CN103480404A - 一种大孔碳化铁催化剂及其制备方法和应用 - Google Patents

一种大孔碳化铁催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN103480404A
CN103480404A CN201310445020.5A CN201310445020A CN103480404A CN 103480404 A CN103480404 A CN 103480404A CN 201310445020 A CN201310445020 A CN 201310445020A CN 103480404 A CN103480404 A CN 103480404A
Authority
CN
China
Prior art keywords
iron
macropore
methyl methacrylate
micro
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310445020.5A
Other languages
English (en)
Other versions
CN103480404B (zh
Inventor
刘坚
赵震
谭小玉
徐春明
韦岳长
段爱军
姜桂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN201310445020.5A priority Critical patent/CN103480404B/zh
Publication of CN103480404A publication Critical patent/CN103480404A/zh
Application granted granted Critical
Publication of CN103480404B publication Critical patent/CN103480404B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Catalysts (AREA)

Abstract

本发明提供了一种大孔碳化铁催化剂及其制备方法和应用,所述碳化铁催化剂由羧酸改性聚甲基丙烯酸甲酯微球为模板,以硝酸铁为前驱体制备得到,所得的大孔碳化铁催化剂孔径为50-1000nm。本发明采用羧基改性微球为模板,以硝酸铁为前驱体,在甲醇乙二醇溶剂的条件下直接焙烧制备三维贯通的碳化铁,操作方法简单,周期短,成本低。

