CN103506082B - 一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法 - Google Patents

一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法 Download PDF

Info

Publication number
CN103506082B
CN103506082B CN201210220109.7A CN201210220109A CN103506082B CN 103506082 B CN103506082 B CN 103506082B CN 201210220109 A CN201210220109 A CN 201210220109A CN 103506082 B CN103506082 B CN 103506082B
Authority
CN
China
Prior art keywords
fiber
expanded graphite
composite fibre
flax fiber
flax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210220109.7A
Other languages
English (en)
Other versions
CN103506082A (zh
Inventor
张迎晨
吴红艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongyuan University of Technology
Original Assignee
Zhongyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongyuan University of Technology filed Critical Zhongyuan University of Technology
Priority to CN201210220109.7A priority Critical patent/CN103506082B/zh
Publication of CN103506082A publication Critical patent/CN103506082A/zh
Application granted granted Critical
Publication of CN103506082B publication Critical patent/CN103506082B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法,这种超过滤水吸附材料以亚麻纤维作为基质原料与膨胀石墨合成复合纤维,使用亚麻纤维与膨胀石墨复合纤维和主要成分为氢氧化铝的勃姆石制造成的一种生物活性吸附材料。这种超过滤水吸附材料可以产生正电荷,能够吸附带负电荷的微生物和噬菌体,达到吸附水中几乎全部的微生物和噬菌体。特别是通小电流,低电压外部电源后,净水效果更好。本发明制得的吸附材料有材料易得、造价低廉、工作环境要求低和吸附性能高的特点,在医学、兽医学、食品工业及与微生物过程有关的水和溶液净化等领域将得到广泛应用。

Description

一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法
技术领域
本发明属于吸附材料技术领域,具体涉及一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法。
背景技术
亚麻是人类最早使用的天然植物纤维。距今已有1万年以上的历史。亚麻纤维是一种稀有天然纤维,仅占纤维总量的1.5%,由于它的天然、古老、高贵和优质,素有“纤维皇后”的美称。按经济特征分类,一般把有栽培价值的亚麻划分为纤维用亚麻、油用亚麻和油纤兼用亚麻三大类型,纤维用亚麻具有较高的经济价值,从原茎到种子都可加工利用,开发利用价值极高。
亚麻纤维强韧、柔细,其强度是棉纤维的1.5倍、绢丝的1.6倍,可纺支数高,织物平滑整洁,适宜制作高级衣料;亚麻纤维具有吸湿性强、散热快、耐摩擦、耐高温、不易燃、不易裂、导电性小、吸尘率低、抑菌保健等独特优点,适宜制作飞机翼布、军用布、消防、宇航、医疗和卫生保健服装及帆布、水龙带、室内装饰布及工艺刺锈品等;打麻下脚料和麻屑也有较高的利用价值,加工后的短纤维即麻亚麻,可与毛、丝、棉、化纤等生产混纺纱,也可纺纯麻纱;麻屑是制造人造板材或高级纸张的优质原料。
我国水资源总量2.8万亿立方米,居世界第六位。我国人均水资源占有量只有2150m3,相当于世界人均占有水量的1/4。到2030年中国人口达16亿高峰时,人均水资源仅有1760m3,将成为国际上一般承认的人均低于1700m3的“用水紧张”国家。
据中国环境状况公报,2002年度海河、辽河、淮河、黄河、松花江、长江、珠江七大水系监测的752个重点断面中,Ⅰ~Ⅲ类水质占29.5%,Ⅳ 类水质占17.7%,Ⅴ类和劣Ⅴ类水质占52.8%。水利部对532条河流的监测表明,有436条河流受到不同程度的污染,七大江河流经的15个主要大城市河段中,有13个城市河段的水质严重污染。
全国湖泊达到富营养化水体的已达66%,主要湖泊氮、磷污染较重,导致富营养化问题突出,蓝藻泛滥日趋严重,严重影响水产养殖业和旅游业的发展,危害生态环境。
地下水水质也不容乐观。据2003年我国地下水资源评价与战略问题研究显示,有63%的地下水资源可供直接饮用,17%经适当处理后可饮用,8%需要经过专门处理后才能饮用。12%不适宜饮用但可作为工农业供水水源,全国约有一半城市市区的地下水污染严重,主要污染指标包括矿化度、总硬度、硝酸盐、亚硝酸盐、氨氮、铁、锰、氯化物、硫酸盐、氟化物,pH值等均呈超标趋势。全国约有7000多万人仍在饮用氟超标的地下水,3.6亿农村人口喝不上符合国家标准的饮用水。
近年来,我国政府已经全面启动饮用水污染的治理。更是将环保和节能提高为国策,饮用水的治理作为其中重要的内容,将在今后更长时期,从水源、自来水生产、供水设施到用水末梢净化,进行全面的治理改造。
目前,亚麻纤维以其调温、抗过敏、防静电、抗菌的优异的性能得到了广泛的开发和应用,各种健康、环保的亚麻纤维新产品、新材料不断进入人们生活中,受到大众的青睐。但应用有关利用亚麻纤维为基材的复合纤维制备过滤材料的方法及亚麻纤维吸附材料的产品方面的技术还未见报道。水分子和细菌非常微小,人的裸眼无法看到,为了方便,一般以纳米为单位来标注其大小。但在显微镜下,水分子和细菌的大小则迥然不同。单个水分子的直径远远小于1纳米,而大多数细菌的大小则有几百纳米。目前用于过滤水源的吸附剂一般不能将微生物和噬菌体全部吸附掉,而且只能在酸性和中性环境中工作。
发明内容
本发明的目是提供一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法,这种超过滤水吸附材料以亚麻纤维作为基质原料与膨胀石墨合成复合纤维,使用亚麻纤维与膨胀石墨的复合纤维和主要成分为氢氧化铝的勃姆石制造而成吸附材料。这种超过滤水吸附材料可以产生正电荷,能够吸附带负电荷的微生物和噬菌体,达到吸附水中几乎全部的微生物和噬菌体。
为实现上述目的,本发明采用的技术方案如下:
(1)亚麻经脱胶工艺:原麻→浸润→脱胶→敲麻→水洗→敲麻→水洗→甩干→柔软→干燥→梳麻,得到亚麻纤维,备用;(张宝胜,鲁文良,浅析亚麻纤维脱胶与亚麻粗纱煮练漂白工艺, 黑龙江纺织, 1999年04期)
(2)按比例取膨胀石墨加入去离子水,经超声振荡,形成膨胀石墨的均相混合液A;
(3)将混合液A降温到0℃后,在冰水浴中加入Na0H,尿素,亚麻纤维,搅拌制成混合液B;
(4)将混合液B于-15℃的温度下冷冻存放1-3小时,再将冷冻状态的混合液放在室温下解冻,搅拌25-35分钟,制得亚麻纤维与膨胀石墨形成均相混合液C;
(5)将混合液C喷射入高速搅拌的H2S04溶液中除去多余的Na0H,得到湿态纤维状的亚麻纤维与膨胀石墨复合纤维;用去离子水冲洗复合纤维直至洗液的PH值达到7,复合纤维在室温下自然晾干,再在烘箱中烘干,得到干燥复合纤维;
(6)用二氧化硅悬浮液经水热合成处理复合纤维(何赐全, 杜海燕, 孙家跃化工新型材料, 无机纳米材料的水热合成及其衍生方法, 2007年10期);获得氧化硅管状包覆复合纤维;
(7)将所得的氧化硅管状包覆复合纤维与勃姆石粉末均匀混合;氧化硅管状包覆复合纤维与勃姆石粉末的质量比为1/100-1/2;
(8)用正弦交流电对混合物进行活化处理(混合物直接放入带有极板的槽中,极板的间距10-20厘米。极板加载交流电后在极板间产生交流电场对材料产生活化效应。);经活化处理后非球状的氢氧化铝大颗粒附着在复合纤维表面,形成孔眼较大的吸附材料。
步骤(2)中所述膨胀石墨/亚麻纤维重量比1/10000~3/1000,超声振荡时间为10-20分钟;
步骤(3)中加入的Na0H、尿素和亚麻纤维的重量比例为3:2:2,加入三种物质的总重量占混合液B的重量的14%,所述搅拌制成制备混合液B搅拌时间为10-20分钟。
