CN103486905B - 一种再入飞行器末制导交班条件确定方法 - Google Patents

一种再入飞行器末制导交班条件确定方法 Download PDF

Info

Publication number
CN103486905B
CN103486905B CN201310403444.5A CN201310403444A CN103486905B CN 103486905 B CN103486905 B CN 103486905B CN 201310403444 A CN201310403444 A CN 201310403444A CN 103486905 B CN103486905 B CN 103486905B
Authority
CN
China
Prior art keywords
guidance
next shift
over
shift
preset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310403444.5A
Other languages
English (en)
Other versions
CN103486905A (zh
Inventor
吴炜平
李杰奇
张振兴
王炀
刘刚
张永
蔡巧言
张旭辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Original Assignee
China Academy of Launch Vehicle Technology CALT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201310403444.5A priority Critical patent/CN103486905B/zh
Publication of CN103486905A publication Critical patent/CN103486905A/zh
Application granted granted Critical
Publication of CN103486905B publication Critical patent/CN103486905B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种再入飞行器末制导交班条件确定方法,(1)生成预置交班点信息;(2)对步骤(1)中生成的预置交班点信息进行修正,并生成预置交班点误差球;(3)设计随时间变化的制导增益;(4)确定按照时间排序的指令平滑时间系数序列;(5)确定交班逻辑;当完全满***班逻辑时,导引头末制导启动;(6)再入飞行器中制导飞行过程中,采用步骤(3)确定的随时间变化的制导增益进行中制导,并实时判断是否同时满足步骤(5)中确定的交班逻辑,当满***班逻辑时,启动导引头末制导,并按顺序从步骤(4)中确定的指令平滑时间系数序列中取值,利用该系数对中制导指令和末制导指令进行平滑处理,并利用平滑处理后的指令进行制导,达到预设的时间后转入单纯的导引头末制导。

