CN103557295A - Dual-clutch transmission adopting specific gear-connected reverse gear structure - Google Patents

Dual-clutch transmission adopting specific gear-connected reverse gear structure Download PDF

Info

Publication number
CN103557295A
CN103557295A CN201310359994.1A CN201310359994A CN103557295A CN 103557295 A CN103557295 A CN 103557295A CN 201310359994 A CN201310359994 A CN 201310359994A CN 103557295 A CN103557295 A CN 103557295A
Authority
CN
China
Prior art keywords
gear
grades
driving
gears
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310359994.1A
Other languages
Chinese (zh)
Inventor
秦相
李修蓬
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIF RESEARCH CENTER(CHINA)CO Ltd
Original Assignee
GIF RESEARCH CENTER(CHINA)CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIF RESEARCH CENTER(CHINA)CO Ltd filed Critical GIF RESEARCH CENTER(CHINA)CO Ltd
Priority to CN201310359994.1A priority Critical patent/CN103557295A/en
Publication of CN103557295A publication Critical patent/CN103557295A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/085Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with more than one output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/12Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02086Measures for reducing size of gearbox, e.g. for creating a more compact transmission casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • F16H2057/0235Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly specially adapted to allow easy accessibility and repair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0056Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising seven forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0082Transmissions for multiple ratios characterised by the number of reverse speeds

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

The invention discloses a dual-clutch transmission adopting a specific gear-connected reverse gear structure. Particularly, the dual-clutch transmission comprises seven advancing gears, a reverse gear and four synchronizers, and all driving gears of the gears in the transmission are independent gears. The dual-clutch transmission has the advantages that by the design of the specific teeth-connected reverse gear structure, an idler shaft and an accessory gear in a conventional gear are omitted, the internal structure of the transmission is simplified, manufacturing cost is reduced, and space of the transmission is saved; difficulty in matching of speed ratio of the reverse gear and the number of teeth is reduced by the reverse teeth-connected gear, and demand for capacity of the synchronizers is lowered; by the transmission structure with the seven advancing gears, an engine has better economic efficiency and dynamic property; the seven advancing gears and the reverse gear are more reasonable in arrangement; each synchronizer is sufficiently utilized; all driving gears are independent gears, gear teeth are more convenient to design and convenient for matching with speed ratio.