步骤(5)中所述H2S04溶液的浓度为3-7wt%。
步骤(5)中所述复合纤维在室温下自然晾干2天,再在 80℃的烘箱中烘干8-12分钟,得到干燥复合纤维。
步骤(6)中所述二氧化硅悬浮液浓度为1%。
步骤(8)中用50赫兹频率的正弦交流电对混合物进行活化处理。
以上材料经微孔模具夹持,制备各种型状过滤器,以上所述模具根据所需制备的过滤器型状的要求为管型、杯型、方型、圆型,薄片型等各种形状的模具,所需制备的各种形状过滤器可以满足广泛过滤需求。
本发明的超过滤水吸附材料以亚麻纤维作为基质原料与膨胀石墨合成复合纤维,使用亚麻纤维与膨胀石墨的复合纤维和主要成分为氢氧化铝的勃姆石制造而成吸附材料。这种超过滤水吸附材料可以产生正电荷,能够吸附带负电荷的微生物和噬菌体,达到吸附水中几乎全部的微生物和噬菌体。特别是通小电流,低电压外部电源后,净水效果更好。
本发明制备的亚麻纤维/膨胀石墨复合纤维超过滤水吸附材料将提供一种可快速消除水中细菌,且不会堵塞,并将会为社会需求带来一种简易、低廉的净水方法。与目前的水过滤吸附材料相比,本发明的生物活性水过滤吸附材料具有材料易得、造价低廉、工作环境要求低和吸附性能高的特点,在医学、兽医学、食品工业及与微生物过程有关的水和溶液净化等领域将得到广泛应用。可开发利用的空间较大,市场前景广阔。
采用实施例1的过滤器,在压力0 .5mpa下, 过滤河水的处理效果如下表。
表1  水样净化前后其它有害物质的含量与除去率(单位:mgL-1
 表2  水样净化前后微生物指标测试结果与除去率
具体实施方式
下面结合具体实施例,进一步阐述本发明。
实施例1
亚麻经脱胶工艺处理:原麻→浸润→脱胶→敲麻→水洗→敲麻→水洗→甩干→柔软→干燥→梳麻,得到亚麻纤维,待用。称取重量0.01g膨胀石墨放入 250mL烧杯中,加入100mL去离子水,超声振荡15分钟后,形成膨胀石墨的均相混合液A,将膨胀石墨的均相混合液放入冰箱中冷却0℃后,在冰水浴中加入 6.0gNa0H,4.0g尿素(urea),4.0g亚麻纤维,搅拌15分钟,将混合液(含有6wt%NaOH、4wt%Urea、4wt%MCC以及0.01g膨胀石墨)放入-15℃的冰箱中,冷却存放2小时。再把冷冻状态的混合液放在室温下解冻,并搅拌30分钟,制得亚麻纤维与膨胀石墨形成均相混合溶液,将制得的亚麻纤维与膨胀石墨均相混合溶液喷射入高速搅拌的5wt%的H2S04溶液中除去多余的Na0H,得到湿态纤维状的亚麻纤维与膨胀石墨复合纤维。用去离子水冲洗复合纤维直至洗液的PH值达到7,复合纤维在室温下自然晾干2天,再在 80℃的烘箱中烘干10分钟,得到干燥复合纤维,用浓度为1%的二氧化硅悬浮液经水热合成处理复合纤维,获得氧化硅管状包覆复合纤维,将氧化硅管状包覆复合纤维与勃姆石粉末均匀混合,放入微孔管型模具,用50赫兹频率的正弦交流电对混合物进行活化处理, 经活化处理后非球状的氢氧化铝大颗粒附着在复合纤维表面,形成厚度为1厘米,孔径分布在0.01 um-30um的片状多孔过滤材料,经微孔模具夹持,制备成管型过滤器。
实施例2
亚麻经脱胶工艺处理:原麻→浸润→脱胶→敲麻→水洗→敲麻→水洗→甩干→柔软→干燥→梳麻,得到亚麻纤维,待用。称取重量0.09g膨胀石墨放入 250mL烧杯中,加入100mL去离子水,超声振荡30分钟后,形成膨胀石墨的均相混合液,将膨胀石墨的均相混合液放入冰箱中冷却0℃后,在冰水浴中加入 12.0gNa0H,8.0g尿素(urea),8.0g亚麻纤维,搅拌30分钟,将混合液放入-15℃的冰箱中,冷却存放2小时。再把冷冻状态的混合液放在室温下解冻,并搅拌40分钟,制得亚麻纤维与膨胀石墨形成均相混合溶液,将制得的亚麻纤维与膨胀石墨均相混合溶液喷射入高速搅拌的5wt%的H2S04溶液中除去多余的Na0H,得到湿态纤维状的亚麻纤维与膨胀石墨复合纤维。用去离子水冲洗复合纤维直至洗液的PH值达到7,复合纤维在室温下自然晾干3天,再在 80℃的烘箱中烘干10分钟,得到干燥复合纤维,用浓度为1%的二氧化硅悬浮液经水热合成处理复合纤维,获得氧化硅管状包覆复合纤维,将氧化硅管状包覆复合纤维与勃姆石粉末均匀混合,放入微孔杯型模具用100赫兹频率的正弦交流电对混合物进行活化处理, 经活化处理后非球状的氢氧化铝大颗粒附着在复合纤维表面,形成厚度为1厘米,孔径分布在0.01 um-30um的片状多孔过滤材料,经微孔模具夹持,制备成杯型过滤器。
实施例3
亚麻经脱胶工艺处理:原麻→浸润→脱胶→敲麻→水洗→敲麻→水洗→甩干→柔软→干燥→梳麻,得到亚麻纤维,待用。称取重量0.15g膨胀石墨放入 250mL烧杯中,加入100mL去离子水,超声振荡20分钟后,形成膨胀石墨的均相混合液,将膨胀石墨的均相混合液放入冰箱中冷却0℃后,在冰水浴中加入 18.0gNa0H,12.0g尿素(urea),12.0g亚麻纤维,搅拌40分钟,将混合液放入-15℃的冰箱中,冷却存放2小时。再把冷冻状态的混合液放在室温下解冻,并搅拌50分钟,制得亚麻纤维与膨胀石墨形成均相混合溶液,将制得的亚麻纤维与膨胀石墨均相混合溶液喷射入高速搅拌的5wt%的H2S04溶液中除去多余的Na0H,得到湿态纤维状的亚麻纤维与膨胀石墨复合纤维。用去离子水冲洗复合纤维直至洗液的PH值达到7,复合纤维在室温下自然晾干3天,再在 80℃的烘箱中烘干10分钟,得到干燥复合纤维,用浓度为1%的二氧化硅悬浮液经水热合成处理复合纤维,获得氧化硅管状包覆复合纤维,将氧化硅管状包覆复合纤维与勃姆石粉末均匀混合,放入微孔薄片型模具,用100赫兹频率的正弦交流电对混合物进行活化处理,经活化处理后非球状的氢氧化铝大颗粒附着在复合纤维表面,形成厚度为1厘米,孔径分布在0.01 um-30um的片状多孔过滤材料,经微孔模具夹持,制备成薄片型过滤器。

