CN103500770B - A kind of infrared gas sensor of many gas detecting - Google Patents
A kind of infrared gas sensor of many gas detecting Download PDFInfo
- Publication number
- CN103500770B CN103500770B CN201310500970.3A CN201310500970A CN103500770B CN 103500770 B CN103500770 B CN 103500770B CN 201310500970 A CN201310500970 A CN 201310500970A CN 103500770 B CN103500770 B CN 103500770B
- Authority
- CN
- China
- Prior art keywords
- gas concentration
- infrared
- concentration sensor
- temperature
- target gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007789 gas Substances 0.000 claims abstract description 322
- 238000001514 detection method Methods 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000002955 isolation Methods 0.000 claims abstract description 8
- 238000012360 testing method Methods 0.000 claims description 64
- 238000010521 absorption reaction Methods 0.000 claims description 52
- 238000005070 sampling Methods 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 16
- 238000005530 etching Methods 0.000 claims description 15
- 230000007246 mechanism Effects 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 11
- 230000003287 optical effect Effects 0.000 claims description 11
- 229910021332 silicide Inorganic materials 0.000 claims description 10
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 238000009413 insulation Methods 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 6
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 229910018125 Al-Si Inorganic materials 0.000 claims description 4
- 229910018520 Al—Si Inorganic materials 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 4
- 238000001039 wet etching Methods 0.000 claims description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 238000001312 dry etching Methods 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 11
- 238000012545 processing Methods 0.000 abstract description 4
- 230000010354 integration Effects 0.000 abstract description 2
- 238000004806 packaging method and process Methods 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 239000002086 nanomaterial Substances 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F55/00—Radiation-sensitive semiconductor devices covered by groups H10F10/00, H10F19/00 or H10F30/00 being structurally associated with electric light sources and electrically or optically coupled thereto
- H10F55/10—Radiation-sensitive semiconductor devices covered by groups H10F10/00, H10F19/00 or H10F30/00 being structurally associated with electric light sources and electrically or optically coupled thereto wherein the radiation-sensitive semiconductor devices control the electric light source, e.g. image converters, image amplifiers or image storage devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种多气体检测的红外气体传感器,将红外辐射源与多个热电堆传感器采用标准CMOS/MEMS工艺制备于同一个芯片,各芯片间通过热隔离墙、隔热沟道和真空晶圆级对准封装的方式,实现对共面传感器之间的热串扰的降低。采用单片集成工艺方法,对多传感器进行同时加工,采用不同窄波段滤波片分别组装于共面排布的多个传感器,实现对不同气体进行分光检测,在大大降低加工成本的同时,降低了热串扰和功耗,并且进一步提高了检测精度。
The invention discloses an infrared gas sensor for multi-gas detection. An infrared radiation source and a plurality of thermopile sensors are prepared on the same chip by using a standard CMOS/MEMS process, and the chips are separated by a thermal isolation wall, a thermal isolation channel and a vacuum. The method of wafer-level alignment packaging realizes the reduction of thermal crosstalk between coplanar sensors. Using a monolithic integration process method, multi-sensors are processed at the same time, and different narrow-band filters are assembled on multiple sensors arranged in the same plane to realize spectroscopic detection of different gases, which greatly reduces the processing cost and reduces the cost. thermal crosstalk and power consumption, and further improves detection accuracy.
Description
技术领域technical field
本发明涉及红外气体传感器技术领域,尤其涉及的是一种多气体检测的红外气体传感器。The invention relates to the technical field of infrared gas sensors, in particular to an infrared gas sensor for multi-gas detection.
背景技术Background technique
物联网技术的发展为集成化、低功耗、低成本的红外气体传感器带来了广泛的应用需求。工业和日常生活中实现对危险品气体,诸如CO,CO2,NO,NO2,CH4的高灵敏检测,可以避免其泄露对社会财产和公共安全造成的巨大危害。在提高传感器探测性能和便携性的同时,实现多种气体非接触式同时检测,满足物联网、复杂环境对微红外多气体传感器的发展需求。红外气体传感器随MEMS和CMOS技术的发展,得以实现红外光学气体检测***的微型化,与传统气体传感器相比较,在稳定性、功耗、灵敏度、可靠性、使用寿命、极快的响应恢复及成本等方面,都有显著的优势。The development of Internet of Things technology has brought a wide range of application requirements for integrated, low-power, and low-cost infrared gas sensors. The highly sensitive detection of dangerous gases such as CO, CO 2 , NO, NO 2 , CH 4 in industry and daily life can avoid the huge harm caused by their leakage to social property and public safety. While improving the detection performance and portability of the sensor, the non-contact simultaneous detection of multiple gases can be realized to meet the development needs of the Internet of Things and complex environments for micro-infrared multi-gas sensors. With the development of MEMS and CMOS technology, infrared gas sensor can realize the miniaturization of infrared optical gas detection system. There are significant advantages in terms of cost and so on.
Rae System公司于2002年提出将分立的红外光源、探测器、气室集成在一个TO5管壳中作为小型化的红外气体传感器,并且能够用于检测碳氢化合物HC、二氧化碳CO2、一氧化碳CO和一氧化氮NO气体浓度,但是并未实现多种气体同时检测,多种气体进行检测前需分离增加了检测的复杂度和成本。Rae System proposed in 2002 to integrate discrete infrared light sources, detectors, and gas chambers into a TO 5 tube shell as a miniaturized infrared gas sensor, and it can be used to detect hydrocarbons HC, carbon dioxide CO 2 , carbon monoxide CO and nitric oxide NO gas concentration, but the simultaneous detection of multiple gases has not been realized, and the separation of multiple gases before detection increases the complexity and cost of detection.
发明内容Contents of the invention
本发明所要解决的技术问题是针对现有技术的不足提供一种多气体检测的红外气体传感器。The technical problem to be solved by the present invention is to provide an infrared gas sensor for multi-gas detection aiming at the deficiencies of the prior art.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
本发明首先提供一种多气体检测的红外气体传感器,包括四个敏感元,分别为:第一敏感元(1)、第二敏感元(2)、第三敏感元(3)和参比敏感元(4),四个敏感元均布在以纳米表面修饰红外光源(6)为圆心的圆周上,其中第一敏感元(1)、第二敏感元(2)之间设置一个L型的隔热沟道(5),第三敏感元(3)和参比敏感元(4)之间也设置一个L型的隔热沟道(5);四个敏感元和纳米表面修饰红外光源(6)***均由热隔离墙(7)实现相互之间的热隔离,降低热串扰的影响;参比敏感元的窄带滤波片波段覆盖第一敏感元(1)、第二敏感元(2)、第三敏感元(3),通过参比敏感元对其他三个传感器的信号进行计算和补偿修正。The present invention firstly provides an infrared gas sensor for multi-gas detection, including four sensitive elements, namely: the first sensitive element (1), the second sensitive element (2), the third sensitive element (3) and the reference sensitive element element (4), the four sensitive elements are evenly distributed on the circle centered on the nano-surface modified infrared light source (6), wherein an L-shaped An L-shaped heat insulation channel (5) is also arranged between the third sensitive element (3) and the reference sensitive element (4) in the thermal insulation channel (5); the four sensitive elements and the nanometer surface modified infrared light source ( 6) The outer periphery is thermally isolated from each other by a thermal isolation wall (7) to reduce the influence of thermal crosstalk; the narrowband filter band of the reference sensor covers the first sensor (1) and the second sensor (2) . The third sensitive element (3), calculating and compensating the signals of the other three sensors through the reference sensitive element.
所述的红外气体传感器,所述第一敏感元(1)、第二敏感元(2)、第三敏感元(3)和参比敏感元(4)均布在经过光源(5)的椭圆的焦点上。In the infrared gas sensor, the first sensitive element (1), the second sensitive element (2), the third sensitive element (3) and the reference sensitive element (4) are evenly distributed on the ellipse passing through the light source (5) on the focus.