Description

一种大孔碳化铁催化剂及其制备方法和应用
技术领域
本发明涉及碳化物催化剂的制备领域,具体说,涉及一种大孔碳化铁催化剂及其制备方法和应用,更具体的说,涉及一种耐酸碱机械性能强的三维贯通大孔碳化铁及其制备方法和应用。
背景技术
碳化物是由碳和金属所形成的“间充性合金”(interstitial alloy),即体积较小的碳原子占据金属原子密堆积层的空隙,形成的往往具有简单的晶体结构。
碳化物是一类具有很高的熔点和硬度、极高的热稳定性和机械稳定性、在室温下几乎耐各种化学腐蚀等特点的物质。此外,它还具有与其母体金属相类似的电、磁性质,正是这些性质使得它们被广泛应用于机械切削、矿物开采、制造抗磨和高温部件以及核反应堆等领域。1961年前苏联的Gaziev等报告了用碳化物、硼化物和硅化物来催化环己烷脱氢制苯,随后法国的一个研究小组在碳化钨上就进行了1,1,3-三甲基环戊烷制二甲苯的工作,而这些反应以前通常都是在贵金属上所进行的。碳化物作为一种催化新材料已引起了人们的极大兴趣,在一系列的反应中已充分展现出了其理论研究的重要意义及其广阔的应用前景。
碳化物的制备方法有传统的粉末冶金方法,采用金属氧化物、或其水合物、或金属粉末作为前驱物和炭粉在高温下(1500—2000℃)碳化。由于高温下的烧结和过量碳粉的使用,表面被一层很厚的炭所覆盖,所以由这种方法制备的碳化物很少有催化活性,故在催化应用上受到了限制。随后改用还原气体一般采用20vo1%CH4—80vol%H2,的混合气体碳化,虽然可以增大比表面,但烧结和催化剂上的积碳现象仍难以得到明显改善。通过金属氧化物或金属在高温下气化后再与碳化气反应引(chemical vapor deposition,CVD),则可以获得较大表面积的碳化物。另外,通过等离子体溅射方法也可以制得纳米级碳化物颗粒。但是这些过程都需要在高温进行,是一个大量消耗能量的过程,且碳化铁形貌为单一的颗粒,制备量不大(少于1克)。
孔道结构的碳化物催化剂至今都尚无报道,碳化物催化剂用于生物合成油的实验也尚未见文献报道。
发明内容
本发明的一个目的在于提供一种大孔碳化铁催化剂,所述大孔碳化铁催化剂耐酸碱机械性能强。
本发明的另一目的在于提供所述大孔碳化铁催化剂的制备方法。
本发明的再一目的在于提供所述大孔碳化铁催化剂在催化生物合成气转化为燃料油中的应用。
本发明的有一目的在于提供应用所述大孔碳化铁催化剂催化生物合成气转化为燃料油的方法。
为达上述目的,一方面,本发明提供了一种大孔碳化铁催化剂,所述碳化铁催化剂由羧酸改性聚甲基丙烯酸甲酯微球为模板,以硝酸铁为前驱体制备得到,所得的大孔碳化铁催化剂孔径为50-1000nm。
根据本发明所述的大孔碳化铁催化剂,所述大孔碳化铁催化剂的制备包括:将硝酸铁加入到甲醇/乙二醇混合溶液中,搅拌得到硝酸铁溶液,将羧酸改性聚甲基丙烯酸甲酯微球加入到得到的硝酸铁溶液中浸渍,过滤,干燥,升温至400-800℃保温4-8小时既得所述大孔碳化铁催化剂。
其中优选所述羧酸改性聚甲基丙烯酸甲酯微球粒径为粒径50-600nm。
其中本发明优选所述硝酸铁和甲醇/乙二醇摩尔比为1:1-3。
其中本发明优选所述甲醇和乙二醇体积比为1:1.5-4。
根据本发明所述的大孔碳化铁催化剂,所述大孔碳化铁催化剂的制备包括:将硝酸铁加入到甲醇/乙二醇混合溶液中,搅拌2h以上得到硝酸铁溶液,将羧酸改性聚甲基丙烯酸甲酯微球加入到得到的硝酸铁溶液中浸渍,过滤,50-100℃干燥1-24h,0.5-2℃/min速度升温至400-800℃保温4-8小时既得所述大孔碳化铁催化剂。
根据本发明所述的大孔碳化铁催化剂,本发明为了使得催化剂干燥后在400-800℃下热量传递更加均匀,还可以进一步使用石英砂作为传热载体,本发明优选将羧酸改性聚甲基丙烯酸甲酯微球加入到得到的硝酸铁溶液中浸渍、过滤并干燥后,先加入石英砂混匀,再升温至400-800℃保温4-8小时得到所述大孔碳化铁;
