CN103513147B - 一种海底电缆实时监测***及监测方法 - Google Patents

一种海底电缆实时监测***及监测方法 Download PDF

Info

Publication number
CN103513147B
CN103513147B CN201310408092.2A CN201310408092A CN103513147B CN 103513147 B CN103513147 B CN 103513147B CN 201310408092 A CN201310408092 A CN 201310408092A CN 103513147 B CN103513147 B CN 103513147B
Authority
CN
China
Prior art keywords
time monitoring
undersea cable
monitoring system
real
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310408092.2A
Other languages
English (en)
Other versions
CN103513147A (zh
Inventor
赵丽娟
李永倩
徐志钮
翟丽娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201310408092.2A priority Critical patent/CN103513147B/zh
Publication of CN103513147A publication Critical patent/CN103513147A/zh
Application granted granted Critical
Publication of CN103513147B publication Critical patent/CN103513147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Communication System (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了测量技术领域的一种海底电缆实时监测***及监测方法。其技术方案是,设计海底电缆实时监测***,通过检测背向瑞利散射光的偏振态和相位来实现海底电缆运行过程中的温度和应变,从而实现外界破坏、绝缘劣化、漏电、接地故障等状态信息的实时监测。不仅提高了设备的利用率,降低了监测成本,还大幅减小了漏报率和误判率,可实现对海缆的立体化、大范围、全线路、网络化实时监测,对海底电缆的安全稳定运行有重要意义。