本发明还提供所述纳米表面修饰红外光源(6)的制备工艺,步骤如下:The present invention also provides a preparation process for the nano-surface modified infrared light source (6), the steps are as follows:
(a)、在单晶硅衬底(61)上生长氮化硅(62),实验条件:温度780℃,330mTorr,Six2Cl2:24sccm,NH3:90sccm;(a) growing silicon nitride (62) on a single crystal silicon substrate (61), experimental conditions: temperature 780°C, 330mTorr, Six 2 Cl 2 : 24 sccm, NH 3 : 90 sccm;
(b)、非晶硅(63)的淀积:温度为270℃,气体比例分别为SIH4:24%NH3:55%N2:5.2%RF:170;(b) Deposition of amorphous silicon (63): the temperature is 270°C, and the gas ratios are SIH 4 : 24% NH 3 : 55% N 2 : 5.2% RF: 170;
(c)、Al溅射和退火:磁控溅射Al,条件:气压10mTorr,通入Ar满足气压条件后,设置RF为8400W,然后在450℃下90min时间进行退火处理;(c), Al sputtering and annealing: magnetron sputtering Al, conditions: air pressure 10mTorr, after feeding Ar to meet the air pressure conditions, set RF to 8400W, and then perform annealing treatment at 450°C for 90 minutes;
(d)、湿法腐蚀Al膜:采用常规的Al腐蚀液,腐蚀后样品表面剩下Al-Si化合物颗粒;(d), wet etching of Al film: using conventional Al etching solution, Al-Si compound particles remain on the surface of the sample after etching;
(e)、非晶硅干法刻蚀:采用Cl2180sccm,压力300mTorr,RF350W,He200sccm,温度35-40℃,刻蚀完成后形成表面金属硅化物组成的微掩蔽结构;(e) Dry etching of amorphous silicon: use Cl 2 180sccm, pressure 300mTorr, RF350W, He200sccm, temperature 35-40°C, and form a micro-masking structure composed of surface metal silicide after etching is completed;
(f)、正面释放孔的刻蚀,为释放单晶硅衬底做准备:气体CHF37sccm,He100sccm,SF630sccm,RF150W,压力400mTorr;采用磁控溅射的方法,溅射40-50A的TiN包覆金属硅化物和非晶硅外层,条件为Ar22.4sccm,N23.0sccm,压力为5e-3Torr,功率为1000W,真空度为8e-7Pa;(f) Etching of the release holes on the front side to prepare for the release of the single crystal silicon substrate: gas CHF 3 7sccm, He100sccm, SF 6 30sccm, RF150W, pressure 400mTorr; magnetron sputtering method, sputtering 40-50A TiN coated metal silicide and amorphous silicon outer layer, the conditions are Ar22.4sccm, N 2 3.0sccm, the pressure is 5e-3Torr, the power is 1000W, and the vacuum degree is 8e-7Pa;
(g)、XeF2正面释放硅衬底,形成微悬臂梁对红外光源进行支撑,条件为XeF24Torr,N220mTorr,温度为20℃。(g) XeF 2 releases the silicon substrate on the front side to form a micro-cantilever beam to support the infrared light source. The conditions are XeF 2 4Torr, N 2 20mTorr, and the temperature is 20°C.
本发明还提供参比敏感元对其他三个传感器的信号进行计算和补偿修正的方法,具体步骤为:所述红外气体浓度传感器的输出信号分为参比敏感元的输出信号URef.与检测通道的输出信号UAct.,两输出信号URef.、UAct.与目标气体对红外光的吸收率有如下关系:The present invention also provides a method for calculating and compensating and correcting the signals of the other three sensors by the reference sensitive element. The specific steps are: the output signal of the infrared gas concentration sensor is divided into the output signal U Ref. of the reference sensitive element and the detection The output signal U Act. of the channel, the two output signals U Ref. , U Act . and the absorption rate of the target gas to infrared light There are the following relations:
I0:入射光强,即红外光源经窄带光学滤波片滤光后入射参照通道与检测通道的红外光强度,一般在氮气条件下测得;I 0 : incident light intensity, that is, the infrared light intensity of the infrared light source incident on the reference channel and the detection channel after being filtered by a narrow-band optical filter, generally measured under nitrogen conditions;
I:透射光强,即红外气体浓度传感器检测通道内由目标气体吸收后的红外光强度;I: transmitted light intensity, that is, the infrared light intensity absorbed by the target gas in the detection channel of the infrared gas concentration sensor;
基于只局限于单色光的郎伯-比尔定律:I=IO exp(-εlCn) (2)Based on the Lambert-Beer law limited to monochromatic light: I=I O exp(-εlC n ) (2)
C:目标气体浓度;C: target gas concentration;
ε:目标气体对红外光的吸收系数;ε: absorption coefficient of target gas to infrared light;
l:目标气体入射光程;l: incident light path of the target gas;
n:修正常数,依赖于光程与目标气体成分;n: Correction constant, depends on optical path and target gas composition;
红外光源经窄带光学滤波片滤光后入射检测通道的红外光在其波长范围内必然存在一些波长范围内的光不会被目标气体吸收,即存在非吸收波段,因此,将式(2)转换为:After the infrared light source is filtered by a narrow-band optical filter, the infrared light incident on the detection channel must have some light in the wavelength range that will not be absorbed by the target gas within its wavelength range, that is, there is a non-absorbing band. Therefore, the formula (2) is transformed into for:
I=IO×((1-S)×e(-ΣεlC")+S) (3)I=I O ×((1-S)×e (-ΣεlC") +S) (3)
S:非吸收波段占检测通道入射红外光波长范围的比例系数,表征了非吸收波段对红外气体浓度传感器检测通道输出信号UAct.的贡献;S: The proportion coefficient of the non-absorbing band to the wavelength range of the incident infrared light of the detection channel, which characterizes the contribution of the non-absorbing band to the output signal U Act. of the detection channel of the infrared gas concentration sensor;
α:指数常数,与郎伯-比尔定律中εl的平均值相关;α: Exponential constant, related to the mean value of εl in the Lambert-Beer law;
β:幂常数,取决于目标气体的光谱特性;β: power constant, depends on the spectral properties of the target gas;
在目标气体不存在的情况下,红外气体浓度传感器检测通道输出信号UAct.与参照通道输出信号URef.的比值定义为红外气体浓度传感器的零位输出比,用符号Z表示,In the absence of the target gas, the ratio of the infrared gas concentration sensor detection channel output signal U Act. to the reference channel output signal U Ref. is defined as the zero output ratio of the infrared gas concentration sensor, expressed by the symbol Z,
即
在目标气体不存在的情况下,红外气体浓度传感器检测通道输出信号UAct.的峰-峰值; In the absence of the target gas, the infrared gas concentration sensor detects the peak-to-peak value of the channel output signal U Act .;
在目标气体不存在的情况下,红外气体浓度传感器参照通道输出信号URef.的峰-峰值; In the absence of the target gas, the infrared gas concentration sensor refers to the peak-to-peak value of the output signal U Ref. of the channel;
在目标气体存在的情况下,红外气体浓度传感器透射光强I与入射光强I0的比值与红外气体浓度传感器的零位输出比Z相关,即
则式(5)可转换为;Then formula (5) can be transformed into;
式(9)中参数α、β按如下方法确定;The parameters α and β in formula (9) are determined as follows;
首先,确定目标气体对红外气体浓度传感器红外光的相对吸收率Fa,即
然后,基于在相同浓度目标气体的测试状况下,同一确定类型红外气体浓度传感器红外光相对吸收率Fa的一致性,选取若干个红外气体浓度传感器,要求为同一确定类型,并确定目标气体的浓度测试范围,在目标气体的浓度测试范围内等间隔设定测试点;应用各红外气体浓度传感器按照测试点进行逐一测试,记录每一红外气体浓度传感器与测试浓度值对应的红外光相对吸收率Fa,求取平均值,并按照测试点气体浓度值与相对吸收率Fa平均值的对应关系,绘制测试结果分析表;Then, based on the consistency of the relative absorption rate Fa of infrared light of the same certain type of infrared gas concentration sensor under the test conditions of the same concentration of target gas, select several infrared gas concentration sensors, requiring the same certain type, and determine the concentration of the target gas Test range, set test points at equal intervals within the concentration test range of the target gas; use each infrared gas concentration sensor to test one by one according to the test points, and record the relative absorption rate Fa of infrared light corresponding to each infrared gas concentration sensor and the test concentration value , calculate the average value, and draw the test result analysis table according to the corresponding relationship between the gas concentration value of the test point and the average value of the relative absorption rate Fa;
最后,依据式(10)选取函数关系式:Y=W×(1-exp(-αXβ)) (11)Finally, select the functional relationship according to formula (10): Y=W×(1-exp(-αXβ)) (11)
X:自变量-目标气体浓度C;X: independent variable - target gas concentration C;
Y:因变量-红外气体浓度传感器红外光相对吸收率Fa的平均值;Y: The dependent variable - the average value of the infrared light relative absorption rate Fa of the infrared gas concentration sensor;
W:1-S,忽略不记;W: 1-S, ignore;
按照测试结果分析并记录的测试结果,对式(11)进行曲线拟合,求取参数α和3的具体值;According to the test result of test result analysis and record, formula (11) is carried out curve fitting, obtains the concrete value of parameter α and 3;
通过式(8)可以得出式(9)中参数S:The parameter S in formula (9) can be obtained through formula (8):
C″:红外气体浓度传感器测试的满量程目标气体浓度;C″: the full-scale target gas concentration tested by the infrared gas concentration sensor;
在目标气体浓度满量程时,红外气体浓度传感器检测通道输出信号UAct.的峰-峰值; When the target gas concentration is in the full range, the infrared gas concentration sensor detects the peak-to-peak value of the output signal U Act. of the channel;
在目标气体浓度满量程时,红外气体浓度传感器参照通道输出信号URef.的峰-峰值; When the target gas concentration is in full range, the infrared gas concentration sensor refers to the peak-peak value of the output signal U Ref. of the channel;
将相关数据:参数α、β、S、Z带入式(9)中,即可得到红外气体浓度传感器计算气体浓度的目标函数,根据目标函数、以及红外气体浓度传感器参照通道的输出信号URef.与检测通道的输出信号UAct.,得红外气体浓度传感器所检测目标气体的气体浓度C。Bring relevant data: parameters α, β, S, Z into formula (9), and the objective function for calculating the gas concentration by the infrared gas concentration sensor can be obtained. According to the objective function and the output signal U Ref of the reference channel of the infrared gas concentration sensor .and the output signal U Act. of the detection channel to obtain the gas concentration C of the target gas detected by the infrared gas concentration sensor.