其中本发明还进一步优选的是,在通有惰性气体的石英管中加入石英砂混匀。
其中石英砂用量可以根据催化剂用量及加热情况而定,而无需特殊限定,譬如石英砂和催化剂质量比可以在10-50:1。
其中本领域技术人员可以理解的是,在保温结束后,应当将石英砂和制备的催化剂分离;
所述的分离为本领域常规操作,譬如可以为人工挑拣,甚至根据石英砂和催化剂的颗粒直径进行筛分。
根据本发明任意所述的大孔碳化铁催化剂,所述的羧酸改性聚甲基丙烯酸甲酯微球可以为市售获得,或者为自制,本发明可以优选所述羧酸改性聚甲基丙烯酸甲酯微球的制备包括:将甲基丙烯酸甲酯(MMA)溶于反应溶剂,加热到60-90℃,加入配制好的过二硫酸钾(KPS)/偶氮二异丁腈(AIBN)水溶液,加入丙烯酸(AA),搅拌反应,过滤得到所述羧酸改性聚甲基丙烯酸甲酯微球;
根据本发明所述的大孔碳化铁催化剂,其中优选所述配制好的KPS/AIBN水溶液先加热到60-90℃,再加入到加入了MMA的反应溶剂中;
本发明进一步所优选的是将配制好的KPS/AIBN水溶液先加热到和反应溶剂相同的温度,再加入到加入了MMA的反应溶剂中;
根据本发明所述的大孔碳化铁催化剂,其中还优选MMA和AA体积比为25:1;AIBN和KPS质量比为1:0.6。
根据本发明所述的大孔碳化铁催化剂,其中优选所述反应溶剂为丙酮/水混合溶液;
其中还优选MMA和丙酮/水溶液的摩尔比是1:1-3;
其中进一步优选丙酮和水的体积比为1:3;
根据本发明所述的大孔碳化铁催化剂,其中优选加入AA后,搅拌反应1.5h;
根据本发明所述的大孔碳化铁催化剂,其中还可以进一步优选在搅拌反应后还进行超声波处理,再过滤得到所述羧酸改性聚甲基丙烯酸甲酯微球;
其中进一步优选超声波处理1.5h。
根据本发明所述的大孔碳化铁催化剂,本发明进一步优选的是,在搅拌反应后过滤,将滤饼置于离心管中,以3000r/min的转速离心10h,弃去上层清液,室温干燥后得到羧酸改性聚甲基丙烯酸甲酯微球。
根据本发明所述的大孔碳化铁催化剂,本发明还可以更进一步优选的是,在搅拌反应后进行超声波处理,再过滤,将滤饼置于离心管中,以3000r/min的转速离心10h,弃去上层清液,室温干燥后得到羧酸改性聚甲基丙烯酸甲酯微球。
根据本发明所述的大孔碳化铁催化剂,本发明还进一步优选将MMA在隔离空气条件下溶于丙酮/水混合溶液中,加热至60-90℃,通入惰性气体,加入配制好的KPS/AIBN水溶液,同时加入AA,搅拌反应,过滤得到所述羧酸改性聚甲基丙烯酸甲酯微球;
其中所述的隔离空气条件为本领域常规操作,譬如可以为将反应容器抽真空后再通入惰性气体;
其中本发明可以优选所述惰性气体为氮气或氩气。
另一方面,本发明还提供了本发明所述大孔碳化铁催化剂的制备方法,所述方法包括以羧酸改性聚甲基丙烯酸甲酯微球为模板,以硝酸铁为前驱体制备得到大孔碳化铁催化剂,所得的大孔碳化铁催化剂孔径为50-1000nm。
根据本发明所述的制备方法,所述制备方法包括:将硝酸铁加入到甲醇/乙二醇混合溶液中,搅拌得到硝酸铁溶液,将羧酸改性聚甲基丙烯酸甲酯微球加入到得到的硝酸铁溶液中浸渍,过滤,干燥,加入石英砂混匀填充,升温至400-800℃保温4-8小时既得所述大孔碳化铁催化剂。
其中优选所述羧酸改性聚甲基丙烯酸甲酯微球粒径为粒径50-600nm。
其中本发明优选所述硝酸铁和甲醇/乙二醇摩尔比为1:1-3。
其中本发明优选所述甲醇和乙二醇体积比为1:1.5-4。
根据本发明所述的制备方法,所述制备方法包括:将硝酸铁加入到甲醇/乙二醇混合溶液中,搅拌2h以上得到硝酸铁溶液,将羧酸改性聚甲基丙烯酸甲酯微球加入到得到的硝酸铁溶液中浸渍,过滤,50-100℃干燥1-24h,加入石英砂混匀填充,0.5-2℃/min速度升温至400-800℃保温4-8小时既得所述大孔碳化铁催化剂。
根据本发明所述的制备方法,本发明进一步优选加入石英砂混匀填充是在通有惰性气体的石英管中和石英砂混匀填充。