Description

一种海底电缆实时监测***及监测方法
技术领域
本发明属于测量技术领域,尤其涉及一种海底电缆实时监测***及监测方法。
背景技术
我国海岸线长达3.2万公里,大小岛屿有6500多个,领海面积约473万平方公里,海上工作平台众多,海底电缆在远程供电、高压输电、电力通信、信号传输、保证海岛居民的生产生活和海上工作平台正常运行中起关键作用。
由于受到海水的冲刷、侵蚀等因素,容易造成海底电缆的绝缘老化、阻水性能变差,使得海底电缆产生漏电流,从而造成海底电缆在故障点处的温度升高,进而引起更大的故障,譬如:接地短路故障等。海底电缆负载电流的变化,也会使海底电缆的温度产生变化,即海底电缆温度的变化可以反映海底电缆的运行状况,为使海底电缆在安全的温度范围内运行,延长海底电缆使用寿命,有必要对海底电缆健康状况进行日常监控维护。
随着海洋开发利用活动的日益增加,海域内的养殖、渔网、船锚等对海缆运行的影响不容忽视,并且传统方式下,受落锚、抛锚、渔业捕捞、船只拖拽、岸基作业等破坏时无法预警,对事故点的准确定位及肇事船只的确认以及断缆线头打捞困难,影响了事故抢修和损失理赔。因此研究海底电缆健康状况监测的新方法、新手段,对于确保电网安全稳定运行、构建坚强智能电网具有非常重要的意义。
在海底电缆监测***中,传统的光时域反射器(OTDR)利用光在光纤中传输产生的背向瑞利散射信号进行海缆故障点定位,但这种技术只能在海缆已经被侵害事件破坏产生断裂后进行检测,无法实现侵害事件的实时在线监测。光时域背向拉曼散射分布式光纤传感器(ROTDR)利用多模光纤中的背向拉曼散射信号测量光纤沿线的温度分布,无法实现应变测量,因此该技术只能实现海缆温度信息的在线监测,无法对落锚、船只拖曳等应变事件进行在线监测。因此,海底电缆迫切需要一种有效的实时在线监测方法。
发明内容
针对背景技术中提到的传统的海底电缆监测***中无法实现海缆运行过程中的温度和应变的在线监测问题,本发明提出了一种海底电缆实时监测***及监测方法。
一种海底电缆实时监测***,其特征在于,所述***包括窄谱光源、第一耦合器、偏振控制器PC、电光调制器EOM、脉冲发生器、第一隔离器、第一掺铒光纤放大器EDFA、第二隔离器、第一光滤波器、环形器、起偏器、传感光纤、第二耦合器、第二掺铒光纤放大器EDFA、检偏器、第三隔离器、第二光滤波器、第一光电检测器、第二光电检测器、数据采集与显示单元和时钟控制单元;
其中,所述窄谱光源、第一耦合器、偏振控制器PC、电光调制器EOM、第一隔离器、第一掺铒光纤放大器EDFA、第二隔离器、第一光滤波器、环形器、起偏器和传感光纤顺次连接;所述窄谱光源用于产生窄谱光;所述第一耦合器的作用是将激光器发射的激光脉冲耦合进偏振控制器PC;所述电光调制器EOM用于调制脉冲光;所述第一隔离器用于防止脉冲光反向传输对窄谱光源造成损害,保证脉冲光单向传输;所述第一掺铒光纤放大器EDFA用于对脉冲光进行放大;所述第二隔离器用于防止脉冲光反向传输对窄谱光源造成损害,保证脉冲光单向传输;所述第一光滤波器用于滤除第一掺铒光纤放大器EDFA给***引入的自发辐射噪声;所述起偏器的作用是将普通光信号转换成线偏振光;
所述脉冲发生器分别与所述时钟控制单元和电光调制器EOM连接;所述脉冲发生器用于产生脉冲信号,通过电光调制器EOM调制窄谱光,使其变成脉冲光;
所述时钟控制单元分别与所述窄谱光源和数据采集与显示单元连接;所述数据采集与显示单元用于提取瑞利散射光信号的偏振态和相位信息,并进行计算和显示;
所述第二耦合器分别与所述环形器、第二掺铒光纤放大器EDFA和检偏器连接;所述第二耦合器是将背向瑞利散射信号分成两路;所述第二掺铒光纤放大器EDFA用于接收到的光进行放大;所述检偏器用于检测偏振态;
所述第二掺铒光纤放大器EDFA、第三隔离器、第二光滤波器、第一光电检测器和数据采集与显示单元顺次连接;所述第三隔离器用于防止脉冲光反向传输对窄谱光源造成损害,保证脉冲光单向传输;所述第一光电检测器用于将接收到的光信号变为电信号;
所述检偏器、第二光电检测器和数据采集与显示单元顺次连接;所述第二光电检测器用于将接收到的光信号变为电信号。
所述窄谱光源谱宽为3kHz~12.5GHz。
所述***采用间接调制的方式将窄谱光源产生的激光调制成脉冲光。
所述第一光滤波器包括光环形器和光纤布拉格光栅;所述第一光滤波器带宽等于光源谱宽。
所述第二光滤波器包括光环形器和光纤布拉格光栅;所述第二光滤波器带宽等于光源谱宽。
一种海底电缆实时监测方法,其特征在于,所述方法具体包括以下步骤:
步骤1:将所述光电复合海缆中的单模光纤作为传感光纤接入海底电缆实时监测***,或将通信光缆缠绕在普通海底电缆上进行测量,将通信光缆中的单模光纤作为传感光纤接入海底电缆实时监测***;