进一步的,参比敏感元对其他三个传感器的信号进行计算和补偿修正的方法中还包括环境参量的补偿,具体包括温度补偿机制、湿度补偿机制和压强补偿机制,具体为:Further, the method for calculating and compensating the signals of the other three sensors by the reference sensitive element also includes the compensation of environmental parameters, specifically including temperature compensation mechanism, humidity compensation mechanism and pressure compensation mechanism, specifically:
温度补偿机制为:The temperature compensation mechanism is:
引入温度补偿参数λ,结合温度关系补偿红外气体浓度传感器内目标气体对红外光的吸收率定义温度补偿后红外气体浓度传感器内目标气体对红外光的吸收率:Introduce the temperature compensation parameter λ, combined with the temperature relationship to compensate the absorption rate of the target gas for infrared light in the infrared gas concentration sensor Define the absorption rate of infrared light by the target gas in the infrared gas concentration sensor after temperature compensation:
T:测试时外界环境的实时温度;T: the real-time temperature of the external environment during the test;
T0:测试用于确定红外气体浓度传感器零位输出比Z的红外气体浓度传感器输出信号 时的外界环境温度;T 0 : Test the output signal of the infrared gas concentration sensor used to determine the zero output ratio Z of the infrared gas concentration sensor The external ambient temperature at the time;
λ:温度补偿参数;λ: temperature compensation parameter;
其中,温度补偿参数λ按如下方法确定:应用红外气体浓度传感器在确定的目标气体浓度下进行测试,同时改变外界环境的温度,并对外界环境温度设定一定数量的采样点,记录与外界环境温度采样点对应的红外气体浓度传感器内目标气体对红外光的吸收率即按照值与外界温度的对应关系进行曲线拟合,求取温度补偿参数λ的具体值;Among them, the temperature compensation parameter λ is determined according to the following method: use the infrared gas concentration sensor to test under the determined target gas concentration, change the temperature of the external environment at the same time, and set a certain number of sampling points for the external environment temperature, record and The absorption rate of the target gas to infrared light in the infrared gas concentration sensor corresponding to the temperature sampling point which is according to The corresponding relationship between the temperature compensation value and the external temperature is used for curve fitting to obtain the specific value of the temperature compensation parameter λ;
将式(13)带入式(9)中,即可得到红外气体浓度传感器经温度补偿后计算气体浓度的目标函数: Putting formula (13) into formula (9), the objective function of calculating the gas concentration after temperature compensation of the infrared gas concentration sensor can be obtained:
基于理想气体浓度定律,对已经温度补偿后的目标函数C补偿进行二次温度补偿,获得红外气体浓度传感器计算气体浓度的最终目标函数:Based on the ideal gas concentration law, the second temperature compensation is performed on the temperature compensated objective function C to obtain the final objective function of the infrared gas concentration sensor to calculate the gas concentration:
其中,温度T、T0采用标准温度,单位为K;Wherein, temperature T, T 0 adopt standard temperature, unit is K;
湿度补偿机制为:The humidity compensation mechanism is:
在地面大气中,水蒸气(H2O)在大气中的含量随着天气条件变化很大,H2O在红外吸收波段有很多吸收带,所以需要进行适度补偿。在温度补偿的基础上,引入湿度补偿参数结合湿度关系补偿红外气体浓度传感器内目标气体对红外光的吸收率定义湿度补偿后红外气体浓度传感器内目标气体对红外光的吸收率:In the surface atmosphere, the content of water vapor (H 2 O) in the atmosphere varies greatly with weather conditions, and H 2 O has many absorption bands in the infrared absorption band, so appropriate compensation is required. On the basis of temperature compensation, the introduction of humidity compensation parameters Combining with the relationship of humidity to compensate the absorption rate of infrared light by the target gas in the infrared gas concentration sensor Define the absorption rate of infrared light by the target gas in the infrared gas concentration sensor after humidity compensation:
RH:测试时外界环境的实时湿度;RH: The real-time humidity of the external environment during the test;
RH0;测试用于确定红外气体浓度传感器零位输出比Z的红外气体浓度传感器输出信号 时的外界环境湿度;RH 0 ; the test is used to determine the infrared gas concentration sensor output signal of the infrared gas concentration sensor zero output ratio Z The humidity of the external environment;
湿度补偿参数; Humidity compensation parameters;
其中,湿度补偿参数按如下方法确定:应用红外气体浓度传感器在确定的目标气体浓度和温度下进行测试,同时改变外界环境的湿度,并对外界环境湿度设定一定数量的采样点,记录与外界环境湿度采样点对应的红外气体浓度传感器内目标气体对红外光的吸收率即按照值与外界湿度的对应关系进行曲线拟合,求取湿度补偿参数的具体值;Among them, the humidity compensation parameters It is determined as follows: use an infrared gas concentration sensor to test under the determined target gas concentration and temperature, and change the humidity of the external environment at the same time, and set a certain number of sampling points for the humidity of the external environment, and record the values corresponding to the sampling points of the external environment humidity Absorption rate of target gas to infrared light in the infrared gas concentration sensor which is according to Curve fitting of the corresponding relationship between the value and the external humidity to obtain the humidity compensation parameters specific value;
将式(15)带入式(9)中,即可得到红外气体浓度传感器经湿度补偿后计算气体浓度的目标函数:Putting formula (15) into formula (9), the objective function of calculating the gas concentration after humidity compensation of the infrared gas concentration sensor can be obtained:
其中,湿度RH、RH0采用相对湿度;Among them, humidity RH, RH 0 adopts relative humidity;
压强补偿机制为:The pressure compensation mechanism is:
由于压强的变化会引起分子运动的变化,进而影响红外光的透射率,所以在温度、湿度补偿的基础上,引入压强补偿参数β,结合温度、湿度关系补偿,定义压强补偿后红外气体浓度传感器内目标气体对红外光的吸收率:Because the change of pressure will cause the change of molecular motion, which will affect the transmittance of infrared light, so on the basis of temperature and humidity compensation, the pressure compensation parameter β is introduced, combined with the compensation of temperature and humidity relationship, the infrared gas concentration sensor after pressure compensation is defined Absorption rate of target gas to infrared light:
(16)(16)
P:测试时外界环境的实时压强;P: The real-time pressure of the external environment during the test;
P0:测试用于确定红外气体浓度传感器零位输出比Z的红外气体浓度传感器输出信号 时的外界环境压强;P 0 : Test the output signal of the infrared gas concentration sensor used to determine the zero output ratio Z of the infrared gas concentration sensor The external environment pressure at the time;
β:压强补偿参数;β: pressure compensation parameter;
其中,压强补偿参数β按如下方法确定:应用红外气体浓度传感器在确定的目标气体浓度、温度和湿度下进行测试,同时改变外界环境的压强,并对外界环境压强设定一定数量的采样点,记录与外界环境压强采样点对应的红外气体浓度传感器内目标气体对红外光的吸收率即按照值与外界压强的对应关系进行曲线拟合,求取压强补偿参数β的具体值;Among them, the pressure compensation parameter β is determined as follows: use the infrared gas concentration sensor to test under the determined target gas concentration, temperature and humidity, change the pressure of the external environment at the same time, and set a certain number of sampling points for the external environment pressure, Record the absorption rate of the target gas to infrared light in the infrared gas concentration sensor corresponding to the sampling point of the external environment pressure which is according to The corresponding relationship between the value and the external pressure is used for curve fitting to obtain the specific value of the pressure compensation parameter β;
将式(16)带入式(9)中,即可得到红外气体浓度传感器经压强补偿后计算气体浓度的目标函数:Putting formula (16) into formula (9), the objective function of the infrared gas concentration sensor to calculate the gas concentration after pressure compensation can be obtained:
其中,压强P、P0采用标准压强,单位为;barAmong them, the pressure P, P 0 adopts the standard pressure, the unit is; bar
根据最终目标函数、以及红外气体浓度传感器参照通道的输出信号URef.与检测通道的输出信号UAct.,得红外气体浓度传感器所检测目标气体的气体浓度C。According to the final objective function and the output signal U Ref. of the reference channel of the infrared gas concentration sensor and the output signal U Act. of the detection channel, the gas concentration C of the target gas detected by the infrared gas concentration sensor is obtained.