根据本发明任意所述的制备方法,所述的羧酸改性聚甲基丙烯酸甲酯微球可以为市售获得,或者为自制,本发明可以优选所述羧酸改性聚甲基丙烯酸甲酯微球的制备包括:将甲基丙烯酸甲酯(MMA)溶于反应溶剂,加热到60-90℃,加入配制好的过二硫酸钾(KPS)/偶氮二异丁腈(AIBN)水溶液,加入丙烯酸(AA),搅拌反应,过滤得到所述羧酸改性聚甲基丙烯酸甲酯微球;
根据本发明所述的制备方法,其中优选所述配制好的过KPS/AIBN水溶液先加热到60-90℃,再加入到加入了MMA的反应溶剂中;
本发明进一步所优选的是将配制好的过KPS/AIBN水溶液先加热到和反应溶剂相同的温度,再加入到加入了MMA的反应溶剂中;
根据本发明所述的制备方法,其中还优选MMA和AA体积比为25:1;AIBN和过KPS质量比为1:0.6。
根据本发明所述的制备方法,其中优选所述反应溶剂为丙酮/水混合溶液;
其中还优选MMA甲酯和丙酮/水溶液的摩尔比是1:1-3;
其中进一步优选丙酮和水的体积比为1:3;
根据本发明所述的制备方法,其中优选加入AA后,搅拌反应1.5h;
根据本发明所述的制备方法,其中还可以进一步优选在搅拌反应后还进行超声波处理,再过滤得到所述羧酸改性聚甲基丙烯酸甲酯微球;
其中进一步优选超声波处理1.5h。
根据本发明所述的制备方法,本发明进一步优选的是,在搅拌反应后过滤,将滤饼置于离心管中,以3000r/min的转速离心10h,弃去上层清液,室温干燥后得到羧酸改性聚甲基丙烯酸甲酯微球。
根据本发明所述的制备方法,本发明还可以更进一步优选的是,在搅拌反应后进行超声波处理,再过滤,将滤饼置于离心管中,以3000r/min的转速离心10h,弃去上层清液,室温干燥后得到羧酸改性聚甲基丙烯酸甲酯微球。
根据本发明所述的制备方法,本发明还进一步优选将MAA在隔离空气条件下溶于丙酮/水混合溶液中,加热至60-90℃,通入惰性气体,加入配制好的KPS/AIBN水溶液,同时加入AA,搅拌反应,过滤得到所述羧酸改性聚甲基丙烯酸甲酯微球;
其中所述的隔离空气条件为本领域常规操作,譬如可以为将反应容器抽真空后再通入惰性气体;
其中本发明可以优选所述惰性气体为氮气或氩气。
再一方面,本发明还提供了所述大孔碳化铁催化剂在催化生物合成气转化为燃料油中的应用。
又一方面,本发明还提供了应用本发明所述大孔碳化铁催化剂催化生物合成气转化为燃料油的方法,所述方法包括:将生物合成气与所述大孔碳化铁催化剂进行接触反应制燃料油;
其中优选所述反应条件包括:反应温度310℃、空速2000h-1、压力6.5MPa
其中更优选先将大孔碳化铁经过活化再用来和生物合成气接触反应制备燃料油;
其中进一步优选所述的活化是在310℃下活化;
其中更优选活化2h。
本发明所述生物合成气优选如下摩尔比成分:H2:CO:CO2,:CH4:N2=1:1:0.5-0.8:0.1:2-3。
综上所述,本发明提供了一种大孔碳化铁催化剂及其制备方法和应用。本发明的大孔碳化铁催化剂具有如下优点:
本发明采用羧基改性微球为模板,以硝酸铁为前驱体,在甲醇乙二醇溶剂的条件下直接焙烧制备三维贯通的碳化铁,操作方法简单,周期短,成本低。本发明首次成功制备了大孔碳化铁催化剂。
附图说明
图1为实施例1所制备的羧基改性微球模板的FT-IR光谱。
图2为实施例1所制备的羧基改性微球模板的SEM照片。
图3为实施例1所制备的羧基改性微球模板的粒径分布图。
图4为实施例2所制备的碳化铁的FT-IR光谱。
图5为实施例2所制备的碳化铁的XRD谱图。
图6为实施例2所制备的碳化铁的TEM照片。
图7为实施例3所制备的碳化铁催化剂对生物合成气转化为燃料油的催化活性结果。
具体实施方式
以下通过具体实施例详细说明本发明的实施过程和产生的有益效果,旨在帮助阅读者更好地理解本发明的实质和特点,不作为对本案可实施范围的限定。
实施例1羧基改性胶体晶体模板的制备方法
本实施例中,按照以下方法制备羧基改性胶体晶体模板:
(1)采用改进的无皂乳液聚合法制备单分散的羧基改性聚甲基丙烯酸甲酯(c-PMMA)微球
将50ml丙酮和150ml去离子水加到装有搅拌器、回流冷凝管、温度计及N2气管的1000ml四口烧瓶中,抽真空后通N2,加入体积比为25:1的MMA和AA(两种单体均经过减压蒸馏精制),并加热到80℃。同时称取引发剂KPS0.27g和AIBN0.45g溶于150ml水中,并加热到80℃后加入四口烧瓶中。N2保护下反应1.5h后,在搅拌状态下自然冷却至室温,超声处理1.5h,抽滤得到c-PMMA聚合物微球。图1提供了该复合物的FT-IR红外吸收光谱。
(2)采用离心沉积法制备胶体晶体模板
将c-PMMA微球置于离心管中,以3000r/min的转速离心10h,弃去上层清液,室温干燥后得到紧密堆积的改性PMMA胶体晶体模板。图2提供了该胶体晶体模板的SEM照片。图3提供了该复合物微球的粒径分布图。
采用原位浸渍法制备前驱体与模板的复合物
按化学计量比称取一定量的硝酸铁,溶于甲醇和乙二醇混合溶液(体积比1:3)中,硝酸铁和甲醇/乙二醇摩尔比为1:2,磁力搅拌2h得均一透明溶液,即催化剂的前驱体溶液。用该溶液浸渍干燥的胶体晶体模板,待浸渍完全后,将多余的前驱体溶液抽滤除去。将浸渍后的胶体晶体模板置于真空干燥箱中在80℃下干燥20h,得到胶体晶体和前驱体的复合物。
实施例2三维贯通的碳化铁的制备方法
(1)采用改进的无皂乳液聚合法制备单分散的羧基改性聚甲基丙烯酸甲酯(c-PMMA)微球
将50ml丙酮和150ml去离子水加到装有搅拌器、回流冷凝管、温度计及N2气管的1000ml四口烧瓶中,抽真空后通N2,加入一定体积比的MMA和AA(两种单体均经过减压蒸馏精制),并加热到80℃。同时称取一定量的引发剂KPS和AIBN溶于150ml水中,并加热到80℃后加入四口烧瓶中。N2保护下反应1.5h后,在搅拌状态下自然冷却至室温,超声处理1.5h,抽滤得到c-PMMA聚合物微球。图1提供了该复合物的FT-IR红外吸收光谱。
(2)采用离心沉积法制备胶体晶体模板
将c-PMMA微球置于离心管中,以3000r/min的转速离心10h,弃去上层清液,室温干燥后得到紧密堆积的改性PMMA胶体晶体模板。图2提供了该胶体晶体模板的SEM照片。图3提供了该复合物微球的粒径分布图。
(3)采用原位浸渍法制备前驱体与模板的复合物
称取Fe(NO3)2·9H2O,溶于10ml甲醇乙二醇混合溶液(体积比1:2)中,硝酸铁和甲醇/乙二醇摩尔比为1:3,磁力搅拌2h得均一透明溶液,即得到催化剂的前驱体溶液。用该溶液浸渍3g干燥后的c-PMMA胶体晶体模板10h,待浸渍完全后,将多余的前驱体溶液抽滤除去,然后将模板置于真空干燥箱中在80℃下干燥过夜。在通有惰性气体的石英管中和石英砂混匀填充,最后将其在氩气气氛中升温至800℃焙烧,并恒温4h,得到三维贯通的碳化铁催化剂。其中氩气流速为80ml/min,升温速率为1℃/min。
图6为本实例制备的三维贯通的碳化铁催化剂的SEM照片,由图中可以看出,本实施例中以c-PMMA为大孔模板,制备的碳化铁具有规整的三维大孔结构,平均孔径为300nm,孔道均匀有序。本实施例制备的三维贯通的碳化铁催化剂的X射线衍射图谱和红外光谱分别如图4、图5所示,其结果表明本实施例制备的的材料中有碳化铁。
实施例3大孔碳化铁催化剂对生物合成气催化转化为燃料油的催化性能结果
生物合成气的气体组成为20%H2,19%CO,12%CO2,2%CH4和49%N2。将实施例2制备的催化剂在310℃下首先通过生物合成气活化2h。反应操作条件为:温度310℃、空速2000h-1、压力6.5MPa。实验结果如图7所示。大孔碳化铁催化剂显示了很高的催化活性和稳定性,CO的转化率保持在90%以上,液体燃料油产品的选择性超过60%,催化剂的活性持续500h保持基本稳定。其对生物合成气转化为燃料油的催化活性结果如图7所示。

Claims (10)

1.一种大孔碳化铁催化剂,其特征在于,所述碳化铁催化剂由羧酸改性聚甲基丙烯酸甲酯微球为模板,以硝酸铁为前驱体制备得到,所得的大孔碳化铁催化剂孔径为50-1000nm。
2.根据权利要求1所述的大孔碳化铁催化剂,其特征在于,所述大孔碳化铁催化剂的制备包括:将硝酸铁加入到甲醇/乙二醇混合溶液中,其中优选硝酸铁和甲醇/乙二醇摩尔比为1:1-3,搅拌得到硝酸铁溶液,将羧酸改性聚甲基丙烯酸甲酯微球加入到得到的硝酸铁溶液中浸渍,过滤,干燥,升温至400-800℃保温4-8小时既得所述大孔碳化铁催化剂;其中优选所述甲醇和乙二醇体积比为1:1.5-4。
3.根据权利要求2所述的大孔碳化铁催化剂,其特征在于,所述大孔碳化铁催化剂的制备包括:将硝酸铁加入到甲醇/乙二醇混合溶液中,搅拌2h以上得到硝酸铁溶液,将羧酸改性聚甲基丙烯酸甲酯微球加入到得到的硝酸铁溶液中浸渍,过滤,50-100℃干燥1-24h,0.5-2℃/min速度升温至400-800℃保温4-8小时既得所述大孔碳化铁。
4.根据权利要求2或3所述的大孔碳化铁催化剂,其特征在于,所述大孔碳化铁催化剂的制备还包括:将羧酸改性聚甲基丙烯酸甲酯微球加入到得到的硝酸铁溶液中浸渍、过滤并干燥后,先加入石英砂混匀,再升温至400-800℃保温4-8小时得到所述大孔碳化铁;其中优选在通有惰性气体的石英管中加入石英砂混匀。
5.根据权利要求1~4任意一项所述的大孔碳化铁催化剂,其特征在于,所述的羧酸改性聚甲基丙烯酸甲酯微球的制备包括:将甲基丙烯酸甲酯溶于反应溶剂,加热到60-90℃,加入配制好的过二硫酸钾/偶氮二异丁腈水溶液,加入丙烯酸,搅拌反应,过滤得到所述羧酸改性聚甲基丙烯酸甲酯微球;其中优选所述配制好的过二硫酸钾/偶氮二异丁腈水溶液先加热到60-90℃,再加入到加入了甲基丙烯酸甲酯的反应溶剂中。
6.根据权利要求5所述的大孔碳化铁催化剂,其特征在于,所述的羧酸改性聚甲基丙烯酸甲酯微球的制备包括:将甲基丙烯酸甲酯溶于丙酮/水混合溶液中,其中优选甲基丙烯酸甲酯和丙酮/水溶液的摩尔比是1:1-3,加热至60-90℃,加入配制好的过二硫酸钾/偶氮二异丁腈水溶液,同时加入丙烯酸,搅拌反应1.5h,过滤得到所述羧酸改性聚甲基丙烯酸甲酯微球;其中优选丙酮和水的体积比为1:3;优选在搅拌反应1.5h后还进行超声波处理,优选处理1.5h,冷却过滤得到所述羧酸改性聚甲基丙烯酸甲酯微球。
7.根据权利要求6所述的大孔碳化铁催化剂,其特征在于,所述的羧酸改性聚甲基丙烯酸甲酯微球的制备包括:将甲基丙烯酸甲酯在隔离空气条件下溶于丙酮/水混合溶液中,加热至60-90℃,通入惰性气体,加入配制好的过二硫酸钾/偶氮二异丁腈水溶液,同时加入丙烯酸,搅拌反应,过滤得到所述羧酸改性聚甲基丙烯酸甲酯微球。
8.一种权利要求1~7任意一项所述大孔碳化铁催化剂的制备方法。
9.权利要求1~7任意一项所述大孔碳化铁催化剂在催化生物合成气转化为燃料油中的应用;优选所述生物合成气的主要成分为H2:CO:CO2,:CH4:N2=1:1:0.5-0.8:0.1:2-3。
10.应用权利要求1~7任意一项所述大孔碳化铁催化剂催化生物合成气转化为燃料油的方法,其特征在于,所述方法包括:将生物合成气与所述大孔碳化铁催化剂进行接触反应制燃料油;其中所述反应条件包括:反应温度310℃、空速2000h-1、压力6.5MPa;其中更优选先将大孔碳化铁经过活化再用来和生物合成气接触反应制备燃料油;其中优选所述的活化是在310℃下活化,其中更优选活化2h。
CN201310445020.5A 2013-09-26 2013-09-26 一种大孔碳化铁催化剂及其制备方法和应用 Expired - Fee Related CN103480404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310445020.5A CN103480404B (zh) 2013-09-26 2013-09-26 一种大孔碳化铁催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310445020.5A CN103480404B (zh) 2013-09-26 2013-09-26 一种大孔碳化铁催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103480404A true CN103480404A (zh) 2014-01-01
CN103480404B CN103480404B (zh) 2015-05-06

Family

ID=49821190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310445020.5A Expired - Fee Related CN103480404B (zh) 2013-09-26 2013-09-26 一种大孔碳化铁催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN103480404B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030207752A1 (en) * 1999-05-26 2003-11-06 Pham Hien N. Synthesis of attrition-resistant heterogeneous catalysts using templated mesoporous silica
CN1895777A (zh) * 2005-07-14 2007-01-17 北京化工大学 一种组装碳化物的介孔分子筛催化剂及其制备方法
CN1895778A (zh) * 2005-07-14 2007-01-17 北京化工大学 一种组装碳化钨的介孔分子筛催化剂及其制备方法
CN102443454A (zh) * 2010-10-12 2012-05-09 中国石油化工股份有限公司 一种化学链燃烧的载氧体及其制备方法和应用
CN103030143A (zh) * 2012-08-09 2013-04-10 北京大学 碳化铁颗粒、其制备方法及用途
CN103182314A (zh) * 2011-12-30 2013-07-03 中国石油天然气股份有限公司 一种催化裂化再生烟气助燃催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030207752A1 (en) * 1999-05-26 2003-11-06 Pham Hien N. Synthesis of attrition-resistant heterogeneous catalysts using templated mesoporous silica
CN1895777A (zh) * 2005-07-14 2007-01-17 北京化工大学 一种组装碳化物的介孔分子筛催化剂及其制备方法
CN1895778A (zh) * 2005-07-14 2007-01-17 北京化工大学 一种组装碳化钨的介孔分子筛催化剂及其制备方法
CN102443454A (zh) * 2010-10-12 2012-05-09 中国石油化工股份有限公司 一种化学链燃烧的载氧体及其制备方法和应用
CN103182314A (zh) * 2011-12-30 2013-07-03 中国石油天然气股份有限公司 一种催化裂化再生烟气助燃催化剂及其制备方法
CN103030143A (zh) * 2012-08-09 2013-04-10 北京大学 碳化铁颗粒、其制备方法及用途

Also Published As

Publication number Publication date
CN103480404B (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
CN106179440B (zh) 氮掺杂多级孔炭及其制备方法和应用
CN104001547B (zh) 一种环境友好型核壳一维纳米铜线-有机金属骨架zif-8复合催化剂的制备方法及其应用
CN101992089B (zh) 三维有序大孔-介孔铁基钙钛矿氧化物催化剂及其制备方法
CN102418018B (zh) 一种纳米镁基储氢材料及其制备方法
Ciprian et al. 3D derived N-doped carbon matrix from 2D ZIF-L as an enhanced stable catalyst for chemical fixation
CN106984303B (zh) 一种担载贵金属的等级孔大孔-介孔γ-Al2O3催化剂及其制备方法
CN103145199B (zh) 一种四氧化三钴/石墨烯复合纳米材料的制备方法
CN103041839A (zh) 以sba-15为载体的镍基双金属催化剂及其制备方法与应用
CN109908903A (zh) 一种高比表面积木质素基活性炭为载体的镍基催化剂及其制备与应用
CN106865497B (zh) 一种原位生长纳米氢化镁负载高比表面材料的制备方法
CN110773218A (zh) 一种氮掺杂生物碳负载金属镍催化剂及其应用
CN102887548B (zh) 一种海胆状分级结构四氧化三钴纳米球及其制备方法
CN108187676A (zh) 一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用
CN103480405B (zh) 一种大孔碳化镍催化剂及其制备方法和应用
CN102259004B (zh) 用于煤制天然气甲烷化反应器的催化剂及其制备方法
CN104492436A (zh) 一种碳基磁性固体碱催化剂及其应用
CN108948366A (zh) 一种具有丰富Lewis酸性位的Fe-MOF催化剂的制备及其脱硫应用
CN101890502B (zh) 镍催化原位化学气相沉积制备碳纳米管/镁复合粉末的方法
CN112850640A (zh) 一种金属有机框架掺杂镁基氢化物的制备方法
CN102658145A (zh) 一种MgO(111)负载镍基催化剂的制备方法和应用
CN103480404B (zh) 一种大孔碳化铁催化剂及其制备方法和应用
CN104386732A (zh) 一种采用吸附隔离剂制备纳米氧化铈的方法与***
Dai et al. Activated carbon supported VN, Mo2N, and W2N as catalysts for acetylene hydrochlorination
CN105642289A (zh) 一种合成气完全甲烷化催化剂的制备方法
CN104549334B (zh) 一种非负载型合成气甲烷化催化剂及制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150506

Termination date: 20160926

CF01 Termination of patent right due to non-payment of annual fee