Claims (1)

1.一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法,其特征在于,包括如下步骤:
(1)亚麻经脱胶工艺:原麻→浸润→脱胶→敲麻→水洗→敲麻→水洗→甩干→柔软→干燥→梳麻,得到亚麻纤维,备用;
(2)按比例取膨胀石墨加入去离子水,经超声振荡,形成膨胀石墨的均相混合液A;
(3)将混合液A降温到0℃后,在冰水浴中加入Na0H,尿素,亚麻纤维,搅拌制成混合液B;加入的Na0H、尿素和亚麻纤维的重量比例为3:2:2,加入三种物质的总重量占混合液B的重量的14%,所述搅拌制成制备混合液B搅拌时间为10-20分钟;
(4)将混合液B于-15℃的温度下冷冻存放1-3小时,再将冷冻状态的混合液放在室温下解冻,搅拌25-35分钟,制得亚麻纤维与膨胀石墨形成均相混合液C;
(5)将混合液C喷射入高速搅拌的H2S04溶液中除去多余的Na0H,得到湿态纤维状的亚麻纤维与膨胀石墨复合纤维;用去离子水冲洗复合纤维直至洗液的pH值达到7,复合纤维在室温下自然晾干,再在烘箱中烘干,得到干燥复合纤维;所述H2S04溶液的浓度为3-7wt%;所述复合纤维在室温下自然晾干2天,再在 80℃的烘箱中烘干8-12分钟,得到干燥复合纤维;
(6)用二氧化硅悬浮液经水热合成处理复合纤维;获得氧化硅管状包覆复合纤维;所述二氧化硅悬浮液浓度为1%;
(7)将所得的氧化硅管状包覆复合纤维与勃姆石粉末均匀混合;氧化硅管状包覆复合纤维与勃姆石粉末的质量比为1/100-1/2;
(8)用正弦交流电对混合物进行活化处理;经活化处理后非球状的氢氧化铝大颗粒附着在复合纤维表面,形成吸附材料;
步骤(8)中用50赫兹频率的正弦交流电对混合物进行活化处理。
CN201210220109.7A 2012-06-29 2012-06-29 一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法 Expired - Fee Related CN103506082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210220109.7A CN103506082B (zh) 2012-06-29 2012-06-29 一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210220109.7A CN103506082B (zh) 2012-06-29 2012-06-29 一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法

Publications (2)

Publication Number Publication Date
CN103506082A CN103506082A (zh) 2014-01-15
CN103506082B true CN103506082B (zh) 2015-08-12

Family

ID=49889820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210220109.7A Expired - Fee Related CN103506082B (zh) 2012-06-29 2012-06-29 一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法

Country Status (1)

Country Link
CN (1) CN103506082B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503497B2 (ja) * 1987-03-30 1996-06-05 日立化成工業株式会社 黒鉛・繊維複合材料
US20030198659A1 (en) * 2001-10-25 2003-10-23 Hoffmann Michael P. Fibrous pest control
CN2872872Y (zh) * 2006-04-03 2007-02-28 洛阳深奥科技开发有限公司 膨胀石墨复合型香烟过滤嘴
US20090178970A1 (en) * 2008-01-16 2009-07-16 Ahlstrom Corporation Coalescence media for separation of water-hydrocarbon emulsions
WO2010139816A1 (es) * 2009-06-05 2010-12-09 Desarrollos Tecnicos Mc, S.L. Composicion y uso de un material adsorbente para el filtrado de componentes tóxicos en el proceso de incineracion y/o destilacion de la glicerina procedente de la produccion de biodiesel
CN102174214B (zh) * 2011-03-07 2014-05-21 海南光宇生物科技有限公司 细菌纤维素/石墨烯复合材料及其制备方法
CN102489259B (zh) * 2011-11-10 2013-08-21 河南大学 氧化石墨烯/纤维素复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN103506082A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
CN100359054C (zh) 一种功能纤维及由其制得的多功能纤维
CN109012638B (zh) 一种羧基化多级孔纤维素吸附球的制备方法
CN107243331B (zh) 用于水处理的环保型净水包及其制备方法
CN104017233A (zh) 磁性细菌纤维素气凝胶吸油材料的制备方法
CN107117942A (zh) 石墨烯协同亲水去油污功能陶瓷材料及其制备方法和应用
CN105664869B (zh) 一种月桂酰胺丙基甜菜碱改性棕榈树皮吸附剂的制备
CN106423062A (zh) 一种用于去除水中六价铬离子的橘皮基吸附剂制备方法
CN101560729A (zh) 一种毛织物面料抗菌整理剂及整理工艺
CN101862641B (zh) 水葫芦复合非织造吸附材料及其制备方法
CN103967075A (zh) 多孔细旦尼龙纤维集水应用
CN103506081B (zh) 一种苎麻纤维/膨胀石墨复合纤维吸附材料的制备方法
Zhang et al. Multi-scale structure synergistic strategy: A transpiration inspired hierarchical aerogel evaporator for highly efficient solar-driven clean water production
CN103506082B (zh) 一种亚麻纤维/膨胀石墨复合纤维吸附材料的制备方法
CN106629707A (zh) 一种盐地碱蓬基多孔炭及其应用
CN106943882B (zh) 一种类普鲁士蓝/羧甲基纤维素凝胶改性复合膜及制备方法和用途
CN108404595A (zh) 一种利用葡萄酿酒残渣制备甲醛吸附剂的方法
CN109046038A (zh) 一种高强度抑菌反渗透膜的制备方法
CN103301815A (zh) 一种细菌纤维素超过滤水吸附材料的制备方法
CN105618001B (zh) 一种椰油酰胺丙基甜菜碱改性丝瓜络吸附剂的制备
CN103506085B (zh) 棉纤维/膨胀石墨复合纤维超过滤水吸附材料的制备方法
CN110975837A (zh) 一种改性牡蛎壳、制备方法及其应用
CN103506083B (zh) 一种***纤维/膨胀石墨复合纤维吸附材料的制备方法
CN201746422U (zh) 去油污处理装置
CN103506084B (zh) 一种竹纤维/膨胀石墨复合纤维吸附材料的制备方法
CN106379955A (zh) 一种废水处理剂及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150812

Termination date: 20180629

CF01 Termination of patent right due to non-payment of annual fee