本发明具有以下有益效果:The present invention has the following beneficial effects:
1、采用单片集成工艺方法,对多传感器进行同时加工,采用不同窄波段滤波片分别组装于共面排布的多个传感器,实现对不同气体进行分光检测,在大大降低加工成本的同时,降低了热串扰和功耗,并且进一步提高了检测精度。1. Using single-chip integration process method to process multiple sensors at the same time, using different narrow-band filters to assemble multiple sensors arranged in the same plane, to achieve spectroscopic detection of different gases, while greatly reducing processing costs, Thermal crosstalk and power consumption are reduced, and detection accuracy is further improved.
2、采用热隔离墙和热隔离槽结构,对各个探测器进行热隔离,以此种技术实现多气体传感器的单片集成制造,不必对其分别进行封装。2. Adopt the structure of thermal isolation wall and thermal isolation groove to thermally isolate each detector, and realize the monolithic integrated manufacturing of multi-gas sensors with this technology, without packaging them separately.
3、采用MEMS/CMOS兼容技术制备红外光源,实现与传感器的共面集成制造。3. The infrared light source is prepared by MEMS/CMOS compatible technology, and the coplanar integrated manufacturing with the sensor is realized.
4、采用参比敏感元对组装了窄波段滤波片的探测单元进行信号分析和补偿修正。4. Use the reference sensitive element to perform signal analysis and compensation correction on the detection unit assembled with the narrow-band filter.
附图说明Description of drawings
图1为本发明多气体检测的红外气体传感器的结构示意图;Fig. 1 is the structural representation of the infrared gas sensor of multi-gas detection of the present invention;
图2为本发明纳米表面修饰红外光源的加工工艺原理示意图;Fig. 2 is the schematic diagram of the processing technology principle of nanometer surface modification infrared light source of the present invention;
图3为纳米结构红外光源锥状纳米结构SEM电镜照片;Fig. 3 is the SEM electron micrograph of nanostructure infrared light source conical nanostructure;
图4为本发明纳米结构红外光源红外发射率分析;Fig. 4 is the infrared emissivity analysis of the nanostructure infrared light source of the present invention;
图5为本发明纳米结构红外光源表面应力仿真;Fig. 5 is the surface stress simulation of the nanostructure infrared light source of the present invention;
图6为本发明红外气体浓度传感器信号处理方法流程图;Fig. 6 is a flow chart of the signal processing method of the infrared gas concentration sensor of the present invention;
1第一敏感元,2第二敏感元,3第三敏感元,4参比敏感元,5隔热沟道,6纳米表面修饰红外光源,61硅衬底,62氮化硅,63非晶硅,64Al,65TiN;7热隔离墙。1 first sensing element, 2 second sensing element, 3 third sensing element, 4 reference sensing element, 5 heat insulation channel, 6 nanometer surface modified infrared light source, 61 silicon substrate, 62 silicon nitride, 63 amorphous Silicon, 64Al, 65TiN; 7 thermal isolation walls.
具体实施方式detailed description
以下结合具体实施例,对本发明进行详细说明。The present invention will be described in detail below in conjunction with specific embodiments.
本发明为未作详细说明的CMOS/MEMS工艺均为现有技术。The present invention refers to the CMOS/MEMS processes that are not described in detail and are all prior art.
实施例1Example 1
参考图1,在图1所示的多气体检测的红外气体传感器中,包括四个敏感元,分别为:第一敏感元1、第二敏感元2、第三敏感元3和参比敏感元4,四个敏感元均布在以纳米表面修饰红外光源6为圆心的圆周上,其中第一敏感元1、第二敏感元2之间设置两个隔热沟道5,第三敏感元3和参比敏感元4之间也设置两个同样的隔热沟道5;四个敏感元和纳米表面修饰红外光源6***均由热隔离墙7实现相互之间的热隔离,降低热串扰的影响。Referring to Fig. 1, in the infrared gas sensor for multi-gas detection shown in Fig. 1, four sensitive elements are included, namely: the first sensitive element 1, the second sensitive element 2, the third sensitive element 3 and the reference sensitive element 4. The four sensitive elements are evenly distributed on the circle centered on the nano-surface modified infrared light source 6, wherein two thermal insulation channels 5 are set between the first sensitive element 1 and the second sensitive element 2, and the third sensitive element 3 Two same thermal insulation channels 5 are also set between the reference sensitive element 4; the four sensitive elements and the nano-surface modified infrared light source 6 are all thermally isolated from each other by a thermal isolation wall 7 to reduce the risk of thermal crosstalk. influences.
利用MEMS技术,在单一硅片上同时制备四个气体红外传感器和MEMS红外光源,其中三个传感器分别组合窄波段滤波片,滤波片的选择取决于各传感器测试气体的特异性波段,参比敏感元的窄带滤波片波段覆盖其他三个气体敏感元(第一敏感元51、第二敏感元52、第三敏感元53),通过参比敏感元对其他三个传感器的信号进行计算和补偿修正。Using MEMS technology, four gas infrared sensors and MEMS infrared light sources are prepared on a single silicon chip at the same time. Three of the sensors are combined with narrow-band filters. The selection of filters depends on the specific band of the gas tested by each sensor. The narrow-band filter band of the sensor covers the other three gas sensor elements (the first sensor element 51, the second sensor element 52, and the third sensor element 53), and the signals of the other three sensors are calculated and compensated by the reference sensor element .
实施例2Example 2
本实施例提供一种纳米表面修饰红外光源6,作为一个具体例子,参考图2中步骤(a)-(g),对本发明纳米表面修饰红外光源6的制备工艺详述如下:This embodiment provides a nano-surface modified infrared light source 6. As a specific example, referring to steps (a)-(g) in FIG. 2, the preparation process of the nano-surface modified infrared light source 6 of the present invention is described in detail as follows:
(a)、在单晶硅衬底61上生长氮化硅62,实验条件;温度780℃,330mTorr,SiH2Cl2;24sccm,NH3:90sccm;(a), growing silicon nitride 62 on a single crystal silicon substrate 61, experimental conditions: temperature 780°C, 330mTorr, SiH 2 Cl 2 ; 24 sccm, NH 3 : 90 sccm;
(b)、非晶硅63的淀积:温度为270℃,气体流量和比例分别为SIH4:24%NH3:55%N2:5.2%RF:170;(b) Deposition of amorphous silicon 63: the temperature is 270°C, the gas flow rate and ratio are SIH 4 : 24% NH 3 : 55% N 2 : 5.2% RF: 170;
(c)、Al溅射和退火:磁控溅射Al,条件:气压10mTorr,通入Ar满足气压条件后,设置RF为8400W,然后在450℃下90min时间进行退火处理;(c), Al sputtering and annealing: magnetron sputtering Al, conditions: air pressure 10mTorr, after feeding Ar to meet the air pressure conditions, set RF to 8400W, and then perform annealing treatment at 450°C for 90 minutes;
(d)、湿法腐蚀Al膜:采用常规的Al腐蚀液,腐蚀后样品表面剩下Al-Si化合物颗粒。(d) Wet etching of the Al film: using a conventional Al etching solution, Al-Si compound particles remain on the surface of the sample after etching.