步骤2:海底电缆实时监测***向单模光纤中注入脉冲光,在单模光纤中产生瑞利散射;
步骤3:海底电缆实时监测***根据单模光纤中不同部分返回的瑞利散射光带有反射点处前向传输光的相位信息,实现偏振态及相位的监测;
步骤4:通过海底电缆实时监测***数据采集与显示单元提取瑞利散射光信号的偏振态和相位信息,实现单模光纤沿线的温度和应变信息监测;
步骤5:通过温度和应变的变化来分析海底电缆的运行状态,实现海底电缆的实时在线监测。
本发明的有益效果是,通过检测背向瑞利散射光的偏振态和相位来实现海底电缆运行过程中的温度和应变,从而实现外界破坏、绝缘劣化、漏电、接地故障等状态信息的实时监测。不仅提高了设备的利用率,降低了监测成本,还大幅减小了漏报率和误判率,可实现对海缆的立体化、大范围、全线路、网络化实时监测,对海底电缆的安全稳定运行有重要意义。
附图说明
图1是本发明提供的采用海底电缆实时监测***在线监测海底电缆状态信息的连接图;其中,a为光电复合海缆的测量连接图;b为将通信光缆缠绕在普通海底电缆上进行测量的连接图;
图2为本发明提供的海底电缆实时监测***的结构图;
其中,1-海底电缆实时监测***;2-光电复合海缆;3-光电复合海缆中复合的单模光纤;4-普通海底电缆;5-通信光缆中的单模光纤;6-第一耦合器;7-第一隔离器;8-第二隔离器;9-环形器;10-起偏器;11-光纤布拉格光栅;12-第三隔离器;13-传感光纤;14第二耦合器。
具体实施方式
下面结合附图,对优选实施例作详细说明。应该强调的是下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
图1是本发明提供的采用海底电缆实时监测***在线监测海底电缆状态信息的连接图;其中,a为光电复合海缆的测量连接图,海底电缆实时监测***1直接与光电复合海缆2中复合的单模光纤3进行连接;b为将通信光缆缠绕在普通海底电缆上进行测量的连接图,海底电缆实时监测***1与通信光缆中的单模光纤5进行连接。
图2为本发明提供的海底电缆实时监测***的结构图。图2中,瑞利散射光相位检测一般要求谱宽非常窄,采用超窄线宽激光器。因为如果激光器频谱宽度较大,产生的激光脉冲就含有各种频谱成分,这些信号的瑞利后向散射同时到达探测器时会发射叠加,而不是超窄线宽激光器的干涉。选择适合的半导体激光器作为光源,为了同时实现瑞利散射光相位和偏振态的同时检测,需要仔细选择光源谱宽,谱宽必须在3kHz~12.5GHz之间选择,既可以确保干涉效应发生,同时干涉效应也不能太强而完全淹没偏振态调制的效果。
为了实现分布型测量,需要向传感光纤注入脉冲光,该***通过间接调制的方式将激光调制成脉冲光。时钟控制单元触发窄谱光源,使其产生适合***检测的窄谱光。同时,时钟控制单元触发脉冲发生器,脉冲发生器开始工作,产生符合***要求的脉冲信号,此脉冲信号通过电光调制器去调制窄谱光,使其变成脉冲光。为了防止该脉冲光反向传输对窄谱光源造成损害,加入第一隔离器,保证脉冲光在光纤中单向传输。将连续光调制成脉冲光信号后,光功率较低,需要经过第一掺铒光纤放大器EDFA进行放大,第一掺铒光纤放大器EDFA会给***引入自发辐射噪声,需要经过带宽等于光源谱宽的第一光滤波器滤除该噪声信号,该光滤波器由光环形器和光纤布拉格光栅组成。去噪后的脉冲光通过环形器的c口注入到传感光纤中。光在光纤中传输,会产生瑞利散射,发生在背向的瑞利散射信号沿着光纤反向传输,到达环形器的d口,散射光在环形器里单向传输通过e口输出,输出的背向散射光经耦合器的f口等比例分成两路。第二耦合器g口光信号经过第二掺铒光纤放大器EDFA放大滤波后直接送入第一光电检测器进行光电转换,耦合器h口光信号经过一个检偏器检测偏振态后再通过第二光电检测器转化为电信号。由于在反射点处散射光与前向传输光的偏振态完全相同,因此背向瑞利散射光就携带有散射点处前向传输光的偏振信息,因此通过检测偏振信息就可以获知该散射点处的状态信息。同时,从光纤中不同部分返回的瑞利散射光同样带有反射点处前向传输光的相位信息,经过干涉作用后,这束背向瑞利散射光的功率大小也会受到相位的调制,变为有一定规律的波动,因此通过检测相位信息就可以获知该散射点处的状态信息。时钟控制单元控制数据采集和显示单元采集两路光信号并进行去噪等处理,提取瑞利散射光信号的偏振态和相位信息,从而实现光纤沿线的温度和应变信息监测。最后通过温度和应变的变化来分析海缆的运行状态,从而实现海底电缆的实时在线监测。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (6)