Description

一种再入飞行器末制导交班条件确定方法
技术领域
本发明属于武器***设计技术领域,涉及一种再入飞行器末制导交班条件确定方法。本发明主要应用于再入精确打击飞行器的中末制导交班条件设计和实现,以确保有效载荷打击精度。
背景技术
针对再入飞行器具有高动态、多约束等特点,这些特性对于具有末制导能力的飞行器尤为重要。具有末制导能力的再入飞行器需要经历较大范围的速度变化和高度变化,对制导控制***的性能要求较为苛刻,一般情况,中制导与末制导采用不同的制导体制。在中末制导交班后,由导引头信息测量飞行器位置,所以要保证末制导精度条件以及速度、角度约束,就必须采用高可靠度的末制导交班体制。因此,它是一种高可靠性、高精度的飞行制导控制模式,给控制***带来了许多全新的挑战和困难。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供一种再入飞行器末制导交班条件确定方法。
本发明的技术解决方案是:一种再入飞行器末制导交班条件确定方法,步骤如下:
(1)根据给定的初始再入点及打击目标信息,规划再入轨迹,生成预置交班点信息,所述的交班点信息包括交班时刻的位置、速度大小、弹道倾角、弹道偏角、视线旋转角速率;
(2)根据再入飞行器导引头末制导工作条件,对步骤(1)中生成的预置交班点信息进行修正,并根据导航定位精度及末制导命中精度要求,生成预置交班点误差球;
(3)交班前再入飞行器制导控制***采用变增益跟踪制导律,以步骤(2)中修正后的预置交班点信息为终端约束,设计随时间变化的制导增益;
(4)根据步骤(3)变增益跟踪中制导指令以及导引头自寻的制导控制指令,对两组指令求差并分析控制***响应,确定按照时间排序的指令平滑时间系数序列;
(5)根据交班点位置速度及误差球、交班点视线转率及速度方向确定交班逻辑;当完全满***班逻辑时,导引头末制导启动;
(6)再入飞行器中制导飞行过程中,采用步骤(3)确定的随时间变化的制导增益进行中制导,并实时判断是否同时满足步骤(5)中确定的交班逻辑,当满***班逻辑时,启动导引头末制导,并按顺序从步骤(4)中确定的指令平滑时间系数序列中取值,利用该系数对中制导指令和末制导指令进行平滑处理,并利用平滑处理后的指令进行制导,达到预设的时间后转入单纯的导引头末制导。
所述的交班逻辑包括交班点位置速度及误差球组合条件和交班点视线转率及速度方向组合条件;其中交班点位置速度及误差球组合条件为:
||r*-rc||<Kr·||δrc||+Kv·δvc
其中,r*为实际飞行器位置,rc为步骤(2)修正后的预置交班点位置,δrc为预置交班点误差球中的位置误差,δvc为预置交班点误差球中的速度误差,Kr、Kv误差系数;|| ||代表矢量求模;
交班点视线转率及速度方向组合条件为:
cos-1(cosθ*cosψ*)<Kθ·cos-1(cosθccosψc)+KωLOSLOSC)
其中,θ*、ψ*为实际弹道倾角和弹道偏角,θc、ψc为预置弹道倾角和弹道偏角,Kθ、Kω为误差系数。
本发明与现有技术相比有益效果为:
(1)本发明解决了复杂条件下的末制导交班问题,增强了制导***的容错能力。首先通过初始信息、目标信息计算预置交班点信息,并利用导引头末制导工作条件对其进行修正。进而通过可变增益、指令平滑系数以及多重条件判断逻辑,防止交班状态指令阶跃、突变,提高了武器***交班的可靠性,可减少武器***的指令硬件限位等不必要环节。
(2)本发明方法可以解决末制导再入飞行器交班条件复杂多变问题,增强了方案的健壮性、提升了制导***的容错能力。
(3)本发明设计含误差的交班逻辑,确保交班时刻飞行器状态满足导引头捕获条件,为武器***末制导提供了有利条件。
(4)本发明中末制导交班设计指令平滑系数序列,防止交班状态指令阶跃、突变,提高了武器***交班的可靠性,可减少武器***的指令硬件限位等不必要环节。
附图说明
图1为本发明方法流程图;
图2为本发明预置交班点信息生成及修正过程图;
图3为本发明交班点要求与设计指标关系图;
图4为本发明末制导指令平滑工作过程图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
如图1所示,本发明涉及一种再入飞行器末制导交班条件确定方法,具体步骤如下:
1、生成预置交班点;
如图2所示,通过给定的再入点信息(包括位置、速度大小、速度倾角以及姿态)及打击目标信息(目标的位置、速度),设置再入约束边界(热流、过载、动压等),通过仿真规划,生成再入飞行器纵向剖面,从中初步得到满足飞行要求的预置交班点信息。
再入轨迹的规划可以采用目前常用的基于Gauss伪谱法的再入轨迹优化算法或者序列二次规划算法等,利用上述算法计算得到的交班时刻的位置速度大小弹道倾角弹道偏角视线旋转角速率
2、修正预置交班点及生成预置交班点误差球;
在初步得到预置交班点信息后,考虑导引头捕获条件约束,主要是视场角范围与视线角转率约束,从而对预置交班点信息进行修正,同时考虑捕获边界条件给出预置交班点误差球。
采用步骤(1)生成的预置交班点信息没有考虑图3所示的约束影响,着重考虑导引头捕获条件对弹道倾角、弹道偏角和视线旋转角速率造成的约束进行修正。选取导引头捕获条件中视场角、视线角转率为目标函数,选取弹道倾角、弹道偏角和视线旋转角速率为设计变量,采用拟牛顿迭代法,以步骤(1)生成的预置交班点为迭代初值,满足导引头捕获条件中视场角和视线角转率范围中值为迭代停止条件,完成预置交班点信息修正。取满足迭代停止条件时飞行器位置rc、速度大小vc、弹道倾角θc、弹道偏角ψc、视线旋转角速率ωLOSC为修正后的预置交班点信息。
以修正后交班点信息为迭代初值,上述方法其他条件不变,将迭代停止条件设为满足视场角和视线角转率上下边界,计算得到的交班点位置速度与修正后的预置交班点位置rc速度vc求差,即得到预置位置误差δrc、预置速度误差δvc,称为误差球。
3、设计变增益中制导;
设计变增益中制导指令,制导指令可以采取下式的形式:
δa=K·KL·[Δr,Δv]T
其中Δr、Δv分别为飞行器当前位置、速度与参考轨迹位置、速度之差,KL为LQR方法得到的制导增益,K为可变增益。
设计可变增益K(亦称时间变化的制导增益)
K = e &alpha; , &alpha; = - | | r * - r c | | | | r * | | - | v * - v c | | v * |
对中制导指令作增益处理使得飞行过程中,既不影响中制导全程的飞行性能,能够到达预置交班点,又可以兼顾接近交班点时的中制导指令平稳需求。
v*代表实际飞行速度大小,r*代表飞行器实际位置矢量,|| ||代表矢量求模,||代表求绝对值。
4、确定指令平滑系数序列;
如图4所示,按照标准工况交班,针对步骤(3)中变增益跟踪中制导指令δa以及导引头自寻的制导控制指令δb,设计按照时间排序的指令平滑系数序列β函数
&beta; = 1 - &delta; a ( t 0 ) &delta; b ( t 0 ) e t - t 0
其中t0为满***班逻辑导引头开机时刻,δa(t0)是该时刻中制导指令,δb(t0)是该时刻末制导指令。
5、设计交班逻辑;
交班逻辑包括两个条件:
第一是交班点位置速度及误差球组合条件
||r*-rc||<Kr·||δrc||+Kv·δvc
其中,r*为实际飞行器位置,rc为修正后的预置交班点位置,δrc为预置位置误差,δvc为预置速度误差,Kr、Kv为误差系数,根据经验取值,例如针对交班点速度小于3马赫的飞行器,Kr通常取值0.1~3,Kv一般为Kr的5~10倍,根据δvc对其进行调整。
第二是交班点视线转率及速度方向组合条件
cos-1(cosθ*cosψ*)<Kθ·cos-1(cosθccosψc)+KωLOSLOSC)
其中,θ*、ψ*为实际弹道倾角和弹道偏角,θc、ψc为修正后的弹道倾角和弹道偏角,Kθ、Kω为误差系数,根据经验取值,例如针对交班点视线旋转角速率小于5°/s的情况,Kr通常取值0.05~1,Kv一般为Kr的3~5倍。
当同时满足两个条件时,导引头末制导启动。
6、实际制导
再入飞行器中制导飞行过程中,采用步骤(3)确定的随时间变化的制导增益进行中制导,并实时判断是否同时满足步骤(5)中确定的交班逻辑,当满***班逻辑时,启动导引头末制导,并按顺序从步骤(4)中确定的指令平滑时间系数序列中取值,利用该系数对实际飞行生成的中制导指令δ* a和末制导指令δ* b进行平滑处理,并利用平滑处理后的指令δc进行制导,达到预设的时间后转入单纯的导引头末制导。
δc=β·δ* a+(1-β)·δ* b
其中,预设的时间可以根据经验值设为5ms~20s。也可以在设计时,直接根据指令平滑时间系数序列控制时间,当依顺序取值到序列中的最后一个系数后转入单纯的导引头末制导。
在XX的中/末制导交班条件设计中,采用本发明描述的再入飞行器末制导交班条件确定方法,实现了某武器的中/末制导交班条件的快速设计,通过六自由度仿真验证,得出采用该方法确定的交班流程及交班条件可以满足导引头捕获条件。
本发明未详细说明部分属于本领域技术人员公知常识。