(e)、非晶硅干法刻蚀:采用Cl2180sccm,压力300mTorr,RF350W,He200sccm,温度35-40℃,刻蚀完成后仅剩下表面的金属硅化物。(e) Dry etching of amorphous silicon: using Cl 2 180sccm, pressure 300mTorr, RF350W, He200sccm, temperature 35-40°C, only the metal silicide on the surface remains after the etching is completed.
(f)、正面释放孔的刻蚀,为释放单晶硅衬底做准备:气体CHF37sccm,He100sccm,SF630sccm,RF150W,压力400mTorr。采用磁控溅射的方法,溅射40-50A的TiN包覆金属硅化物和非晶硅外层,具体的实验条件为Ar22.4sccm,N23.0sccm,压力为5e-3Torr,功率为1000W,真空度为8e-7Pa。(f) Etching of the release hole on the front side, in preparation for releasing the single crystal silicon substrate: gas CHF 3 7 sccm, He 100 sccm, SF 6 30 sccm, RF 150W, pressure 400mTorr. Using the method of magnetron sputtering, sputtering 40-50A TiN coated metal silicide and amorphous silicon outer layer, the specific experimental conditions are Ar22.4sccm, N 2 3.0sccm, pressure 5e-3Torr, power 1000W , the vacuum is 8e-7Pa.
(g)、XeF2正面释放硅衬底,形成微悬臂梁对红外光源进行支撑,条件为XeF24Torr,N220mTorr,温度为20℃。(g) XeF 2 releases the silicon substrate on the front side to form a micro-cantilever beam to support the infrared light source. The conditions are XeF 2 4Torr, N 2 20mTorr, and the temperature is 20°C.
步骤(c)中,采用的是金属诱导晶化方法制备锥状森林结构,利用金属和硅互溶原理,在界面层形成金属硅化物颗粒,在金属湿法腐蚀的过程,不进行去硅点清洗,保留金属硅化物颗粒作为下一步刻蚀的掩蔽。对刻蚀形成的锥状纳米结构进行了SEM电镜照片拍摄,如图3所示的锥状结构表面积增加了5倍左右,在对其表面进行TiN溅射后,进行了红外发射率分析,如图4所示,在HCl和NO检测领域高于70%发射率、在CH4、SO2、CO2和NO2检测具备领域高于60%发射率,且在8-10μm波段,存在高于70%的红外发射率,XPS元素分析和价态分析(表1、表2)。表1显示了常规工艺中的C,O,Si,以及在金属诱导晶化过程发生作用的F和Al,表2显示,制备的红外光源加工后,主要存在的化学物是AlFx,AlSix。而金属诱导晶化过程中产生的金属硅化物,已在制备过程被刻蚀完全。In step (c), the metal-induced crystallization method is used to prepare a cone-shaped forest structure, and metal silicide particles are formed on the interface layer by using the principle of mutual solubility of metal and silicon. During the metal wet etching process, no silicon removal point cleaning is performed. , retain the metal silicide particles as a mask for the next step of etching. The cone-shaped nanostructure formed by etching was taken by SEM electron microscope. The surface area of the cone-shaped structure as shown in Figure 3 increased by about 5 times. After TiN sputtering on the surface, the infrared emissivity analysis was carried out, as shown in Figure 3. As shown in Figure 4, the emission rate is higher than 70% in the detection field of HCl and NO, and the emission rate is higher than 60% in the detection field of CH4, SO2, CO2 and NO2, and in the 8-10μm band, there is an infrared emission rate higher than 70%. Emissivity, XPS elemental analysis and valence state analysis (Table 1, Table 2). Table 1 shows C, O, Si in the conventional process, and F and Al that play a role in the metal-induced crystallization process. Table 2 shows that after the infrared light source is processed, the main chemical compounds are AlF x , AlSix . However, the metal silicide produced during the metal-induced crystallization process has been completely etched during the preparation process.
表1XPS元素分析Table 1 XPS elemental analysis
表2XPS价态分析Table 2 XPS valence analysis
采用Al-Si互溶技术形成金属硅化物,作为微掩蔽对注入的硅进行刻蚀,形成锥状纳米结构,并在其表面溅射40-50A的TiN,增强表面等离子体共振效应,提高发射率约5%左右。采用深硅刻蚀技术,实现窄带红外光源的正面释放,降低光源发热过程的热损耗。为降低悬浮本发明的红外光源的结构应力,采用SiN作为与发热层(本实施例为非晶硅3)进行直接接触的介质层,来降低残余应力问题,有仿真实例证明效果如图5所示。仿真模型是利用comsol mutiphisics软件,研究热源加载0.2V电压时,在欧姆发热效应的影响下,结构应力的变化,在加入氮化硅介质层后,窄带红外光源的最大应力仅为0.1299Gpa,可以保证结构的稳定性。Al-Si mutual dissolution technology is used to form metal silicide, which is used as a micro-masking to etch the implanted silicon to form a cone-shaped nanostructure, and 40-50A TiN is sputtered on the surface to enhance the surface plasmon resonance effect and increase the emissivity About 5%. The deep silicon etching technology is adopted to realize the front release of the narrow-band infrared light source and reduce the heat loss during the heating process of the light source. In order to reduce the structural stress of suspending the infrared light source of the present invention, SiN is used as the dielectric layer in direct contact with the heat-generating layer (amorphous silicon 3 in this embodiment) to reduce the problem of residual stress. There are simulation examples to prove the effect as shown in Figure 5 Show. The simulation model is to use comsol mutiphisics software to study the change of structural stress under the influence of ohmic heating effect when the heat source is loaded with 0.2V voltage. After adding the silicon nitride dielectric layer, the maximum stress of the narrow-band infrared light source is only 0.1299Gpa, which can Ensure the stability of the structure.
实施例3Example 3
1)红外气体传感器浓度信号处理方法1) Infrared gas sensor concentration signal processing method
基于红外光学原理的气体检测方法有许多种,其中双波长检测方法较为常用,该方法能够起到参考波长环境补偿作用,从而有效地提高***的抗干扰性和稳定性。基于光学原理的气体浓度计算方法也有许多种,目前主要是根据精度需求来确定具体采用哪种方法计算气体浓度。本实施例主要阐述了在研究过程中采用的线形插值-数据查表计算方法,该方法相对简单,其处理结果满足了大多预警、报警场合的应用需求,如煤矿瓦斯报警器等。该方法的精度主要取决于事先标定的数据表格情况,标定的数据段越多,测试结果就越精确,具体计算是首先判断当前测试的浓度值落在事先标定的各点的哪一个区间,然后通过插值方法代入计算,同时具有软件计算与快速自动校准功能。There are many gas detection methods based on the principle of infrared optics, among which the dual-wavelength detection method is more commonly used. This method can play the role of reference wavelength environment compensation, thereby effectively improving the anti-interference and stability of the system. There are also many methods for calculating gas concentration based on optical principles. At present, it is mainly determined which method is used to calculate the gas concentration according to the accuracy requirements. This embodiment mainly describes the linear interpolation-data table look-up calculation method used in the research process. This method is relatively simple, and its processing results meet the application requirements of most early warning and alarm occasions, such as coal mine gas alarms. The accuracy of this method mainly depends on the pre-calibrated data table. The more calibrated data segments, the more accurate the test result. The specific calculation is to first judge which interval the current test concentration value falls in the pre-calibrated points, and then It is substituted into the calculation by interpolation method, and has software calculation and fast automatic calibration functions at the same time.