Description

A kind of double clutch gearbox that adopts specific even tooth reverse gear structure
Technical field
The present invention relates to a kind of double clutch gearbox, relate in particular to a kind of specific seven forward gears double clutch gearboxes that connect tooth reverse gear structure that adopt.
Background technique
The concept of dual-clutch transmission (DCT) has had the history of 60 or seven ten years up till now.As far back as nineteen thirty-nine Germany Kegresse.A first applied for the patent of dual-clutch transmission, proposed manual transmission to be divided into two-part design concept, a part is transmitted odd number shelves, another part transmits even number shelves, and its transmission of power is by two input shafts of two clutch couplings, the driven gear of adjacent each grade interlocks and two input shaft gears engagements, coordinate the control of two clutches, can realize transmission ratio in the situation that not cutting off power, thereby shorten shift time, effectively improve property of automatic shft.
The automobile market of China will develop the change of important meaning in the coming years: rules and market pressure require to improve fuel consumption and emission; Keen competition brings larger cost pressure to car load factory; The increase of city automobile recoverable amount and some crowded regions also require to improve the travelling comfort of driving.Double clutch gearbox has produced exactly under this background.It is short that double clutch gearbox has shift time, engages and carry out the advantages such as suitable, so double clutch gearbox (especially on B level car and SUV) on a lot of cars has application more and more widely.
In prior art, as mentioned a kind of known double clutch gearbox in CN1621715, this double clutch gearbox is six advance gear designs, and adopts short idler shaft configuration reverse gear and three groups of duplicate gear meshing engagement structures.Six advance the design of gear compared to seven gears that advance, and Economy and power character are lower, and engine efficiency loss is high; The design of short idler shaft affects the balance of gearbox integral body, makes inhomogeneous, the whole irregularity of its internal placement, takies gearbox inner space larger, and manufacture cost is higher; Three groups of dual gears have increased the difficulty of number of teeth proportioning, are difficult to realize the requirement of car load speed ratio.
Summary of the invention
The object of the invention is to solve above-mentioned technical problem, propose a kind of specific double clutch gearbox that connects tooth reverse gear structure that adopts.
Object of the present invention, to be achieved by the following technical programs: a kind of double clutch gearbox that adopts specific even tooth reverse gear structure, comprising: the first output shaft and the second output shaft that are arranged on first clutch, the second clutch in clutch housing and stretch out in the housing of described gearbox;
Described first clutch is connected with the first input shaft, and described second clutch is connected with the second input shaft and the second input shaft is socketed on the first input shaft, and described the first output shaft, the second output shaft and the first input shaft, the second input shaft are parallel to each other;
Especially,
The specific double clutch gearbox that connects tooth reverse gear structure of described employing is provided with seven advance gear and reverse gear positions,
Described the first input shaft is installed with one grade of driving gear, third speed drive gear, five grades of driving gears and seven grades of driving gears, described one grade of driving gear is arranged between seven grades of driving gears and five grades of driving gears, and described five grades of driving gears are arranged between one grade of driving gear and third speed drive gear;
Described the second input shaft is installed with second gear driving gear, fourth gear driving gear and six grades of driving gears, described fourth gear driving gear is arranged between six grades of driving gears and second gear driving gear, described six grades of driving gears are adjacent with third speed drive gear, described second gear driving gear is adjacent with clutch
Described the first output shaft is set with first speed driven gear, second gear driven gear, third gear driven gear, fourth gear driven gear and reverse gear and connects gear, and described second gear driven gear connects gear with reverse gear and be coaxially connected,
Described the second output shaft is set with five grades of driven gears, six grades of driven gears, seven grades of driven gears and reverse gear driven gear,
Described first speed driven gear and one grade of driving gear engagement, described second gear driven gear is meshed with second gear driving gear, and described reverse gear connects gear and is meshed with reverse gear driven gear,
Described third gear driven gear and third speed drive gear engagement, described five grades of driven gears and the engagement of five driving gears,
Described fourth gear driven gear and the engagement of fourth gear driving gear, described six grades of driven gears and the engagement of six driving gears,
Described seven grades of driven gears and seven grades of driving gear engagements,
On described the first output shaft, be relatively fixed with a third gear synchronizer and two fourth gear synchronizers, a described third gear synchronizer can select to connect first speed driven gear or third gear driven gear, and described two fourth gear synchronizers can select to connect second gear driven gear or fourth gear driven gear;
On described the second output shaft, be relatively fixed with five or seven grades of synchronizers and six reversing-gear synchronizers, described five or seven grades of synchronizers can select to connect five grades of driven gears or seven grades of driven gears, described six reversing-gear synchronizers can select to connect six grades of driven gears and reverse gear driven gear