1.一种海底电缆实时监测***,其特征在于,所述***包括窄谱光源、第一耦合器、偏振控制器PC、电光调制器EOM、脉冲发生器、第一隔离器、第一掺铒光纤放大器EDFA、第二隔离器、第一光滤波器、环形器、起偏器、传感光纤、第二耦合器、第二掺铒光纤放大器EDFA、检偏器、第三隔离器、第二光滤波器、第一光电检测器、第二光电检测器、数据采集与显示单元和时钟控制单元;
其中,所述窄谱光源、第一耦合器、偏振控制器PC、电光调制器EOM、第一隔离器、第一掺铒光纤放大器EDFA、第二隔离器、第一光滤波器、环形器、起偏器和传感光纤顺次连接;所述窄谱光源用于产生窄谱光;所述第一耦合器的作用是将激光器发射的激光脉冲耦合进偏振控制器PC;所述电光调制器EOM用于调制脉冲光;所述第一隔离器用于防止脉冲光反向传输对窄谱光源造成损害,保证脉冲光单向传输;所述第一掺铒光纤放大器EDFA用于对脉冲光进行放大;所述第二隔离器用于防止脉冲光反向传输对窄谱光源造成损害,保证脉冲光单向传输;所述第一光滤波器用于滤除第一掺铒光纤放大器EDFA给***引入的自发辐射噪声;所述起偏器的作用是将普通光信号转换成线偏振光;
所述脉冲发生器分别与所述时钟控制单元和电光调制器EOM连接;所述脉冲发生器用于产生脉冲信号,通过电光调制器EOM调制窄谱光,使其变成脉冲光;
所述时钟控制单元分别与所述窄谱光源和数据采集与显示单元连接;所述数据采集与显示单元用于提取瑞利散射光信号的偏振态和相位信息,并进行计算和显示;
所述第二耦合器分别与所述环形器、第二掺铒光纤放大器EDFA和检偏器连接;所述第二耦合器是将背向瑞利散射信号分成两路;所述第二掺铒光纤放大器EDFA对接收到的光进行放大;所述检偏器用于检测偏振态;
所述第二掺铒光纤放大器EDFA、第三隔离器、第二光滤波器、第一光电检测器和数据采集与显示单元顺次连接;所述第三隔离器用于防止脉冲光反向传输对窄谱光源造成损害,保证脉冲光单向传输;所述第一光电检测器用于将接收到的光信号变为电信号;
所述检偏器、第二光电检测器和数据采集与显示单元顺次连接;所述第二光电检测器用于将接收到的光信号变为电信号。
2.根据权利要求1所述的一种海底电缆实时监测***,其特征在于,所述窄谱光源谱宽为3kHz~12.5GHz。
3.根据权利要求1所述的一种海底电缆实时监测***,其特征在于,所述***采用间接调制的方式将窄谱光源产生的激光调制成脉冲光。
4.根据权利要求1所述的一种海底电缆实时监测***,其特征在于,所述第一光滤波器包括光环形器和光纤布拉格光栅;所述第一光滤波器带宽等于光源谱宽。
5.根据权利要求1所述的一种海底电缆实时监测***,其特征在于,所述第二光滤波器包括光环形器和光纤布拉格光栅;所述第二光滤波器带宽等于光源谱宽。
6.根据权利要求1所述的一种海底电缆实时监测***,其特征在于,所述***的监测方法具体包括以下步骤:
步骤1:将光电复合海缆中的单模光纤作为传感光纤接入海底电缆实时监测***,或将通信光缆缠绕在普通海底电缆上进行测量,将通信光缆中的单模光纤作为传感光纤接入海底电缆实时监测***;
步骤2:海底电缆实时监测***向单模光纤中注入脉冲光,在单模光纤中产生瑞利散射;
步骤3:海底电缆实时监测***根据单模光纤中不同部分返回的瑞利散射光带有反射点处前向传输光的相位信息,实现偏振态及相位的监测;
步骤4:通过海底电缆实时监测***数据采集与显示单元提取瑞利散射光信号的偏振态和相位信息,实现单模光纤沿线的温度和应变信息监测;
步骤5:通过温度和应变的变化来分析海底电缆的运行状态,实现海底电缆的实时在线监测。
CN201310408092.2A 2013-09-09 2013-09-09 一种海底电缆实时监测***及监测方法 Active CN103513147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310408092.2A CN103513147B (zh) 2013-09-09 2013-09-09 一种海底电缆实时监测***及监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310408092.2A CN103513147B (zh) 2013-09-09 2013-09-09 一种海底电缆实时监测***及监测方法