一种红外气体浓度传感器信号处理方法,所述红外气体浓度传感器的输出信号分为参照敏感元的输出信号URef.与检测通道的输出信号UAct.,两输出信号URef.、UAct.与目标气体对红外光的吸收率有如下关系:An infrared gas concentration sensor signal processing method, the output signal of the infrared gas concentration sensor is divided into the output signal U Ref. of the reference sensitive element and the output signal U Act. of the detection channel, the two output signals U Ref. , U Act. Absorption rate of target gas to infrared light There are the following relations:
I0:入射光强,即红外光源经窄带光学滤波片滤光后入射参照通道与检测通道的红外光强度,一般在氮气条件下测得;I 0 : incident light intensity, that is, the infrared light intensity of the infrared light source incident on the reference channel and the detection channel after being filtered by a narrow-band optical filter, generally measured under nitrogen conditions;
I:透射光强,即红外气体浓度传感器检测通道内由目标气体吸收后的红外光强度;I: transmitted light intensity, that is, the infrared light intensity absorbed by the target gas in the detection channel of the infrared gas concentration sensor;
基于只局限于单色光的郎伯-比尔定律:I=IO exp(-εlCn) (2)Based on the Lambert-Beer law limited to monochromatic light: I=I O exp(-εlC n ) (2)
C:目标气体浓度;C: target gas concentration;
ε:目标气体对红外光的吸收系数;ε: absorption coefficient of target gas to infrared light;
l:目标气体入射光程;l: incident light path of the target gas;
n:修正常数,依赖于光程与目标气体成分;n: Correction constant, depends on optical path and target gas composition;
考虑到,红外光源经窄带光学滤波片滤光后入射检测通道的红外光在其波长范围内必然存在一些波长范围内的光不会被目标气体吸收,即存在非吸收波段,因此,将式(2)转换为:Considering that the infrared light incident on the detection channel after the infrared light source is filtered by a narrow-band optical filter, there must be some light in the wavelength range that will not be absorbed by the target gas within its wavelength range, that is, there is a non-absorbing band. Therefore, the formula ( 2) Convert to:
I=IO×((1-S)×e(-ΣεlCn)+S) (3)I=I O ×((1-S)×e (-ΣεlCn) +S) (3)
S:非吸收波段占检测通道入射红外光波长范围的比例系数,表征了非吸收波段对红外气体浓度传感器检测通道输出信号UAct.的贡献;S: The proportion coefficient of the non-absorbing band to the wavelength range of the incident infrared light of the detection channel, which characterizes the contribution of the non-absorbing band to the output signal U Act. of the detection channel of the infrared gas concentration sensor;
α:指数常数,与郎伯-比尔定律中εl的平均值相关;α: Exponential constant, related to the mean value of εl in the Lambert-Beer law;
β:幂常数,取决于目标气体的光谱特性;β: power constant, depends on the spectral properties of the target gas;
在目标气体不存在的情况下,红外气体浓度传感器检测通道输出信号UAct.与参照通道输出信号URef.的比值定义为红外气体浓度传感器的零位输出比,用符号Z表示,In the absence of the target gas, the ratio of the infrared gas concentration sensor detection channel output signal U Act. to the reference channel output signal U Ref. is defined as the zero output ratio of the infrared gas concentration sensor, expressed by the symbol Z,
即
在目标气体不存在的情况下,红外气体浓度传感器检测通道输出信号UAct.的峰-峰值; In the absence of the target gas, the infrared gas concentration sensor detects the peak-to-peak value of the channel output signal U Act .;
在目标气体不存在的情况下,红外气体浓度传感器参照通道输出信号URef.的峰-峰值; In the absence of the target gas, the infrared gas concentration sensor refers to the peak-to-peak value of the output signal U Ref. of the channel;
在目标气体存在的情况下,红外气体浓度传感器透射光强I与入射光强I0的比值与红外气体浓度传感器的零位输出比Z相关,即
则式(5)可转换为:Then formula (5) can be transformed into:
式(9)中参数α、β按如下方法确定:The parameters α and β in formula (9) are determined as follows:
首先,确定目标气体对红外气体浓度传感器红外光的相对吸收率Fa,即
然后,基于在相同浓度目标气体的测试状况下,同一确定类型红外气体浓度传感器红外光相对吸收率Fa的一致性,选取若干个红外气体浓度传感器,要求为同一确定类型,并确定目标气体的浓度测试范围,在目标气体的浓度测试范围内等间隔设定测试点;应用各红外气体浓度传感器按照测试点进行逐一测试,记录每一红外气体浓度传感器与测试浓度值对应的红外光相对吸收率Fa,求取平均值,并按照测试点气体浓度值与相对吸收率Fa平均值的对应关系,绘制测试结果分析表;Then, based on the consistency of the relative absorption rate Fa of infrared light of the same certain type of infrared gas concentration sensor under the test conditions of the same concentration of target gas, select several infrared gas concentration sensors, requiring the same certain type, and determine the concentration of the target gas Test range, set test points at equal intervals within the concentration test range of the target gas; use each infrared gas concentration sensor to test one by one according to the test points, and record the relative absorption rate Fa of infrared light corresponding to each infrared gas concentration sensor and the test concentration value , calculate the average value, and draw the test result analysis table according to the corresponding relationship between the gas concentration value of the test point and the average value of the relative absorption rate Fa;
最后,依据式(10)选取函数关系式:Y=W×(1-exp(-αXβ)) (11)Finally, select the functional relationship according to formula (10): Y=W×(1-exp(-αX β )) (11)
X:自变量-目标气体浓度C;X: independent variable - target gas concentration C;
Y:因变量-红外气体浓度传感器红外光相对吸收率Fa的平均值;Y: The dependent variable - the average value of the infrared light relative absorption rate Fa of the infrared gas concentration sensor;
W:1-S,忽略不记;W: 1-S, ignore;
按照测试结果分析并记录的测试结果,对式(11)进行曲线拟合,求取参数α和β的具体值;According to the test result of test result analysis and record, formula (11) is carried out curve fitting, obtains the specific value of parameter α and β;
通过式(8)可以得出式(9)中参数S:The parameter S in formula (9) can be obtained through formula (8):
C″:红外气体浓度传感器测试的满量程目标气体浓度;C″: the full-scale target gas concentration tested by the infrared gas concentration sensor;
在目标气体浓度满量程时,红外气体浓度传感器检测通道输出信号UAct.的峰-峰值; When the target gas concentration is in the full range, the infrared gas concentration sensor detects the peak-to-peak value of the output signal U Act. of the channel;
在目标气体浓度满量程时,红外气体浓度传感器参照通道输出信号URef.的峰-峰值; When the target gas concentration is in full range, the infrared gas concentration sensor refers to the peak-peak value of the output signal U Ref. of the channel;
将相关数据:参数α、β、S、Z带入式(9)中,即可得到红外气体浓度传感器计算气体浓度的目标函数,根据目标函数、以及红外气体浓度传感器参照通道的输出信号URef.与检测通道的输出信号UAct.,得红外气体浓度传感器所检测目标气体的气体浓度C。Bring relevant data: parameters α, β, S, Z into formula (9), and the objective function for calculating the gas concentration by the infrared gas concentration sensor can be obtained. According to the objective function and the output signal U Ref of the reference channel of the infrared gas concentration sensor .and the output signal U Act. of the detection channel to obtain the gas concentration C of the target gas detected by the infrared gas concentration sensor.
2)温度补偿机制2) Temperature compensation mechanism
通常情况下,气体浓度的测量计算结果与测试过程中气室内温度有关系,包括一些其它的环境参数,比如湿度、压力等对气体浓度值都有直接影响,但属温度影响最大,这也根据热敏感元的原理来推断得到,因此,采取适当的措施来补偿计算结果是十分必要的。根据查表方法的要求和精度关系,可以通过经验与试验测试数据分析得到一种简单的补偿措施。Normally, the measurement and calculation results of the gas concentration are related to the temperature in the gas chamber during the test, including some other environmental parameters, such as humidity and pressure, which have a direct impact on the gas concentration value, but the temperature has the greatest impact, which is also based on Therefore, it is very necessary to take appropriate measures to compensate the calculation results. According to the requirements and accuracy relationship of the table look-up method, a simple compensation measure can be obtained through experience and test data analysis.
还包括实时测量温度补偿方法;引入温度补偿参数λ,结合温度关系补偿红外气体浓度传感器内目标气体对红外光的吸收率定义温度补偿后红外气体浓度传感器内目标气体对红外光的吸收率:It also includes a real-time measurement temperature compensation method; the temperature compensation parameter λ is introduced, and the absorption rate of the target gas to infrared light in the infrared gas concentration sensor is compensated in combination with the temperature relationship Define the absorption rate of infrared light by the target gas in the infrared gas concentration sensor after temperature compensation:
T:测试时外界环境的实时温度;T: the real-time temperature of the external environment during the test;
T0:测试用于确定红外气体浓度传感器零位输出比Z的红外气体浓度传感器输出信号 时的外界环境温度;T 0 : Test the output signal of the infrared gas concentration sensor used to determine the zero output ratio Z of the infrared gas concentration sensor The external ambient temperature at the time;
λ:温度补偿参数;λ: temperature compensation parameter;
其中,温度补偿参数λ按如下方法确定:应用红外气体浓度传感器在确定的目标气体浓度下进行测试,同时改变外界环境的温度,并对外界环境温度设定一定数量的采样点,记录与外界环境温度采样点对应的红外气体浓度传感器内目标气体对红外光的吸收率即按照值与外界温度的对应关系进行曲线拟合,求取温度补偿参数λ的具体值;Among them, the temperature compensation parameter λ is determined according to the following method: use the infrared gas concentration sensor to test under the determined target gas concentration, change the temperature of the external environment at the same time, and set a certain number of sampling points for the external environment temperature, record and The absorption rate of the target gas to infrared light in the infrared gas concentration sensor corresponding to the temperature sampling point which is according to The corresponding relationship between the temperature compensation value and the external temperature is used for curve fitting to obtain the specific value of the temperature compensation parameter λ;
将式(13)带入式(9)中,即可得到红外气体浓度传感器经温度补偿后计算气体浓度的目标函数: Putting formula (13) into formula (9), the objective function of calculating the gas concentration after temperature compensation of the infrared gas concentration sensor can be obtained:
基于理想气体浓度定律,对已经温度补偿后的目标函数C补偿进行二次温度补偿,获得红外气体浓度传感器计算气体浓度的最终目标函数;Based on the ideal gas concentration law, perform secondary temperature compensation on the temperature compensated objective function C to obtain the final objective function for calculating the gas concentration by the infrared gas concentration sensor;
(14)(14)
其中,温度T、T0采用标准温度,单位为K;Wherein, temperature T, T 0 adopt standard temperature, unit is K;
湿度补偿机制为:The humidity compensation mechanism is:
在地面大气中,水蒸气(H2O)在大气中的含量随着天气条件变化很大,H2O在红外吸收波段有很多吸收带,所以需要进行适度补偿。在温度补偿的基础上,引入湿度补偿参数结合湿度关系补偿红外气体浓度传感器内目标气体对红外光的吸收率定义湿度补偿后红外气体浓度传感器内目标气体对红外光的吸收率:In the surface atmosphere, the content of water vapor (H 2 O) in the atmosphere varies greatly with weather conditions, and H 2 O has many absorption bands in the infrared absorption band, so appropriate compensation is required. On the basis of temperature compensation, the introduction of humidity compensation parameters Combining with the relationship of humidity to compensate the absorption rate of infrared light by the target gas in the infrared gas concentration sensor Define the absorption rate of infrared light by the target gas in the infrared gas concentration sensor after humidity compensation:
RH:测试时外界环境的实时湿度;RH: the real-time humidity of the external environment during the test;
RH0:测试用于确定红外气体浓度传感器零位输出比Z的红外气体浓度传感器输出信号 时的外界环境湿度;RH 0 : Test the output signal of the infrared gas concentration sensor used to determine the zero output ratio Z of the infrared gas concentration sensor The humidity of the external environment;
湿度补偿参数; Humidity compensation parameters;
其中,湿度补偿参数按如下方法确定:应用红外气体浓度传感器在确定的目标气体浓度和温度下进行测试,同时改变外界环境的湿度,并对外界环境湿度设定一定数量的采样点,记录与外界环境湿度采样点对应的红外气体浓度传感器内目标气体对红外光的吸收率即按照值与外界湿度的对应关系进行曲线拟合,求取湿度补偿参数的具体值;Among them, the humidity compensation parameters It is determined as follows: use an infrared gas concentration sensor to test under the determined target gas concentration and temperature, and change the humidity of the external environment at the same time, and set a certain number of sampling points for the humidity of the external environment, and record the values corresponding to the sampling points of the external environment humidity Absorption rate of target gas to infrared light in the infrared gas concentration sensor which is according to Curve fitting of the corresponding relationship between the value and the external humidity to obtain the humidity compensation parameters specific value;
将式(15)带入式(9)中,即可得到红外气体浓度传感器经湿度补偿后计算气体浓度的目标函数:Putting formula (15) into formula (9), the objective function of calculating the gas concentration after humidity compensation of the infrared gas concentration sensor can be obtained:
其中,湿度RH、RH0采用相对湿度;Among them, humidity RH, RH 0 adopts relative humidity;
压强补偿机制为:The pressure compensation mechanism is:
由于压强的变化会引起分子运动的变化,进而影响红外光的透射率,所以在温度、湿度补偿的基础上,引入压强补偿参数β,结合温度、湿度关系补偿,定义压强补偿后红外气体浓度传感器内目标气体对红外光的吸收率:Because the change of pressure will cause the change of molecular motion, which will affect the transmittance of infrared light, so on the basis of temperature and humidity compensation, the pressure compensation parameter β is introduced, combined with the compensation of temperature and humidity relationship, the infrared gas concentration sensor after pressure compensation is defined Absorption rate of target gas to infrared light:
(16)(16)
P:测试时外界环境的实时压强;P: The real-time pressure of the external environment during the test;
P0:测试用于确定红外气体浓度传感器零位输出比Z的红外气体浓度传感器输出信号 时的外界环境压强;P 0 : Test the output signal of the infrared gas concentration sensor used to determine the zero output ratio Z of the infrared gas concentration sensor The external environment pressure at the time;
β:压强补偿参数;β: pressure compensation parameter;
其中,压强补偿参数β按如下方法确定:应用红外气体浓度传感器在确定的目标气体浓度、温度和湿度下进行测试,同时改变外界环境的压强,并对外界环境压强设定一定数量的采样点,记录与外界环境压强采样点对应的红外气体浓度传感器内目标气体对红外光的吸收率即按照值与外界压强的对应关系进行曲线拟合,求取压强补偿参数β的具体值;Among them, the pressure compensation parameter β is determined as follows: use the infrared gas concentration sensor to test under the determined target gas concentration, temperature and humidity, change the pressure of the external environment at the same time, and set a certain number of sampling points for the external environment pressure, Record the absorption rate of the target gas to infrared light in the infrared gas concentration sensor corresponding to the sampling point of the external environment pressure which is according to The corresponding relationship between the value and the external pressure is used for curve fitting to obtain the specific value of the pressure compensation parameter β;
将式(16)带入式(9)中,即可得到红外气体浓度传感器经压强补偿后计算气体浓度的目标函数:Putting formula (16) into formula (9), the objective function of the infrared gas concentration sensor to calculate the gas concentration after pressure compensation can be obtained:
其中,压强P、P0采用标准压强,单位为;barAmong them, the pressure P, P 0 adopts the standard pressure, the unit is; bar
根据最终目标函数、以及红外气体浓度传感器参照通道的输出信号URef.与检测通道的输出信号UAct.,得红外气体浓度传感器所检测目标气体的气体浓度C。According to the final objective function and the output signal U Ref. of the reference channel of the infrared gas concentration sensor and the output signal U Act. of the detection channel, the gas concentration C of the target gas detected by the infrared gas concentration sensor is obtained.
3)浓度计算软件设计3) Concentration calculation software design
事实证明,红外吸收率随着气体浓度的变化,同时也被气室结构的设计、电磁干扰、信号提取的方式所影响。因此,红外光源需要被微处理器调制,并结合微弱信号检测方法与软件处理来提高检测性能,图6描述了整个设计的流程图。在计算过程中,环境温度同样是需要被首先采集的,它是用来计算补偿的依据。其信号采集与处理的方法与查表方法类似,需要通过采集求得两通道的输出信号,并依据这两通道的输出信号进行相关的参数计算,比如进行零位、跨度的计算。Facts have proved that the infrared absorption rate changes with the gas concentration, and is also affected by the design of the gas chamber structure, electromagnetic interference, and signal extraction methods. Therefore, the infrared light source needs to be modulated by the microprocessor, and the weak signal detection method and software processing are combined to improve the detection performance. Figure 6 describes the flow chart of the entire design. In the calculation process, the ambient temperature also needs to be collected first, which is the basis for calculating compensation. The signal acquisition and processing method is similar to the look-up table method. It is necessary to obtain the output signals of the two channels through acquisition, and calculate related parameters based on the output signals of the two channels, such as the calculation of zero position and span.