Claims (2)

1.一种再入飞行器末制导交班条件确定方法,其特征在于步骤如下:
(1)根据给定的初始再入点及打击目标信息,规划再入轨迹,生成预置交班点信息,所述的交班点信息包括交班时刻的位置、速度大小、弹道倾角、弹道偏角、视线旋转角速率;
(2)根据再入飞行器导引头末制导工作条件,对步骤(1)中生成的预置交班点信息进行修正,并根据导航定位精度及末制导命中精度要求,生成预置交班点误差球;
(3)交班前再入飞行器制导控制***采用变增益跟踪制导律,以步骤(2)中修正后的预置交班点信息为终端约束,设计随时间变化的制导增益;
(4)根据步骤(3)变增益跟踪中制导指令以及导引头自寻的制导控制指令,对两组指令求差并分析控制***响应,确定按照时间排序的指令平滑时间系数序列;
(5)根据交班点位置速度及误差球、交班点视线转率及速度方向确定交班逻辑;当完全满***班逻辑时,导引头末制导启动;
(6)再入飞行器中制导飞行过程中,采用步骤(3)确定的随时间变化的制导增益进行中制导,并实时判断是否同时满足步骤(5)中确定的交班逻辑,当满***班逻辑时,启动导引头末制导,并按顺序从步骤(4)中确定的指令平滑时间系数序列中取值,利用该系数对中制导指令和末制导指令进行平滑处理,并利用平滑处理后的指令进行制导,达到预设的时间后转入单纯的导引头末制导。
2.根据权利要求1所述的一种再入飞行器末制导交班条件确定方法,其特征在于:所述的交班逻辑包括交班点位置速度及误差球组合条件和交班点视线旋转角速率及速度方向组合条件;其中交班点位置速度及误差球组合条件为:
||r*-rc||<Kr·||δrc||+Kv·δvc
其中,r*为实际飞行器位置,rc为步骤(2)修正后的预置交班点位置,δrc为预置交班点误差球中的位置误差,δvc为预置交班点误差球中的速度误差,Kr、Kv误差系数;||||代表矢量求模;
交班点视线旋转角速率及速度方向组合条件为:
cos-1(cosθ*cosψ*)<Kθ·cos-1(cosθccosψc)+KωLOSLOSC)
其中,θ*、ψ*为实际弹道倾角和弹道偏角,θc、ψc为预置弹道倾角和弹道偏角,Kθ、Kω为误差系数。
CN201310403444.5A 2013-09-06 2013-09-06 一种再入飞行器末制导交班条件确定方法 Active CN103486905B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310403444.5A CN103486905B (zh) 2013-09-06 2013-09-06 一种再入飞行器末制导交班条件确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310403444.5A CN103486905B (zh) 2013-09-06 2013-09-06 一种再入飞行器末制导交班条件确定方法

Publications (2)

Publication Number Publication Date
CN103486905A CN103486905A (zh) 2014-01-01
CN103486905B true CN103486905B (zh) 2015-04-22

Family

ID=49827326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310403444.5A Active CN103486905B (zh) 2013-09-06 2013-09-06 一种再入飞行器末制导交班条件确定方法

Country Status (1)

Country Link
CN (1) CN103486905B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104554824B (zh) * 2014-12-18 2017-01-04 北京控制工程研究所 一种跳跃式再入飞行器过载保护方法
CN109240323B (zh) * 2018-11-02 2021-07-13 北京控制工程研究所 一种实时解析构造的空天飞行器再入制导方法
CN111351401B (zh) * 2018-12-21 2022-12-23 北京理工大学 应用于捷联导引头制导飞行器的防侧偏制导方法
CN111397441B (zh) * 2019-01-03 2022-12-02 北京理工大学 带有捷联激光导引头的远程制导飞行器的全射程覆盖制导***
CN110701963A (zh) * 2019-10-15 2020-01-17 河北汉光重工有限责任公司 一种红外/雷达复合导引头交班性能改进方法
CN111397449B (zh) * 2020-04-03 2021-07-20 中国北方工业有限公司 一种针对导引头失效模式下的数据链末制导方法
CN112180971A (zh) * 2020-08-26 2021-01-05 北京理工大学 多旋翼飞行器多模制导方法及***
CN113608783B (zh) * 2021-07-20 2023-12-12 北京航天飞腾装备技术有限责任公司 一种中末制导交接班时的姿控交接班方法及***
CN114690794A (zh) * 2022-03-31 2022-07-01 北京中科宇航技术有限公司 一种表格化实时控制飞行状态的方法及***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8416611D0 (en) * 1984-06-29 1992-11-04 British Aerospace Guidance system and method
US20080133074A1 (en) * 2006-12-01 2008-06-05 Zyss Michael J Autonomous rollout control of air vehicle
US8489258B2 (en) * 2009-03-27 2013-07-16 The Charles Stark Draper Laboratory, Inc. Propulsive guidance for atmospheric skip entry trajectories
CN102139768B (zh) * 2010-10-28 2013-04-10 中国科学院力学研究所 一种亚轨道飞行器再入飞行的攻角制导方法
CN102880187B (zh) * 2012-09-21 2015-02-11 北京控制工程研究所 一种跳跃式再入飞行器初次再入段横向制导方法

Also Published As

Publication number Publication date
CN103486905A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
CN103486905B (zh) 一种再入飞行器末制导交班条件确定方法
CN107941087B (zh) 一种基于阻力剖面的高升阻比高超平稳滑翔再入制导方法
CN111306989B (zh) 一种基于平稳滑翔弹道解析解的高超声速再入制导方法
CN109253730B (zh) 可重复使用运载器末端能量管理段的三维轨迹在线规划方法及***
CN110908396B (zh) 可重复使用运载器全阶段再入返回制导方法
CN110471450A (zh) 在高度速度剖面内直接规划再入轨迹的方法
CN113126644B (zh) 基于自适应视线法的无人机三维航迹跟踪方法
Kim et al. Time-to-go polynomial guidance with trajectory modulation for observability enhancement
CN110687931B (zh) 一种方位角姿态与前置导引切换的一体化机动导引方法
CN111591470B (zh) 一种适应推力可调模式的飞行器精确软着陆闭环制导方法
CN106054604B (zh) 基于模型预测控制理论的再入飞行器鲁棒最优制导方法
CN107783422B (zh) 采用捷联惯导的火炮瞄准稳定***控制方法
IL226941A (en) Automatic recovery method for unmanned aerial vehicles
Slegers et al. Terminal guidance of autonomous parafoils in high wind-to-airspeed ratios
CN110015446B (zh) 一种半解析的火星进入制导方法
CN111595210A (zh) 一种大空域高动态火箭子级落区精确垂直回收控制方法
CN106444822A (zh) 一种基于空间矢量场制导的平流层飞艇路径跟踪控制方法
Zhao et al. Trajectory reshaping based guidance with impact time and angle constraints
CN109062241A (zh) 基于线性伪谱模型预测控制的自主全射向再入制导方法
CN110488875A (zh) 基于动态逆的无人机跟踪目标初始段航向误差修正方法
CN105628045A (zh) 一种无人机跟拍路径规划与跟踪方法
CN110764534A (zh) 基于非线性转换的前置导引与姿态稳定匹配制导的方法
KR101658464B1 (ko) 유도탄의 요격지점 실시간 예측 방법
CN106200664B (zh) 一种适应长时间失控的姿态控制方法
CN109484675B (zh) 一种利用空间矢量匹配的航天器轨道入轨控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant