且封装壁是玻璃管壁。在热接收管的化学和物理稳定性以及吸收辐射的透明度方面,这是非常有效的封装体。
在另一个优选实施例中,封装壁包括太阳光聚集装置。由此,高化学和物理稳定性和高的太阳光聚集效率是可能的。
热接收管的热接收管表面和封装壁之间具有接收空隙。该接收空隙优选地是真空的。这意味着接收空隙中的气体压力小于10-2mbar并且优选地小于10-3mbar。这具有的优势是,由于对流而以传热流体从热接收管传递走的热量被降低。热能不会耗散并且基本完全可用于传热流体的加热。
为了太阳能吸收涂层的附着和/或为了发射辐射抑制涂层的附着,采用薄膜沉积技术。
薄膜沉积技术优选地从由原子层沉积、化学蒸汽沉积和物理蒸汽沉积组成的组中选择。物理蒸汽沉积例如是溅射。
为了获得结构化涂层,采用结构化沉积技术。涂层的至少一个是结构化沉积的。在一个优选实施例中,至少一个太阳能吸收涂层的附着和/或发射辐射抑制涂层的附着借助于掩膜法实施。可选地,涂层可以被非结构地沉积,并且沉积非结构涂层后完成结构化,例如通过移除沉积的材料。
本发明具有以下优点:
直接太阳光辐射通过另一局部热接收管额外耦合到热接收管中,导致用于加热传热流体的太阳能效用的增加。
用于热接收管表面的不同区域的不同种类的涂层的使用导致完全的热接收管的吸收与发射率的总体较高比率。
热接收管的第二局部热接收管表面的发射辐射抑制涂层可以使用宽范围的可用材料。
在非选择性涂覆部分上具有热辐射的高阻塞(通过发射辐射抑制涂层)。
附图说明
参照附图,本发明的进一步特征和优势通过示例性实施例的描述示出。附图是示意性的。
图1示出热接收管和具有热接收管的抛物形槽式集热器的第一示例的横截面。
图2以侧视图示出第一示例的热接收管。
图3示出热接收管和具有热接收管的抛物形槽式集热器的第二示例的横截面。
图4示出带有封装体的第一示例的热接收管的横截面。
具体实施方式
每个示例包括热接收管1用于吸收太阳能并且用于将吸收的太阳能传递给传热流体2,传热流体2可以位于热接收管的中心管10的内部。中心管由钢制的中心管壁103组成。
中心管10包括第一局部中心管表面101、第二局部接收管表面12和另一局部热接收管表面13。
第一局部热接收管表面11由第一太阳能吸收涂层111形成,用于吸收太阳光的第一特定光谱的第一吸收辐射。由此,第一太阳能吸收涂层沉积在中心管10的第一局部中心管101表面上。第一太阳能吸收涂层是具有不同光学特性的不同层的多层排列。
第二局部热接收管表面12由发射辐射抑制涂层14形成,用于抑制红外辐射的发射率。由此,发射辐射抑制涂层14沉积在中心管10的第二中心管表面102上。发射辐射抑制涂层14由铜组成。可选地,发射辐射抑制涂层包括金属铝。
另一局部热接收管表面13由至少一个另一太阳能吸收涂层131形成,用于吸收太阳光的另一特定光谱的另一吸收辐射。由此,另一太阳能吸收涂层131沉积在中心管10的另一局部中心管表面103上。
另一局部热接收管表面13设置在第二局部热接收管表面12的辐射窗口1211中,使得另一吸收辐射1311可以撞击另一局部热接收管表面13。
第一局部热接收管表面11形成具有大约180°的第一圆周1611的热接收管1的侧部区域16的第一扇形161。第二局部热接收管表面12形成具有大约180°的第二圆周1612的热接收管1的侧部区域16的第二扇形162。另一局部热接收管表面13形成具有大约30°的另一圆周1613的热接收管1的侧部区域16的另一扇形163。由此,局部热接收管表面11、12和13沿热接收管1(图2)的纵向对准线15对准。
示例1
发射辐射抑制涂层14不直接附于第二局部中心管表面102(图1)。第二局部中心管表面102由第二太阳能吸收涂层121覆盖,用于吸收太阳光的第二特定光谱的第二吸收辐射。发射辐射抑制涂层14沉积在第二选择性太阳能涂层121上,使得第二选择性太阳能涂层121设置在第二局部中心管表面102和发射辐射抑制涂层14之间。
第一太阳能吸收涂层111、第二太阳能吸收涂层121和另一太阳能吸收涂层131的物理和化学特性是相同的。第一太阳能吸收涂层111、第二太阳能吸收涂层121和另一太阳能吸收涂层131形成共同连续的太阳能吸收涂层200,其沉积在中心管的中心管表面的全部侧部区域。
示例2
发射辐射抑制涂层14直接附于第二局部中心管表面102(图3)。第二局部中心管表面12基本不被第一太阳能吸收涂层111覆盖,并且基本不被另一太阳能吸收涂层131覆盖。
这种接收管可被制造如下:连续的吸收涂层沉积在无覆盖的中心管的侧表面上(例如通过溅射工艺的帮助)。沉积过程后,吸收涂层的材料在第二局部中心管表面的区域中被移除,导致无覆盖的第二局部中心管表面。然后,发射辐射抑制涂层14沉积到无覆盖的第二局部中心管表面上。
图4示出另外的结构措施。尽管图4只涉及示例1,但是这些措施可用于实施两个示例:热接收管包括具有封装壁的封装体17,用于包围所有局部热接收管表面11、12和13。
封装体17是玻璃管并且封装壁171是玻璃管壁。玻璃管壁是透明的,用于以大于90%的透射率进行第一吸收辐射和另一吸收辐射。接收空隙位于玻璃管壁和接收表面16之间。该接收空隙是真空的。气体压力大约10-3mbar。
另外,太阳光聚集装置500设置成与热接收管1的热接收管表面有一聚集距离501,使得另一吸收辐射1311可被聚集到热接收管1的另一局部热接收管表面13上。太阳光聚集装置500包括菲涅耳透镜,其位于封装壁(玻璃管壁)171中。通过该措施,直接太阳光的聚集变得可能。
关于示例1或关于示例2的热接收管是抛物形槽式集热器1000的一部分。抛物形槽式集热器1000包括至少一个具有太阳光反射表面31的抛物面镜3。通过反射表面31,太阳光聚集在抛物面镜3的焦线32上。
热接收管1位于抛物面镜3的焦线32上。由此,热接收管的第一局部热接收管表面11(接收管1的“下部”部分)与镜3的太阳光反射表面31相对设置。第二局部热接收管表面12和第二局部热接收管表面12的辐射窗口1211中的另一局部热接收管表面13(热接收管1的“上部”部分)转移到镜3的太阳光反射表面31。
传热流体2位于热接收管1的中心管10的内部。传热流体2是导热油。可选地,传热流体是熔盐。
抛物形槽式集热器用在太阳能发电厂,用于将太阳能转换成电能。

Claims (24)

1.一种用于吸收太阳能并且用于将吸收的太阳能传递给传热流体(2)的热接收管(1),传热流体(2)可以位于热接收管(1)的中心管(10)的内部,其中,
接收管(1)包括至少一个第一局部热接收管表面(11)、至少一个第二局部热接收管表面(12)和至少一个另一局部热接收管表面(13);
第一局部热接收管表面(11)由第一太阳能吸收涂层(111)形成,用于吸收太阳光的第一特定光谱的第一吸收辐射,其中第一太阳能吸收涂层沉积在中心管(10)的第一局部中心管(101)表面上;
第二局部热接收管表面(12)由至少一个发射辐射抑制涂层(14)形成,用于抑制红外辐射的发射率,其中发射辐射抑制涂层(14)沉积在中心管(10)的第二中心管表面(102)上;
另一局部热接收管表面(13)由至少一个另一太阳能吸收涂层(131)形成,用于吸收太阳光的另一特定光谱的另一吸收辐射(1311),其中另一太阳能吸收涂层(131)沉积在中心管(10)的另一局部中心管表面(103)上;并且
另一局部热接收管表面(13)设置在第二局部热接收管表面(12)的辐射窗口(1211)中,使得另一吸收辐射(1311)可以撞击另一局部热接收管表面(13)。
2.根据权利要求1的热接收管,其中用于吸收太阳光的第二特定光谱的第二吸收辐射的第二选择性太阳能涂层(121)设置在第二局部中心管表面(102)和发射辐射抑制涂层(14)之间。
3.根据权利要求1或2的热接收管,其中第一太阳能吸收涂层(111)和/或第二太阳能吸收涂层(121)和/或另一太阳能吸收涂层(131)形成共同太阳能吸收涂层(200)。
4.根据权利要求1的热接收管,其中第二局部中心管表面(12)基本不被第一太阳能吸收涂层(111)覆盖和/或基本不被另一太阳能吸收涂层(131)覆盖。
5.根据权利要求4的热接收管,其中发射辐射抑制涂层(14)直接沉积在第二中心管表面(102)上。
6.根据前述权利要求之一的热接收管,其中第一局部热接收管表面(11)和/或第二局部热接收管表面(12)和/或另一局部热接收管表面(13)沿热接收管(1)的纵向对准线(15)对准。
7.根据前述权利要求之一的热接收管,其中第一局部热接收管表面(11)包括具有第一圆周(1611)的热接收管(1)的侧部区域(16)的第一扇形(161),其选择范围在150°和300°之间并且优选地在180°和270°之间。
8.根据前述权利要求之一的热接收管,其中第二局部热接收管表面(12)包括具有第二圆周(1621)的热接收管(1)的侧部区域(16)的第二扇形(162),其选择范围在210°和60°之间并且优选地在180°和90°之间。
9.根据前述权利要求之一的热接收管,其中另一局部热接收管表面(13)包括具有另一圆周(1631)的热接收管(1)的侧部区域(16)的另一扇形(163),其选择范围在10°和40°之间并且优选地在15°和30°之间。
10.根据前述权利要求之一的热接收管,其中发射抑制涂层(14)包括小于20%的红外辐射发射率。
11.根据前述权利要求之一的热接收管,其中发射抑制涂层(14)包括金属,其从由铝、铜、银、金和钼构成的组中选择。
12.根据前述权利要求之一的热接收管,其中局部热接收管表面(11,12,13)中的至少一个形成连续区域。
13.根据前述权利要求之一的热接收管,其中太阳光聚集装置(500)设置成与热接收管(1)有一聚集距离(501),使得另一吸收辐射可被聚集到热接收管(1)的另一局部热接收管表面(13)上。
14.根据权利要求13的热接收管,其中太阳光聚集装置(500)是菲涅耳透镜。
15.根据前述权利要求之一的热接收管,其中热接收管(1)包括至少一个封装体(17),用于包围局部热接收管表面(11,12,13)中的至少一个,其中封装体(17)包括至少一个透明的封装壁(171),其至少部分透明用于第一吸收辐射和/或至少部分透明用于第二吸收辐射和/或至少部分透明用于另一吸收辐射(1311)。
16.根据权利要求15的热接收管,其中封装体(17)是玻璃管并且封装壁(171)是玻璃管壁。
17.根据权利要求13至15之一的热接收管,其中封装壁(171)包括太阳光聚集装置(500)。
18.用于制造根据权利要求1至17之一的热接收管的方法,该方法包括以下步骤:
a)提供无覆盖的中心管(10)用于热接收管(1),热接收管(1)具有第一局部中心管表面(101)、第二局部中心管表面(102)和另一局部中心管表面(103);以及
b)将第一太阳能吸收涂层(111)附于第一局部中心管表面(101)上,将发射辐射抑制涂层(14)附于第二局部中心管表面(102)上并且将另一太阳能吸收涂层(131)附于另一局部中心管表面(103)上。
19.根据权利要求18的方法,其中第一太阳能吸收涂层的附着、第二太阳能吸收涂层的附着和/或另一太阳能吸收涂层的附着在一个步骤中实施。
20.根据权利要求18或19的方法,其中使用薄膜沉积技术用于太阳能吸收涂层(111,121,131,200)的至少一个的附着和/或用于发射辐射抑制涂层(14)的附着。
21.根据权利要求20的方法,其中薄膜沉积技术从由原子层沉积、化学蒸汽沉积和物理蒸汽沉积组成的组中选择。
22.根据权利要求18至21之一的方法,其中太阳能吸收涂层(111,121,131,200)的至少一个的附着和/或发射辐射抑制涂层(14)的附着借助于掩膜法实施。
23.一种抛物形槽式集热器(1000),包括:
至少一个具有太阳光反射表面(31)的抛物面镜(3),用于聚集太阳光到抛物面镜(31)的焦线(32)上;和
至少一个根据权利要求1至17之一的热接收管(1),其设置在抛物面镜(3)的焦线(32)上;
其中,热接收管(1)设置在焦线(32)上使得具有第一太阳能吸收涂层(131)的第一局部热接收管表面(11)至少部分地相对抛物面镜(30)的太阳光反射表面(31)设置,并且具有发射抑制涂层(14)和具有辐射窗口(1211)的第二局部热接收管表面(12)至少部分地转移到抛物面镜(30)的太阳光反射表面(31)。
24.根据权利要求23的抛物形槽式集热器(1000)的用途,其用于发电厂,用于将太阳能转换成电能。
CN201180069726.5A 2011-03-29 2011-03-29 热接收管、用于制造热接收管的方法、具有接收管的抛物形槽式集热器以及抛物形槽式集热器的用途 Expired - Fee Related CN103562654B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/054810 WO2012130283A2 (en) 2011-03-29 2011-03-29 Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector

Publications (2)

Publication Number Publication Date
CN103562654A true CN103562654A (zh) 2014-02-05
CN103562654B CN103562654B (zh) 2016-08-17

Family

ID=44625706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180069726.5A Expired - Fee Related CN103562654B (zh) 2011-03-29 2011-03-29 热接收管、用于制造热接收管的方法、具有接收管的抛物形槽式集热器以及抛物形槽式集热器的用途

Country Status (9)

Country Link
US (1) US9732989B2 (zh)
EP (1) EP2673572A2 (zh)
CN (1) CN103562654B (zh)
AU (1) AU2011364489B2 (zh)
BR (1) BR112013025292A2 (zh)
IL (1) IL228398A (zh)
MA (1) MA35047B1 (zh)
WO (1) WO2012130283A2 (zh)
ZA (1) ZA201307038B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764346A (zh) * 2015-04-07 2015-07-08 珠海格力电器股份有限公司 辐射板结构及辐射板换热器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9423155B2 (en) * 2013-09-30 2016-08-23 Do Sun Im Solar energy collector and system for using same
DE102016218372A1 (de) * 2016-09-23 2017-11-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Parabolrinnenkollektormodul mit strahlungsoptimiertem Absorberrohr
ES2850273A1 (es) * 2020-02-25 2021-08-26 Jimenez Sanchez Bernardino Colector solar de concentración parabólico
WO2023133646A1 (en) * 2022-01-14 2023-07-20 Sundraco Power Inc. Solar energy collector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0004805A2 (fr) * 1978-04-04 1979-10-17 Compagnie Des Lampes Capteur d'énergie solaire comportant un élément absorbant sélectivement l'énergie rayonnée
US4505260A (en) * 1982-09-09 1985-03-19 Metzger Research Corporation Radiant energy device
DE102008010316A1 (de) * 2008-02-21 2009-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarkollektor
WO2010032110A1 (en) * 2008-09-18 2010-03-25 Kloben S.A.S. Di Turco Adelino E C. Evacuated tube solar collector device
CN101023305B (zh) * 2004-08-05 2010-06-16 肖特股份有限公司 太阳能吸收器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285330A (en) * 1979-12-13 1981-08-25 Shook Wayne A Concentrating solar collector
US4440155A (en) 1981-07-17 1984-04-03 Reynolds & Taylor, Inc. Solar concentrating lens and receiver
US5602384A (en) * 1992-11-06 1997-02-11 Nippondenso Co., Ltd. Sunlight sensor that detects a distrubition and amount of thermal load
DE10305428B4 (de) * 2003-02-03 2007-08-09 Schott Ag Hüllrohr, Receiverrohr und Parabolrinnenkollektor
US20050011513A1 (en) * 2003-07-17 2005-01-20 Johnson Neldon P. Solar energy collector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0004805A2 (fr) * 1978-04-04 1979-10-17 Compagnie Des Lampes Capteur d'énergie solaire comportant un élément absorbant sélectivement l'énergie rayonnée
US4505260A (en) * 1982-09-09 1985-03-19 Metzger Research Corporation Radiant energy device
CN101023305B (zh) * 2004-08-05 2010-06-16 肖特股份有限公司 太阳能吸收器
DE102008010316A1 (de) * 2008-02-21 2009-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarkollektor
WO2010032110A1 (en) * 2008-09-18 2010-03-25 Kloben S.A.S. Di Turco Adelino E C. Evacuated tube solar collector device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764346A (zh) * 2015-04-07 2015-07-08 珠海格力电器股份有限公司 辐射板结构及辐射板换热器

Also Published As

Publication number Publication date
EP2673572A2 (en) 2013-12-18
WO2012130283A3 (en) 2012-11-22
CN103562654B (zh) 2016-08-17
AU2011364489B2 (en) 2016-09-29
BR112013025292A2 (pt) 2016-12-13
MA35047B1 (fr) 2014-04-03
IL228398A0 (en) 2013-12-31
AU2011364489A1 (en) 2013-10-10
US20140130790A1 (en) 2014-05-15
US9732989B2 (en) 2017-08-15
WO2012130283A2 (en) 2012-10-04
IL228398A (en) 2017-08-31
ZA201307038B (en) 2014-05-28

Similar Documents

Publication Publication Date Title
EP2739581B1 (en) Heat receiver tube with a glass tube with infrared light reflective coating, method for manufacturing the glass tube, parabolic trough collector with the heat receiver tube and use of the parabolic trough collector
EP2357425A2 (en) High efficiency solar thermal receiver
CN103562654A (zh) 热接收管、用于制造热接收管的方法、具有接收管的抛物形槽式集热器以及抛物形槽式集热器的用途
CN203274309U (zh) 太阳能吸收涂层、涂层在衬底上的布置
EP3091307A1 (en) Hybrid system comprising a thermosolar parametric cylinder and a photovoltaic receiver
CN105241081B (zh) 具有白天集热和夜间辐射制冷功能的复合抛物面聚光集散热器
CN108362010A (zh) 一种用于高温的槽式太阳能集热管
CN202747664U (zh) 受热器管和具有该受热管的抛物形槽式收集器
CN105042885A (zh) 一种聚光型平板太阳能集热器
CN1276858A (zh) 非成像的太阳能收集器
CN208431964U (zh) 一种用于高温的槽式太阳能集热管
EP2606289B1 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
WO2013178370A2 (en) Solar reciver tube wit low emissivity covering, method for manufacturing the solar receiver tube and use of the tube
CN104654635A (zh) 太阳能集热器的集热真空管
AU2010326610B2 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
EP2677249A1 (en) Heat receiver tube with a diffusion barrier layer
CN109099596A (zh) 一种四靶太阳能集热管
CN108253636A (zh) 基于复合抛物面聚光器的高温吸热装置
CN107208934A (zh) 太阳能集热管、太阳光‑热转换装置以及太阳能发电装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20210329