本发明的算法具有以下有益效果:Algorithm of the present invention has following beneficial effect:
1)、在目标气体不存在的情况下红外气体浓度传感器零位输出比对检测结果的影响;1) In the absence of the target gas, the influence of the zero output ratio of the infrared gas concentration sensor on the detection result;
2)、针对外界温度对红外气体浓度传感器检测结果的影响,实施两次温度补偿,用以修正红外气体浓度传感器的检测结果。2) In view of the influence of the external temperature on the detection results of the infrared gas concentration sensor, two temperature compensations are implemented to correct the detection results of the infrared gas concentration sensor.
3)、对理想气体定律中温度的影响实现二次补偿;使得红外气体浓度传感器能在不同温度条件下使用,克服了因地区与天气条件的改变对红外气体浓度传感器使用性的影响。3) Secondary compensation for the influence of temperature in the ideal gas law; enables the infrared gas concentration sensor to be used under different temperature conditions, and overcomes the influence of changes in the region and weather conditions on the usability of the infrared gas concentration sensor.
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that those skilled in the art can make improvements or changes based on the above description, and all these improvements and changes should belong to the protection scope of the appended claims of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310500970.3A CN103500770B (en) | 2013-10-23 | 2013-10-23 | A kind of infrared gas sensor of many gas detecting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310500970.3A CN103500770B (en) | 2013-10-23 | 2013-10-23 | A kind of infrared gas sensor of many gas detecting |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103500770A CN103500770A (en) | 2014-01-08 |
CN103500770B true CN103500770B (en) | 2016-08-24 |
Family
ID=49865957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310500970.3A Expired - Fee Related CN103500770B (en) | 2013-10-23 | 2013-10-23 | A kind of infrared gas sensor of many gas detecting |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103500770B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3589946A1 (en) * | 2017-03-03 | 2020-01-08 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Method for calibrating an electronic nose |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104779214A (en) * | 2015-04-16 | 2015-07-15 | 歌尔声学股份有限公司 | Packaging structure for integrated sensor |
CN106487371B (en) * | 2015-09-01 | 2019-05-10 | 北京自动化控制设备研究所 | An Adaptive Interface Device Compatible with Different Pressure Sensors |
DE102016209798A1 (en) * | 2016-06-03 | 2017-12-07 | Robert Bosch Gmbh | Microelectronic sensor device and method of manufacturing a microelectronic sensor device |
US11988600B2 (en) * | 2016-12-09 | 2024-05-21 | National University Of Singapore | Gas sensor MEMS structures and methods of fabrication thereof |
CN106802339A (en) * | 2017-01-19 | 2017-06-06 | 烟台睿创微纳技术股份有限公司 | A kind of array type MEMS gas sensors |
CN106840533A (en) * | 2017-03-02 | 2017-06-13 | 佛山市顺德区环威电器有限公司 | A kind of refrigerator or wine cabinet or the special small-sized ammonia refrigeration diffusion absorbing refrigerator NH_3 leakage real-time detection processing method of refrigerating box |
CN107402188B (en) * | 2017-06-07 | 2020-05-12 | 杭州超钜科技有限公司 | Continuous on-line monitoring system and monitoring method for underground fluid carbon dioxide |
CN108169157A (en) * | 2017-11-24 | 2018-06-15 | 国网北京市电力公司 | Sulfur hexafluoride compensation method and device |
WO2020086004A1 (en) * | 2018-10-26 | 2020-04-30 | National University Of Singapore | Thermocouple, thermopile and devices |
CN109444068B (en) * | 2018-12-29 | 2020-12-15 | 郎溪杰博电器科技有限公司 | Fuzzy predictive control analysis system of infrared carbon and sulfur analyzer |
CN110095426B (en) * | 2019-04-12 | 2022-01-07 | 华中科技大学鄂州工业技术研究院 | Infrared gas sensor based on infrared emission and detection integrated chip |
CN110426495A (en) * | 2019-09-29 | 2019-11-08 | 江西珉轩智能科技有限公司 | A kind of environmental monitoring method of calibration based on big data |
CN111407280B (en) * | 2020-03-10 | 2022-04-15 | 山东大学 | End-tidal CO of noninvasive ventilator2Monitoring device and method |
CN112082967B (en) * | 2020-09-18 | 2021-08-31 | 重庆大学 | An ultra-narrowband infrared thermal radiation light source and a compact infrared gas sensor |
CN113252579A (en) * | 2021-04-27 | 2021-08-13 | 浙江省现代农业装备设计研究院 | Facility-based agricultural comprehensive sensor device and air parameter detection method thereof |
CN116973521B (en) * | 2023-09-21 | 2023-12-22 | 北京燕山时代仪表有限公司 | Temperature compensation method and device for gas detector and gas detector |
CN117871450B (en) * | 2024-03-12 | 2024-07-26 | 国科大杭州高等研究院 | Cross interference processing method in non-dispersive infrared gas detection |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5041723A (en) * | 1989-09-30 | 1991-08-20 | Horiba, Ltd. | Infrared ray detector with multiple optical filters |
CN102183482A (en) * | 2011-02-23 | 2011-09-14 | 中国科学院安徽光学精密机械研究所 | Non-disperse infrared multi-component flue gas analyzer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10005923C2 (en) * | 2000-02-10 | 2002-06-27 | Draeger Safety Ag & Co Kgaa | Infrared optical gas measuring device and gas measuring method |
GB2395259A (en) * | 2002-11-07 | 2004-05-19 | E2V Tech Uk Ltd | Gas sensor with predetermined optical paths between its different detectors |
-
2013
- 2013-10-23 CN CN201310500970.3A patent/CN103500770B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5041723A (en) * | 1989-09-30 | 1991-08-20 | Horiba, Ltd. | Infrared ray detector with multiple optical filters |
CN102183482A (en) * | 2011-02-23 | 2011-09-14 | 中国科学院安徽光学精密机械研究所 | Non-disperse infrared multi-component flue gas analyzer |
Non-Patent Citations (1)
Title |
---|
基于红外原理的微型多气体检测***的设计;谭秋林、张文栋等;《哈尔滨工业大学学报》;20091231;第41卷(第12期);第282页至285页 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3589946A1 (en) * | 2017-03-03 | 2020-01-08 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Method for calibrating an electronic nose |
Also Published As
Publication number | Publication date |
---|---|
CN103500770A (en) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103500770B (en) | A kind of infrared gas sensor of many gas detecting | |
CN103528957B (en) | A kind of infrared gas sensor of air chamber encapsulation integration | |
TW561543B (en) | On-line UV-visible halogen gas analyzer for semiconductor processing effluent monitoring | |
CN105842770B (en) | A kind of CO2Gas detection infrared fileter and preparation method thereof | |
US10113999B2 (en) | Method and a device for detecting a substance | |
CN103175822B (en) | Eliminate the method for table difference of Raman spectrometer | |
CN102749306B (en) | Bidirectional reflection distribution function (BRDF) absolute measure device | |
CN104655601A (en) | OH free radical measurement calibration system by adopting fluorescence assay by gas expansion | |
CN106054300B (en) | A kind of CO2Gas detection binary channels infrared fileter and preparation method thereof | |
Liang et al. | Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO 2 in a polluted urban environment | |
US11022486B2 (en) | MoS2 based photosensor for detecting both light wavelength and intensity | |
CN102288574A (en) | Device and method for quantitatively analyzing concentration of multi-component oil fume | |
JP2014074629A (en) | Gas sensor | |
CN114526831A (en) | Dew point frost point temperature sensor and measuring method thereof | |
CN101949833B (en) | Method for processing concentration signal of infrared gas sensor | |
CN103063324B (en) | Molecular gas laser intracavity gas temperature monitoring device and method thereof | |
US20220365022A1 (en) | InGaZnO (IGZO) BASED SYSTEM FOR GAS DETECTION AT ROOM TEMPERATURE | |
JP2009139135A (en) | Infrared absorption gas analyzer | |
CN209215207U (en) | Anti-interference detection device for Hg concentration in flue gas | |
CN103163100B (en) | Gaseous element mercury detection method | |
CN114076743B (en) | Temperature compensation method and system based on NDIR (non-dispersive infra-red) gas sensor and computer readable storage medium | |
CN113945531B (en) | A dual-channel imaging gas quantitative detection method | |
JP2007192761A (en) | Absorption gas analyzer | |
JP6139985B2 (en) | CF4 gas concentration measuring method and CF4 gas concentration measuring device | |
CN202149879U (en) | Multicomponent oil-smoke concentration quantitative analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160824 Termination date: 20161023 |
|
CF01 | Termination of patent right due to non-payment of annual fee |