Preferably, described the first output shaft is also provided with the first main driving gear that subtracts, and described the first master subtracts driving gear and is connected in a differential mechanism.
Preferably, described the second output shaft is also provided with the second main driving gear that subtracts, and described the second master subtracts driving gear and connects described differential mechanism.
Preferably, described the first output shaft and the second output shaft lay respectively at the both sides of described the second input shaft.
Beneficial effect of the present invention is mainly reflected in:
1, the present invention adopts the specific design that connects tooth reverse gear structure, has omitted idler shaft and attached gear in traditional gearbox, has simplified the internal structure of gearbox, has reduced fabricating cost, has saved gearbox space, and integral arrangement is more succinctly smooth-going;
2, reverse gear connects the difficulty that gear has reduced reverse gear ratio number of teeth coupling, has reduced the demand to synchronizer capacity simultaneously;
3, the design of the present invention's seven forward gears gearbox designs, makes motor have better Economy and power character, and engine efficiency loss is little;
4, seven forward gearss and reverse gear arrange more reasonable, convenient for assembly;
5, each synchronizer is simultaneously effective to two gears, and synchronizer is fully utilized;
6, all driving gears of the present invention all adopt independent gear, and number of teeth design is more convenient, is convenient to mate speed ratio.
Accompanying drawing explanation
Fig. 1 is a kind of structural representation that adopts the double clutch gearbox of specific even tooth reverse gear structure of the present invention.
Embodiment
The invention provides a kind of specific double clutch gearbox that connects tooth reverse gear structure that adopts, as shown in Figure 1, adopt a specific double clutch gearbox that connects tooth reverse gear structure, comprising: the first output shaft 30 and the second output shaft 40 that are arranged on first clutch 1, the second clutch 2 in clutch housing and stretch out in the housing of gearbox.
First clutch 1 is connected with the first input shaft 10, and second clutch 2 is connected with the second input shaft 20 and the second input shaft 20 and is socketed on the first input shaft 10, the first output shafts 30, the second output shaft 40 and the first input shaft 10, the second input shaft 20 and is parallel to each other.First clutch 1 and second clutch 2 have the transmission of selection Engine torque to the first output shaft 10 and the second output shaft 20.
Adopt the specific double clutch gearbox that connects tooth reverse gear structure to be provided with seven advance gear and reverse gear positions.The design of seven grades of gearbox designs, makes motor have better Economy and power character, and engine efficiency loss is little.
The first input shaft 10 is installed with one grade of driving gear 101, third speed drive gear 102, five grades of driving gears 103 and seven grades of driving gears 104, one grade of driving gear 101 is arranged between seven grades of driving gears 104 and five grades of driving gears 103, and five grades of driving gears 103 are arranged between one grade of driving gear 101 and third speed drive gear 102.
The second input shaft 20 is installed with second gear driving gear 201, fourth gear driving gear 202 and six grades of driving gears 203, fourth gear driving gear 202 is arranged between six grades of driving gears 203 and second gear driving gear 201, six grades of driving gears 203 are adjacent with third speed drive gear 102, and second gear driving gear 201 is adjacent with clutch.
The first output shaft 30 is set with first speed driven gear 301, second gear driven gear 302, third gear driven gear 303, fourth gear driven gear 304 and reverse gear and connects gear 305, and described second gear driven gear 302 connects gear 305 with reverse gear and is coaxially connected, for the coaxial mode connecting of gear, have a lot, for example, weld or one-body molded etc.
The second output shaft 40 is set with five grades of driven gears 405, six grades of driven gears 406, seven grades of driven gears 407 and reverse gear driven gears 408.
First speed driven gear 301 and one grade of driving gear 101 engagement, second gear driven gear 302 is meshed with second gear driving gear 201, and reverse gear connects gear 305 and is meshed with reverse gear driven gear 408.
102 engagements of third gear driven gear 303 and third speed drive gear, five grades of driven gears 405 mesh with five driving gears 103.
202 engagements of fourth gear driven gear 304 and fourth gear driving gear, six grades of driven gears 406 mesh with six driving gears 203.
Seven grades of driven gears 407 and seven grades of driving gear 103 engagements.
On the first output shaft 30, be relatively fixed with a third gear synchronizer 501 and two fourth gear synchronizers 502, one third gear synchronizer 501 can select to connect first speed driven gear 301 or third gear driven gear 303, two fourth gear synchronizers 502 can select to connect second gear driven gear 302 or fourth gear driven gear 304.
On the second output shaft 40, be relatively fixed with five or seven grades of synchronizers 502 and six reversing-gear synchronizers 504, five or seven grades of synchronizers 502 can select to connect five grades of driven gears 405 or seven grades of driven gear 407, six reversing-gear synchronizers 504 can select to connect six grades of driven gears 406 and reverse gear driven gear 408.
In addition, the first output shaft 30 is also provided with the first main driving gear that subtracts, the first master subtracts driving gear and connects a differential mechanism, the second output shaft 40 is also provided with the second main driving gear that subtracts, the second master subtracts driving gear and connects above-mentioned differential mechanism, differential mechanism is mainly used in first and second output shaft rotating speed to control, and first and second master subtracts driving gear and differential mechanism belongs to prior art, so omit this part in accompanying drawing.
The first above-mentioned output shaft 30 and the second output shaft 40 lay respectively at the both sides of described the second input shaft 20.
To the present invention, adopt specific each gear switch of double clutch gearbox that connects tooth reverse gear structure to be elaborated below:
First the present invention relates to double clutch switching problem, double clutch switching belongs to prior art, admittedly do not repeat them here, by switching between double clutch, motor drives switching to the first input shaft 10 and the second input shaft 20.
When neutral gear: first clutch and second clutch are all in off state, and engine power is not exported.
In the time of one grade: a third gear synchronizer 501 engages with first speed driven gear 301, engine-driving the first input shaft 10 rotates, the first input shaft 10 drives one grade of driving gear 101 to rotate, one grade of driving gear 101 drives first speed driven gear 301 to rotate, first speed driven gear 301 drives a third gear synchronizer 501 to rotate, and a third gear synchronizer 501 drives the first output shaft 30 to rotate output.
When second gear: two fourth gear synchronizers 502 engage with second gear driven gear 302, motor drives the second input shaft 20 to rotate by driving the first input shaft 10 to switch to, the second input shaft 20 drives second gear driving gear 201 to rotate, second gear driving gear 201 drives second gear driven gear 302 to rotate, second gear driven gear 302 drives two fourth gear synchronizers 502 to rotate, and two fourth gear synchronizers 502 drive the first output shaft 30 to rotate output.
When third gear: a third gear synchronizer 501 engages with third gear driven gear 303, motor drives the first input shaft 10 to rotate by driving the second input shaft 20 to switch to, the first input shaft 10 drives third speed drive gear 102 to rotate, third speed drive gear 102 drives third gear driven gear 303 to rotate, third gear driven gear 303 drives a third gear synchronizer 501 to rotate, and a third gear synchronizer 501 drives the first output shaft 30 to rotate output.
When fourth gear: two fourth gear synchronizers 502 engage with fourth gear driven gear 304, motor drives the second input shaft 20 to rotate by driving the first input shaft 10 to switch to, the second input shaft 20 drives fourth gear driving gear 202 to rotate, fourth gear driving gear 202 drives fourth gear driven gear 304 to rotate, fourth gear driven gear 304 drives two fourth gear synchronizers 502 to rotate, and two fourth gear synchronizers 502 drive the first output shaft 30 to rotate output.
In the time of five grades: five or seven grades of synchronizers 503 engage with five grades of driven gears 405, motor drives the first input shaft 10 to rotate by driving the second input shaft 20 to switch to, the first input shaft 10 drives five grades of driving gears 103 to rotate, five grades of driving gears 103 drive five grades of driven gears 405 to rotate, five grades of driven gears 405 drive five or seven grades of synchronizers 503 to rotate, and five or seven grades of synchronizers 503 drive the second output shaft 40 to rotate output.
In the time of six grades: six reversing-gear synchronizers 504 engage with six grades of driven gears 406, motor drives the second input shaft 20 to rotate by driving the first input shaft 10 to switch to, the second input shaft 20 drives six grades of driving gears 203 to rotate, six grades of driving gears 203 drive six grades of driven gears 406 to rotate, six grades of driven gears 406 drive six reversing-gear synchronizers 504 to rotate, and six reversing-gear synchronizers 504 drive the second output shaft 40 to rotate output.
In the time of seven grades: five or seven grades of synchronizers 503 engage with seven grades of driven gears 407, motor drives the first input shaft 10 to rotate by driving the second input shaft 20 to switch to, the first input shaft 10 drives seven grades of driving gears 104 to rotate, seven grades of driving gears 104 drive seven grades of driven gears 407 to rotate, seven grades of driven gears 407 drive five or seven grades of synchronizers 503 to rotate, and five or seven grades of synchronizers 503 drive the second output shaft 40 to rotate output.
When reverse gear: two fourth gear synchronizers 502 are separated with second gear driven gear 302, six reversing-gear synchronizers 504 engage with reverse gear driven gear 408, motor drives the second input shaft 20 to rotate by driving the first input shaft 10 to switch to, the second input shaft 20 drives second gear driving gear 201 to rotate, second gear driving gear 201 drives second gear driven gear 302 to rotate, reverse gear connects gear 305 and second gear driven gear 302 coaxial rotation, reverse gear connects gear 305 and drives reverse gear driven gear 408 to rotate, reverse gear driven gear 408 rotates and drives six reversing-gear synchronizers 504 to rotate, six reversing-gear synchronizers 504 drive the second output shaft 40 to rotate output.
Above-mentioned specific reverse gear structure is not only for the gearbox that applies to seven forward gearss of the present invention, and existing all kinds of gearboxes all can adopt, and can possess the advantage of specific reverse gear mechanism equally after adopting.
The present invention still has numerous embodiments, and all employing equivalents or equivalent transformation and all technological schemes of forming, within all dropping on protection scope of the present invention.

Claims (4)

1. adopt a specific double clutch gearbox that connects tooth reverse gear structure, comprising: the first output shaft and the second output shaft that are arranged on first clutch, the second clutch in clutch housing and stretch out in the housing of described gearbox;
Described first clutch is connected with the first input shaft, and described second clutch is connected with the second input shaft and the second input shaft is socketed on the first input shaft, and described the first output shaft, the second output shaft and the first input shaft, the second input shaft are parallel to each other;
It is characterized in that:
The specific double clutch gearbox that connects tooth reverse gear structure of described employing is provided with seven advance gear and reverse gear positions,
Described the first input shaft is installed with one grade of driving gear, third speed drive gear, five grades of driving gears and seven grades of driving gears, described one grade of driving gear is arranged between seven grades of driving gears and five grades of driving gears, and described five grades of driving gears are arranged between one grade of driving gear and third speed drive gear;
Described the second input shaft is installed with second gear driving gear, fourth gear driving gear and six grades of driving gears, described fourth gear driving gear is arranged between six grades of driving gears and second gear driving gear, described six grades of driving gears are adjacent with third speed drive gear, described second gear driving gear is adjacent with clutch
Described the first output shaft is set with first speed driven gear, second gear driven gear, third gear driven gear, fourth gear driven gear and reverse gear and connects gear, and described second gear driven gear connects gear with reverse gear and be coaxially connected,
Described the second output shaft is set with five grades of driven gears, six grades of driven gears, seven grades of driven gears and reverse gear driven gear,
Described first speed driven gear and one grade of driving gear engagement, described second gear driven gear is meshed with second gear driving gear, and described reverse gear connects gear and is meshed with reverse gear driven gear,
Described third gear driven gear and third speed drive gear engagement, described five grades of driven gears and the engagement of five driving gears,
Described fourth gear driven gear and the engagement of fourth gear driving gear, described six grades of driven gears and the engagement of six driving gears,
Described seven grades of driven gears and seven grades of driving gear engagements,
On described the first output shaft, be relatively fixed with a third gear synchronizer and two fourth gear synchronizers, a described third gear synchronizer can select to connect first speed driven gear or third gear driven gear, and described two fourth gear synchronizers can select to connect second gear driven gear or fourth gear driven gear;
On described the second output shaft, be relatively fixed with five or seven grades of synchronizers and six reversing-gear synchronizers, described five or seven grades of synchronizers can select to connect five grades of driven gears or seven grades of driven gears, and described six reversing-gear synchronizers can select to connect six grades of driven gears and reverse gear driven gear.
2. a kind of specific double clutch gearbox that connects tooth reverse gear structure that adopts according to claim 1, is characterized in that: described the first output shaft is also provided with the first main driving gear that subtracts, and described the first master subtracts driving gear and is connected in a differential mechanism.
3. a kind of specific double clutch gearbox that connects tooth reverse gear structure that adopts according to claim 2, is characterized in that: described the second output shaft is also provided with the second main driving gear that subtracts, and described the second master subtracts driving gear and connects described differential mechanism.
4. a kind of specific double clutch gearbox that connects tooth reverse gear structure that adopts according to claim 1, is characterized in that: described the first output shaft and the second output shaft lay respectively at the both sides of described the second input shaft.
CN201310359994.1A 2013-08-19 2013-08-19 Dual-clutch transmission adopting specific gear-connected reverse gear structure Pending CN103557295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310359994.1A CN103557295A (en) 2013-08-19 2013-08-19 Dual-clutch transmission adopting specific gear-connected reverse gear structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310359994.1A CN103557295A (en) 2013-08-19 2013-08-19 Dual-clutch transmission adopting specific gear-connected reverse gear structure

Publications (1)

Publication Number Publication Date
CN103557295A true CN103557295A (en) 2014-02-05

Family

ID=50011621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310359994.1A Pending CN103557295A (en) 2013-08-19 2013-08-19 Dual-clutch transmission adopting specific gear-connected reverse gear structure

Country Status (1)

Country Link
CN (1) CN103557295A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080127759A1 (en) * 2006-12-04 2008-06-05 C.R.F. Societa Consortile Per Azioni Gearbox with six or more forward gears for single-clutch or twin-clutch motor-vehicle transmissions
WO2011051636A1 (en) * 2009-10-30 2011-05-05 Peugeot Citroën Automobiles SA Dual clutch gearbox
CN201827306U (en) * 2010-10-21 2011-05-11 浙江吉利汽车研究院有限公司 Double-clutch type automatic transmission
CN202431850U (en) * 2011-12-31 2012-09-12 绵阳新晨动力机械有限公司 Double-clutch transmission
CN102865337A (en) * 2011-07-08 2013-01-09 现代派沃泰有限公司 Automatic manual transmission
CN203477208U (en) * 2013-08-19 2014-03-12 吉孚动力技术(中国)有限公司 Double-clutch gearbox adopting specific tooth-connected reverse gear structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080127759A1 (en) * 2006-12-04 2008-06-05 C.R.F. Societa Consortile Per Azioni Gearbox with six or more forward gears for single-clutch or twin-clutch motor-vehicle transmissions
WO2011051636A1 (en) * 2009-10-30 2011-05-05 Peugeot Citroën Automobiles SA Dual clutch gearbox
CN201827306U (en) * 2010-10-21 2011-05-11 浙江吉利汽车研究院有限公司 Double-clutch type automatic transmission
CN102865337A (en) * 2011-07-08 2013-01-09 现代派沃泰有限公司 Automatic manual transmission
CN202431850U (en) * 2011-12-31 2012-09-12 绵阳新晨动力机械有限公司 Double-clutch transmission
CN203477208U (en) * 2013-08-19 2014-03-12 吉孚动力技术(中国)有限公司 Double-clutch gearbox adopting specific tooth-connected reverse gear structure

Similar Documents

Publication Publication Date Title
CN103557277A (en) Short-wheelbase dual-clutch transmission adopting specific teeth-connected reverse gear structure
CN201487145U (en) Automobile automatic transmission
CN103453081A (en) Hybrid double-clutch transmission with duplicate gears
CN102182795B (en) Transmission with three shafts and two clutches
CN203477208U (en) Double-clutch gearbox adopting specific tooth-connected reverse gear structure
CN106763549B (en) Novel ten-gear double-clutch type automatic transmission
CN103557276A (en) Double-clutch transmission
CN103557294A (en) Short-wheelbase dual-clutch transmission with long idler shaft
CN204628445U (en) The wheeled six gear gearboxes of a kind of duplex-gear
CN203548725U (en) Hybrid power double-clutch gearbox with dual gears
CN102425647B (en) Power transmission mechanism for double-clutch automatic transmission
CN203548726U (en) Double-clutch transmission with specific reversing structure and duplicate gears
CN103557283A (en) Short-wheelbase hybrid-power double-clutch gearbox
CN203686006U (en) Double-clutch gearbox in specific reverse gear structure
CN201973185U (en) Three-shaft two-clutch transmission
CN203548731U (en) Short wheelbase dual-clutch gearbox in specific reverse gear structure
CN203516614U (en) Short wheel base double-clutch speed changing box with short idler shaft
CN203477211U (en) Double clutch gearbox with short idler shaft
CN103557279A (en) Dual-clutch transmission adopting specific reverse gear structure
CN203686005U (en) Double-clutch gearbox
CN203477209U (en) Short-wheel-base double-clutch gearbox adopting specific tooth-connected reverse gear structure
CN203477212U (en) Double-clutch speed changing box adopting specific connecting-gear reverse gear structure and provided with duplicate gears
CN203477204U (en) Double-clutch gearbox
CN203548732U (en) Double-clutch gearbox with short idler shaft and dual gears
CN203477201U (en) Hybrid power double clutch gearbox

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140205

RJ01 Rejection of invention patent application after publication