Publications (2)

Publication Number Publication Date
CN103513147A CN103513147A (zh) 2014-01-15
CN103513147B true CN103513147B (zh) 2016-06-01

Family

ID=49896182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310408092.2A Active CN103513147B (zh) 2013-09-09 2013-09-09 一种海底电缆实时监测***及监测方法

Country Status (1)

Country Link
CN (1) CN103513147B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897301A (zh) * 2015-06-10 2015-09-09 贵州电网公司信息通信分公司 一种分布式光纤温度报警器
CN106289390A (zh) * 2016-07-29 2017-01-04 江苏亨通高压电缆有限公司 一种大长度海底电缆生产监测方法
DE102017102783A1 (de) * 2017-02-13 2018-08-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Stromleitungselement und System zur Isolationsüberwachung
CN107289978B (zh) * 2017-06-09 2019-05-07 南京大学 一种基于potdr的测扰动的***及方法
CN107741203A (zh) * 2017-08-23 2018-02-27 国网福建省电力有限公司 一种海底电缆应变监测***
CN108225538B (zh) * 2017-12-20 2020-04-03 太原理工大学 一种分布式矿用无源应急救援信号检测装置
CN108414112A (zh) * 2018-02-08 2018-08-17 盐城工学院 一种基于物联网的离散制造车间设备温度监测装置及方法
CN109374000B (zh) * 2018-11-12 2021-05-14 浙江大学 用于远距离海底电缆定位以及形变的高精度实时监测***
CN109443228B (zh) * 2018-11-16 2022-04-15 中国电力科学研究院有限公司 海底电缆铠装层形变监测***、装置及方法
CN109374089B (zh) * 2018-12-04 2020-06-09 华中科技大学 液位和液体温度同时测量的光纤传感***及其测量方法
CN109687903B (zh) * 2018-12-28 2021-09-28 东南大学 光纤宏弯曲在线监测***及方法
JP7195333B2 (ja) * 2019-04-29 2022-12-23 エイチエムエヌ・テクノロジーズ・カンパニー・リミテッド 海底ケーブル障害の判断方法及び装置
CN110492927B (zh) * 2019-09-27 2024-02-20 中国电子科技集团公司第三十四研究所 一种基于岸基探测的有中继海底光缆扰动监测***
CN113358985A (zh) * 2021-05-17 2021-09-07 广东电网有限责任公司 一种绝缘故障定位***
CN113532303B (zh) * 2021-07-05 2022-09-23 浙江大学 一种利用外加应变对物体应变位置测试装置和方法
CN114216500B (zh) * 2021-11-29 2023-01-10 浙江大学 一种海底电缆高精度智能健康监测***
CN116781151B (zh) * 2023-08-18 2023-10-20 华海通信技术有限公司 一种海缆***的光谱检测方法及***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729141B (zh) * 2008-10-21 2013-06-05 华为技术有限公司 对海缆***进行监测的方法和装置
CN202794431U (zh) * 2012-06-12 2013-03-13 李勇 海底电缆故障监测装置
CN102809713B (zh) * 2012-08-01 2015-06-03 国家电网公司 一种海底电缆断点探测方法
CN102981104B (zh) * 2012-11-19 2015-03-11 中国能源建设集团广东省电力设计研究院 海底电缆在线监测方法
CN102997949B (zh) * 2012-12-18 2015-06-24 华北电力大学(保定) 基于布里渊散射的温度和应变同时测量方法

Also Published As

Publication number Publication date
CN103513147A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
CN103513147B (zh) 一种海底电缆实时监测***及监测方法
CN102425995B (zh) 同时测量静态/动态应变、温度的光纤传感器***及方法
CN106595776B (zh) 一种分布式光纤多物理量传感***及方法
CN102829807B (zh) Botda和potdr相结合的分布式光纤传感***
CN104565826B (zh) 管道光纤安全监测预警方法和***
CN110912605B (zh) 一种光缆或光电复合缆的安全监测预警装置及方法
CN104040598B (zh) 干涉仪型光纤干扰检测装置及其检测方法
CN203940239U (zh) 管道光纤安全监测预警***
CN201293693Y (zh) 一种基于光纤光栅的滑坡内管道应力监测装置
CN103152097A (zh) 一种采用随机激光放大的长距离偏振及相位敏感光时域反射计
CN203502527U (zh) 一种海底电缆实时监测***
CN105928634B (zh) 单端布里渊光相干域分析的高压电缆测温装置及方法
CN204087417U (zh) 光纤感温火灾探测器***
CN115789531A (zh) 一种海底管道泄漏监测***及方法
CN101034035A (zh) 应用副载波技术提高分布式传感***性能的方法
CN204392253U (zh) 一种双opgw光缆故障并行监测***
CN105116285B (zh) 一种电力隧道电缆运行监测***
CN104361707A (zh) 光纤感温火灾探测器***
CN103023563B (zh) 一种光缆监控方法
CN204495405U (zh) 一种海底光电复合缆外部安全监测装置
CN111710118A (zh) 在不改变现有线路下变电站之间用高敏光缆哨兵监控线路入侵***
CN104390693B (zh) 链路自诊断长距离分布式光纤振动监测***
CN111275947A (zh) 一种电力电缆外部施工监测***及方法
CN108132094B (zh) 一种基于脉冲光的分布式光纤振动传感装置和方法
CN203519150U (zh) 一种基于布里渊分布式光纤传感的晃动监测***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant