CN103477206B - 光学异向性参数测量装置、测量方法及测量用*** - Google Patents

光学异向性参数测量装置、测量方法及测量用*** Download PDF

Info

Publication number
CN103477206B
CN103477206B CN201280017649.3A CN201280017649A CN103477206B CN 103477206 B CN103477206 B CN 103477206B CN 201280017649 A CN201280017649 A CN 201280017649A CN 103477206 B CN103477206 B CN 103477206B
Authority
CN
China
Prior art keywords
mentioned
reflected light
intensity
wavelength plate
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280017649.3A
Other languages
English (en)
Other versions
CN103477206A (zh
Inventor
田之冈大辅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Publication of CN103477206A publication Critical patent/CN103477206A/zh
Application granted granted Critical
Publication of CN103477206B publication Critical patent/CN103477206B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明的目的在于通过将入射光垂直照射于试样而谋求装置整体的小型化,同时可在极短时间内测量光学轴的方向以及异向性的大小。本发明的光学异向性参数测量装置,形成有从激光器(6)将入射光朝垂直方向照射至试样(3)且将朝垂直方向反射的反射光经由半透半反镜(7)引导至受光元件(9)的测量光学***(4),在激光器(6)与半透半反镜(7)之间配置偏振器(P),并且在半透半反镜(7)与受光元件(9)之间配置检光器(A),在半透半反镜(7)与试样(3)之间配置:1/2波长板(12),使通过偏振器(P)所产生的直线偏振光旋转;以及1/4波长板(13),使迟相轴的方向从相对于1/2波长板(12)的迟相轴偏移了±δ(δ≠nπ/4,n是整数)的初始位置,以旋转角度相对于1/2波长板(12)成为2倍的方式同步地被旋转驱动。

Description

光学异向性参数测量装置、测量方法及测量用***
技术领域
本发明涉及一种测量具有光学异向性的试样的光学轴的方位及异向性的大小的光学异向性参数测量装置、测量方法及测量用程序,尤其适用于液晶配向膜的检查等。
背景技术
液晶显示器形成为如下构造:在表面叠层了透明电极及配向膜的背侧玻璃基板、及在表面叠层形成了彩色滤光膜,透明电极及配向膜的表侧玻璃基板,隔着间隔件(spacer)使配向膜彼此相对向且在该配向膜的间隙封入了液晶的状态下密封,并且在其表背两侧叠层有偏振光滤光膜。
在此,为了使液晶显示器正常动作,需使液晶分子均匀地排列在相同方向,且由配向膜来决定液晶分子的方向性。
该配向膜之所以可使液晶分子整齐排列,是因为具有分子配向,配向膜只要涵盖其整个面具有均匀的分子配向,则不容易在液晶显示器产生缺陷,且只要分子配向的不均匀部分存在,液晶分子的方向就会紊乱,液晶显示器便成为不良品。
即,配向膜的质量会直接影响液晶显示器的质量,只要配向膜有缺陷,液晶分子的方向性就会紊乱,因此在液晶显示器也会产生缺陷。
因此,在组装液晶显示器时,只要预先检查配向膜是否有缺陷并仅使用质量稳定的配向膜,则液晶显示器的成品率提高,且生产效率提高。
因此,存在想要简易测量因为配向膜的分子配向所导致光学异向性的光学轴的方向或异向性的大小的求要,本申请人提出一种高速测量因为分子配向所导致的光学异向性的方法(参照专利文献1)。
该方法是一种将入射光倾斜照射至液晶配向膜等的试样,检测出其反射光的偏振状态的方法,基于将光学***或试样载置台(stage)旋转所获得的反射光强度,来测量其测量点中的光学轴的方向、异向性的大小,具有针对异向性的灵敏度高且测量时间短的优点。
然而,在从倾斜方向以规定的入射角照射光的光学***中,由于反射光是以与入射角相同的反射角来反射,因此必须将入射光及反射光的光路相对于测量中心确保在两侧,因此会有测量装置大型化的问题。
而且,在使光学***旋转时,由于也需确保成为与该旋转半径对应的运转区域的圆形空间,因此更需要大型的设置空间。
尤其液晶显示器的母玻璃(motherglass)的大小,即使是中小型液晶显示器用母玻璃其1边也为2m左右,而大型液晶显示器用母玻璃则1边超过3m,因此为了在母玻璃的状态下于所限定的时间内进行测量,需将多个测量装置配置成一次元或矩阵(matrix)状,因此要求将测量装置小型化。
因此,只要将光垂直照射于试样的测量面来测量光学异向性参数,则能够实现装置的小型化,而该种测量装置也已被提出(参照专利文献2)。
图11示出该测量装置31的说明图,其形成有将来自成为光源的激光器32通过半透半反镜33反射的入射光在垂直方向照射于试样34,并且将来自试样34在垂直方向反射的反射光穿过上述半透半反镜33而引导至受光元件35的光路,由于不倾斜照射入射光,因此能够实现装置31的小型化。
在该测量装置31中,在激光器32与半透半反镜33之间配置固定偏振器P,并且在半透半反镜33与受光元件35之间可旋转地配置检光器A,且在半透半反镜33与试样34之间,可转动地设有使通过偏振器P所产生的直线偏振光旋转的1/2波长板36。
此时,如果使1/2波长板36旋转180°,则照射于试样34的直线偏振光的入射方位就会旋转360°,因此只要一边使1/2波长板例如每5°停止,一边使检光器A旋转360°,则可以检测出照射于试样的直线偏振光的入射方位每10°变化时的反射光的偏振状态。
然后,例如,如果将检光器A每旋转10°来测量反射光强度,则在检光器A的旋转角θ与反射光强度R的关系上可获得36个数据,基于此数据进行傅立叶(Fourier)解析,则可获得此时的直线偏振光相对于入射方位ψ的一个相位差数据。
然而,为了获得直线偏振光相对于入射方位0至360°的相位差数据,必须一边使1/2波长板36例如每5°停止,一边针对0°至180°的36点进行测量,因此要使检光器A相对于该一个角度旋转360°且针对每10°取得36个数据,因此要使检光器A旋转36次而取得合计共36×36=1296点的数据,不仅测量耗费时间,之后的计算处理也耗费时间,并不能组入于实际生产线。
如果使1/2波长板36每10°停止且针对检光器A的每10度取得数据,数据数就会减少至1/4而为18×18=324,但结果检光器A还是必须旋转18次,因此测量时间只减少1/2左右,而且,会有测量精确度随数据数减少而降低的问题。
[在先技术文献]
专利文献1
专利文献1:日本特开2008-76324号公报
专利文献2:日本特开平11-304645号公报
发明内容
因此,本发明的技术课题在于通过将入射光垂直照射于试样而谋求装置整体的小型化,同时可在极短时间内测量光学轴的方向及异向性的大小。
为了解决上述问题,本发明是提供一种光学异向性参数测量装置,基于照射至试样的测量区域的入射光及其反射光的偏振状态的变化来测量该试样的光学轴的方向与光学异向性的大小,该光学异向性参数测量装置的特征在于包括:测量光学***,从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述测量区域,并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至受光元件;以及运算处理装置,基于通过受光元件所检测出的反射光强度来算出光学异向性参数,上述测量光学***在上述激光器与上述半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,在半透半反镜与试样之间配置有:1/2波长板,为了使通过上述偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,从使迟相轴的方向相对于上述1/2波长板的迟相轴偏移±δ的初始位置起,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动,其中,δ≠nπ/4,n是整数,上述运算处理装置算出使1/4波长板从初始位置+δ起与1/2波长板同步地旋转时所检测出的反射光强度R(+δ)、与使1/4波长板从初始位置-δ起与1/2波长板同步地旋转时所检测出的反射光强度R(-δ)的差分△R,基于上述直线偏振光的旋转角与上述差分△R的关系来决定试样的光学轴的方向以及光学异向性的大小。
本发明所涉及的光学异向性参数测量装置具备测量光学***,该测量光学***从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述测量区域,并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至受光元件。
因此,入射光将朝垂直方向照射于试样,与从倾斜方向照射入射光的情况相比较,不仅可将装置小型化,而且不需要使光学***旋转,因此不需确保其空间。
从激光器照射的光通过偏振器成为直线偏振光,并通过1/2波长板使该直线偏振光的偏振轴旋转,通过使迟相轴偏移±δ所配置的1/4波长板转换为椭圆偏振光,而朝垂直方向照射于试样。
该反射光所包含的偏振光成分中的偏振状态未变化的偏振光成分,再次通过1/4波长板时恢复为直线偏振光,在通过1/2波长板的时间点恢复为偏振轴与通过偏振器所产生的直线偏振光相等的直线偏振光,因此会被相对于偏振器为正交尼柯耳的关系的检光器所切断(cut),相对于此,偏振状态变化了的偏振光成分,由于成为与原来的直线偏振光不同的偏振状态,因此会穿过检光器而到达受光元件,能够检测出做为光强度的变化。
来自具有光学异向性的试样表面的反射光,由于偏振光成分发生变化,因此与该异向性相对应来检测光强度变化。
在进行实际测量时,对使1/4波长板从初始位置+δ与1/2波长板同步地旋转时所检测出的反射光强度R(+δ)、使1/4波长板从初始位置-δ与1/2波长板同步地旋转时所检测出的反射光强度R(-δ)进行测量。
即,关于一个测量点,针对将1/4波长板的初始位置设为+δ时以及设为-δ时的2次,仅使1/2波长板旋转180°,同时使1/4波长板旋转360°就完成测量。
接着算出反射光强度的差分△R=R(+δ)-R(-δ)。
即,通过取得处于对称关系的2个椭圆偏振光的反射光中所包含的偏振状态的差分,即可仅抽出起因于试样的光学异向性的偏振状态的变化。
然后,可根据直线偏振光的旋转角与差分△R的关系,来决定试样的光学轴的方向及光学异向性的大小。
例如,若绘出以直线偏振光的旋转角为X轴,以差分为Y轴的曲线图,在旋转角为试样的光学轴的方向,由于差分△R为0,因此读取该旋转角就可知道试样的光学轴的方向。
此外,由于异向性的大小会反映在差分△R的高度方向的振幅,因此根据差分的极大值或极小值的大小就可判断光学异向性的大小,可极简单地并在短时间内测量这些光学异向性参数。
另外,此时的差分呈现近似于以180°为1周期的正弦曲线的变化,每90°取得0的值。这是因为将试样的光学轴的方向设为0°时,反射光强度会在0°与180°时相等,并且反射光强度会在90°与270°相等。
因此,仅从该数据将无法确定光学轴的方向。
然而,例如,液晶配向膜的制品试验是用于确认多个测量点中的配向方向(光学轴的方向)的分布状态、或从配向处理的方向的偏移,通过配向处理大致的配向方向是已知的,其偏移最大也就20°左右,因此不会有将光学轴的方向错认为是90°的情况。
附图说明
图1是示出本发明所涉及的光学异向性参数测量装置的一个例子的说明图。
图2是示出其处理顺序的说明图。
图3(a)至图3(c)是示出本发明方法进行的测量结果的曲线图。
图4是示出光学轴的方向的分布的曲线图。
图5是示出异向性的大小的分布的曲线图。
图6(a)至图6(g)是示出本发明所涉及的另一方法进行的测量结果的曲线图。
图7(a)至图7(d)是示出本发明所涉及的另一方法进行的测量结果的曲线图。
图8(a)至图8(c)是示出本发明所涉及的另一方法进行的测量结果的曲线图。
图9是示出本发明所涉及的另一光学异向性参数测量装置的说明图。
图10是示出本发明所涉及的又一光学异向性参数测量装置的说明图。
图11是示出现有装置的说明图。
主要元件符号说明
1光学异向性参数测量装置;2载置台;3试样;S测量点(测量区域);4测量光学***;5运算处理装置;6激光器;7半透半反镜;9受光元件;P偏振器;A检光器;10二维光位置检测元件;121/2波长板;131/4波长板;14对物侧聚光透镜;17检测侧聚光透镜;18针孔。
具体实施方式
本发明为了实现通过将入射光垂直照射于试样而谋求装置整体的小型化,同时可在极短时间内测量光学轴的方向及异向性的大小的目的,具备:测量光学***,从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述测量区域,并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至受光元件;以及运算处理装置,基于通过受光元件所检测出的反射光强度来算出光学异向性参数。
测量光学***在激光器与半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,且在半透半反镜与试样之间配置有:1/2波长板,为了使通过偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,使迟相轴的方向从相对于上述1/2波长板的迟相轴偏移了±δ(δ≠nπ/4,n是整数)的初始位置,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动。
运算处理装置算出使1/4波长板从初始位置+δ与1/2波长板同步地旋转时所检测出的反射光强度R(+δ)、与使1/4波长板从初始位置-δ与1/2波长板同步地旋转时所检测出的反射光强度R(-δ)的差分△R,且根据上述直线偏振光的旋转角与上述差分△R的关系来决定试样的光学轴的方向及光学异向性的大小。
(实施例1)
图1所示的本例的光学异向性参数测量装置1是用于检测设置于载置台2的试样3上的测量点(点状测量区域)S的光学异向性参数的装置。
该光学异向性参数测量装置1是用以基于照射至测量点S的入射光与该反射光的偏振状态的变化来测量该测量点S中的光学轴的方向与光学异向性的大小的装置,其具备进行其偏振光解析的测量光学***4及电脑等运算处理装置5。
在测量光学***4中,形成有:从成为光源的激光器6经由半透半反镜7将入射光朝垂直方向照射至测量区域S的入射光路L1;使从测量区域S朝垂直方向反射的反射光经由半透半反镜7分岔,并且在半透半反镜8使之分岔而引导至受光元件9的反射光路L2;以及将穿过半透半反镜8的光引导至二维光位置检测元件10的摆动检测光路L3
在入射光路L1中,在激光器6与半透半反镜7之间,配置有将其照射光放大且设为平行光束的光束扩展器11与偏振器P,且在半透半反镜7与载置台2之间配置有:1/2波长板12,为了使通过偏振器P所产生的直线偏振光旋转而通过马达M1旋转驱动;以及1/4波长板13,使迟相轴的方向从相对于上述1/2波长板12的迟相轴偏移+δ(δ≠nπ/4,n是整数)的初始位置使旋转角度相对于该1/2波长板12成为2倍的方式通过马达M2同步地旋转驱动。
另外,在1/4波长板13与载置台2之间,以可通过马达M3转动而且通过对物侧聚光透镜14使入射光在试样3的表面上以连结焦点的方式通过马达M4可上下移动地配置有旋转器(revolver)16,该旋转器16具备使入射光聚光的对物侧聚光透镜14,并且形成有在平行光状态下使入射光穿过的透孔15。
在本例中,激光器6是使用波长532nm、光强度10mW的半导体激光器,且通过放大率为10倍的光束扩展器11放大成直径5mm的平行光束,穿过使用了消光比10-6的格兰汤姆森(Glan-Thompson)棱镜的偏振器P,且穿过对物侧聚光透镜(Olympus制:倍率50倍)而照射至试样。
此时,对于试样的照射光点(spot)***约为1微米。
在反射光路L2中,于半透半反镜7及8间配置检光器A,而在半透半反镜8与受光元件9之间,设有在使反射光收敛于焦点位置之后,一边扩散一边引导至受光元件9的检测侧聚光透镜17,并且在该焦点位置设有针孔(pinhole)18,据此,能够去除从对物侧聚光透镜14的焦点位置以外反射的光噪(noise)(例如试样的背面反射光)。
在本例中,使用焦点距离25mm的检测侧聚光透镜17,穿过孔径20μm的针孔18,而通过由光电子增倍管所构成的受光元件9来检测出反射光的光强度。
另外,载置台2具备可在相对于入射光的光轴Z正交的X轴及Y轴方向移动的X平台(table)19x、Y平台19y;为了进行试样2的摆动调整而能够在θx以及θy方向倾动的θx平台20x以及θy平台20y,且各平台可通过马达M5至M8驱动。
此外,在本例中,偏振器P的偏振轴朝向为与X轴方向平行,且1/2波长板12的迟相轴在初始位置朝向与偏振轴一致的方向,而1/4波长板13的迟相轴将相对于1/2波长板12的迟相轴偏移了±δ(δ≠nπ/4,n是整数)的位置设定为初始位置,并使检光器A的偏振轴朝向为与Y轴平行。
即,在初始状态下,偏振器P的偏振轴及1/2波长板12的迟相轴朝向X轴方向,而1/4波长板13的迟相轴则相对于X轴朝向+δ或者-δ。
在此,在将偏振器P及检光器A固定,使1/2波长板12旋转0~180°后,入射至1/4波长板13的直线偏振光以X轴方向为0°绕着Z轴旋转0~360°。
此时,直线偏振光的旋转角用其偏振轴的旋转角来定义,当将1/2波长板12的旋转角度设为ψ时,穿过1/2波长板12而入射到1/4波长板13的直线偏振光的偏振轴的旋转角用2ψ来表示。
此外,由于1/4波长板13从初始位置±δ旋转成为1/2波长板12的2倍的旋转角度,因此该旋转角用2ψ±δ来表示,迟相轴相对于入射的直线偏振光的偏振轴总是偏移±δ(δ≠nπ/4,n是整数),因此穿过1/4波长板13的光为椭圆偏振光。
由此,椭圆偏振光会在维持其椭圆率为固定的状态下,使相当于椭圆长轴的方位角旋转360°并照射至试样。
另外,在1/4波长板13与旋转器16之间,配置有可在光轴上进退的观察用半透半反镜21,而在其反射光轴上则配置有观察试样3的带照明的摄像机22。
此外,此测量光学***4可收纳于直径约100mm的壳体(未图示),而以往的光学***包括运转范围需要直径600mm,因此以面积比而言可小型化至约36分之1。
运算处理装置5在其输入接口连接有受光元件9、二维光位置检测元件10及摄像机22,并且在输出接口连接有各马达M1~M8,并且依照规定的程序,进行试样3的摆动调整、测量点S的XY面内的定位、测量点S的Z轴方向位置的测量、1/2波长板12及1/4波长板13的初始位置设定与驱动、通过受光元件9所测量的反射光强度数据的存储、光学异向性参数的算出等。
图2是表示运算处理装置5进行的一连串的处理顺序的流程图。
将要测量光学异向性的试样设置于载置台2,且将主开关(mainswitch)设为导通(on)时,电源供给给运算处理装置5、激光器6、受光元件9及各马达M1~M8,开始执行以下的处理。
首先,当在步骤STP1输入测量点S的XY座标时,在步骤STP2驱动马达M5、M6,通过XY平台19x、19y使测量点S与入射光轴Z一致。
[摆动调整单元]
接着,在步骤STP3通过马达M6使旋转器16旋转而使透孔15进出于入射光轴Z,在步骤STP4通过二维光位置检测元件10判断来自试样3的反射光的光轴是否与摆动检测光路L3的光轴一致,当不一致时,在步骤STP5驱动马达M7、M8并通过θx、θy平台20x、20y调整试样3的摆动返回到步骤STP4,当无摆动时,则移动到步骤STP6。
[对物侧聚光透镜焦点位置调整单元]
在步骤STP6通过马达M3使旋转器16旋转而使对物侧聚光透镜14进出于入射光轴Z,在步骤STP7使聚光透镜14在入射光轴Z方向进行扫描,在步骤STP8将聚光透镜14的位置固定在受光元件9的受光强度成为最大的位置,并存储此时的Z座标,然后移动到步骤STP9。
[测量点检测单元]
在步骤STP9使观察用半透半反镜21进出于光轴Z,在步骤STP10进行摄像机22的图像解析来判断入射光轴Z是否与测量点S一致,若不一致就在步骤STP11将XY平台19x、19y进行微调整然后返回到步骤STP10,只要受到照射就在步骤STP12存储该XYZ座标,使观察用半透半反镜21退避,并移动到步骤STP13。
[反射光强度测量单元]
在步骤STP13通过马达M1将1/2波长板12的迟相轴设为与X轴平行,通过马达M2使1/4波长板13的迟相轴相对于X轴朝向+δ来设定初始位置。
之后,在步骤STP14中,通过马达M1、M2使1/4波长板13的旋转角度相对于1/2波长板12的旋转角度ψ成为2倍的方式同步地驱动,在步骤STP15中,则使1/2波长板12依照规定角度旋转而由受光元件9测量反射光强度,与穿过了1/2波长板12的直线偏振光的旋转角即1/2波长板12的旋转角的2倍角度对应而存储反射光强度R(+δ)。
然后,在步骤STP16中,在1/2波长板12旋转180°的时间点中断测量。
接着,在步骤STP17通过马达M1使1/2波长板12的迟相轴与X轴平行,通过马达M2使1/4波长板13的迟相轴相对于X轴朝向-δ而重新设定初始位置。
之后,在步骤STP18中,通过马达M1、M2以1/4波长板13的旋转角度相对于1/2波长板12的旋转角度ψ成为2倍的方式同步地驱动,在步骤STP19中,1/2波长板12旋转至180°为止每进行规定角度旋转则通过受光元件9测量反射光强度,与穿过了1/2波长板12的直线偏振光的旋转角即1/2波长板12的旋转角的2倍角度对应而存储反射光强度R(-δ)。
[差分算出单元]
接着,移动到步骤STP20,基于所测量的反射光强度R(+δ)及R(-δ),算出它们的差分△R=R(+δ)-R(-δ)。
另外,为了将起因于光学***4的光噪去除,根据需要将试样3朝向0°方向设置于载置台2的情况下、将试样3朝向90°方向设置于载置台2的情况下、将无光学异向性的玻璃等的等向性材料设置于载置台2的情况下进行步骤STP13至20的处理也有效。
将这种情况下的各个反射光强度R表示如下。
R0(+δ):使试样3朝向0°,且将1/4波长板13的初始位置设为+δ的情况,
R0(-δ):使试样3朝向0°,且将1/4波长板13的初始位置设为-δ的情况,
R90(+δ):使试样3朝向90°,且将1/4波长板13的初始位置设为+δ的情况,
R90(-δ):使试样3朝向90°,且将1/4波长板13的初始位置设为-δ的情况,
RE(+δ):设置等向性材料,且将1/4波长板13的初始位置设为+δ的情况,
RE(-δ):设置等向性材料,且将1/4波长板13的初始位置设为-δ的情况,
差分△R除上述之外,也可通过下式来算出。
ΔR=[R0(+δ)-R0(-δ)]-[RE(+δ)-RE(-δ)]
ΔR=[R0(+δ)-R0(-δ))一[R90(+δ)-R90(-δ)]
ΔR=ΔR0-ΔR90
ΔR0=[R0(+δ)-R0(-6)]-[RE(+δ)-RE(-δ))
ΔR90=[R90(+δ)-R90(-δ)]-[RE(+δ)-RE(-δ)]
[异向性分析单元]
在步骤STP21中,将直线偏振光相对于旋转角2ψ的差分△R描绘于曲线图上,在步骤STP22进行拟合处理,描绘2ψ-△R线图的曲线图。
在步骤STP23中读取成为△R=0的角度,其中之一为在试样3的测量点S中的光学轴的方向。
此外,只要测量点S内的光学轴的方向一致,则可以说异向性较大,可以通过△R的高度方向的振幅来评价。因此,在步骤STP24中,通过算出△R的极大值与极小值的差、从0至极大值的高度等反映出△R的高度方向的振幅的值,来评价异向性的大小。
以上是本发明的一个构成例,接着说明本发明方法。
例如,作为试样3,将涂布有实施了配向处理的液晶配向膜的LCD用TFT基板(每一像素30微米),使其配向处理的方向与X轴平行而设置于载置台2,使对物透镜用自动旋转旋转器旋转,在使对物透镜从光路离开的状态下基于光位置检测元件的信号进行摆动调整。
在摆动调整之后,将对物侧聚光透镜14***到入射光轴Z,将聚光透镜14朝Z方向扫描。只要将对物侧取光透镜14的位置固定于在受光元件9的强度成为最大的位置并存储此时的Z座标,则可测量测量点S的Z方向位置。
接着,通过摄像机22的图像,调整XY平台19x、19y以使入射光照射于TFT基板的像素内之后,测量反射光强度。
首先,针对1/2波长板12设定初始位置使迟相轴成为与X轴平行,对1/4波长板13设定于迟相轴相对于X轴偏移+δ(+2°)的初始位置。
接着,以1/4波长板的旋转角度相对于1/2波长板12成为2倍的方式,分别以旋转速度20rpm及40rpm旋转1/2波长板12及1/4波长板13,当1/2波长板12从0至180°为止每旋转5°都通过受光元件9读取反射光强度R(+δ)。
此时,从激光器6照射的光沿着入射光路L1行进,在偏振器P使偏振轴成为与X轴方向平行的直线偏振光,在1/2波长板12使该直线偏振光的偏振轴旋转,通过迟相轴偏移+2°而配置的1/4波长板13来转换为椭圆偏振光,通过对物侧聚光透镜14聚焦于直径1微米的光点而在朝垂直方向照射试样3。
然后,从试样3的测量点S扩散的反射光沿着反射光路L2行进,在对物侧聚光透镜14被平行化,再次穿过1/4波长板13及1/2波长板12而转换为直线偏振光,在半透半反镜7被反射,穿过检光器A之后,在半透半反镜8被反射,通过设置在检测侧聚光透镜17的焦点位置的孔径20μm的针孔18,去除来自对物侧聚光透镜14的焦点位置以外反射的光噪(例如试样的背面反射光),而仅使从测量点S反射的反射光到达受光元件9。
此时,反射光中所包含的偏振光成分中的偏振状态未变化的偏振光成分再次通过1/4波长板13时恢复为直线偏振光,在通过了1/2波长板12的时间点恢复为偏振轴与X轴平行的直线偏振光,因此会被偏振轴与Y轴平行的检光器A所切断,相对于此,偏振状态有变化的偏振光成分,由于成为与原来的直线偏振光不同的偏振状态,因此会穿过检光器A而到达受光元件9,可以作为光强度的变化而被检测来。
接着,针对1/2波长板12设定初始位置使迟相轴成为与X轴平行,对1/4波长板13设定于迟相轴相对于X轴偏移-δ(-2°)的初始位置之后,同样地通过受光元件9来测量反射光强度R(-δ)。
然后,通过下式来算出这些反射光强度R(+δ)、R(-δ)的差分△R。
ΔR=R(+δ)-R(-δ)
图3(a)至图3(c)是表示此时的测量结果的曲线图,以下曲线图均为横轴是通过1/2波长板12而旋转的直线偏振光的旋转角2ψ,纵轴是图3(a)为反射光强度R(+δ),图3(b)为反射光强度R(-δ),图3(c)为差分△R。
然后,对图3(c)的数据进行拟合处理,读取成为△R=0的偏振轴的角度2ψ,则为10°、100°、190°、280°。
设置于载置台2的试样3的配向处理方向与X轴平行(0°)因此可知最接近0°的10°(190°)为该测量点S的光学轴的方向(配向方向)。
异向性的大小H例如可用下式来求出。
H=ΔRmax-Δrmin
此时,针对预先测量的良品,测量异向性的大小H0,并基于与其之比H/H0,例如如果为0.9以上,则可判断异向性的大小为适当。
图4是表示针对在试样3的表面上设定为矩阵状的多个测量点测量光学轴的方向的结果的曲线图,图5是针对异向性的大小表示其分布状态的曲线图。
(实施例2)
另外,因为起因于测量光学***4的光噪较大时,为了将其去除,根据需要将试样3朝向0°方向而设置于载置台2的情况下、将试样3朝向90°方向而设置于载置台2的情况下、将无光学异向性的玻璃等的光学等向性材料设置于载置台2的情况下来测量反射光强度,如果如下所示那样算出差分,则可更高精确度地测量光学异向性参数。
图6是基于来自使配向处理方向朝向与X轴平行(0°方向)而设置于载置台2的试样3的反射光强度R0(+δ)、R0(-δ)、将光学等向性材料即玻璃设置于载置台2时的反射光强度RE(+δ)、RE(-δ),用以式来算出差分△R时的测量结果。
ΔR=[R0(+δ)-R0(-δ))-[RE(+δ)一RE(-δ)]
图6(a)为反射光强度R0(+δ),图6(b)为反射光强度R0(-δ),图6(c)为其差[R0(+δ)-R0(-δ)],图6(d)为反射光强度RE(+δ),图6(e)为反射光强度RE(-δ)、图6(f)为其差[RE(+δ)-RE(-δ)],图6(g)为差分△R。
然后,对图6(g)的数据进行拟合处理,读取成为△R=0的偏振轴的角度2ψ,为12°、102°、192°、282°。
由于设置于载置台2的试样3的配向处理方向是与X轴平行(0°),因此可知最接近0°的12°(192°)是该测量点S的光学轴的方向(配向方向)。
(实施例3)
图7是基于来自使配向处理方向朝向与X轴平行(0°方向)而设置于载置台2的试样3的反射光强度R0(+δ)、R0(-δ)、将来自使配向处理方向朝向与X轴平行(90°方向)而设置于载置台2的试样3的反射光强度R90(+δ)、R90(-δ),用下式算出差分△R时的测量结果。
ΔR=[R0(+δ)-R0(-δ)]-[R90(+δ)-R90(-δ)]
据此,可将光学***固有的异向性去除,且异向性的大小进一步成为2倍,因此可进行精确度更高的测量。
针对反射光强度R0(+δ)及R0(-δ),使用图6(a)及图6(b)的数据。
图7(a)是反射光强度R90(+δ),图7(b)是反射光强度R90(-δ),图7(c)是表示其差[R90(+δ)-R90(-δ)],图7(d)是差分ΔR。
然后,对图7(d)的数据进行拟合处理,读取成为ΔR=0的偏振轴的角度2Ψ,为15°、105°、195°、285°。
由于设置于载置台2的试样3的配向处理方向是与X轴平行(0°),因此可知最接近0°的15°(195°)是该测量点S的光学轴的方向(配向方向)。
(实施例4)
在此,只要需要利用中间数据[R0(+δ)-R0(-δ)]以及[R90(+δ)-R90(-δ)],且针对各个预先去除起因于光学***4的光噪,则可通过下式来求出差分ΔR0以及ΔR90
ΔR0=[R0(+δ)-R0(-δ)]-[RE(+δ)-RE(-δ)]
ΔR90=[R90(+δ)-R90(-δ)]-[RE(+δ)-RE(-δ)]
基于这些数据,可通过下式来求出差分ΔR。
ΔR=ΔR0-ΔR90
反射光强度R0(+δ)、R0(-δ)、RE(+δ)、RE(-δ)使用图6(a)、图6(b)、图6(d)、图6(e)的数据,反射光强度R90(+δ)、R90(-δ)使用图7(a)、图7(b)的数据。
图8(a)是差分ΔR0,图8(b)是差分ΔR90,其差分ΔR=ΔR0-ΔR90与图7(d)的结果相同。
(实施例5)
图9是表示本发明的另一光学异向性参数测量装置的说明图。
本例的光学异向性参数测量装置25能够针对具有某一程度的宽度的测量区域S2(例如直径10mm)整体来进行光学异向性的评价。另外,与图1重复的部分赋予相同符号且省略详细说明。
在本例中,通过设置于测量光学***4的激光器6与半透半反镜7之间的光束扩展器11来设定其倍率,使入射光成为具有与测量区域S2对应的大小的光束径(例如直径10mm)的平行光束。
此外,并没有设置图1的对物侧聚光透镜14、检测侧聚光透镜17、针孔18。
据此,在光束扩展器11成为直径10mm的平行光束的入射光,穿过偏振器P、1/2波长板12、1/4波长板13而成为椭圆偏振光,照射至试样3的测量区域S2整体。
该反射光在直径10mm的平行光束的状态下穿过1/4波长板13、1/2波长板12,并沿着反射光路L2穿过检光器A,到达受光元件9,来测量其光强度。
此时,测量区域S2内的光学轴的方向被检测出其平均的方向,只要光学轴的方向一致,则表示异向性的大小的值H较大,若在光学轴的方向具有偏差,则表示异向性的大小的值H较小。
(实施例6)
图10是表示本发明的又一光学异向性参数测量装置的说明图,与图1重复的部分赋予相同符号且省略详细说明。
本例的光学异向性参数测量装置26,即使在测量区域S3将波长板12、13的直径设定得较大的情况下(例如直径1mm左右),也可针对该测量区域S3整体通过一次测量来进行光学异向性的评价。
在本例中,在测量光学***4的激光器6与半透半反镜7之间,设置有将其照射光设为规定的光束径(例如5mm)的平行光束的光束扩展器11,且在1/4波长板13与设置试样3的载置台2之间,设置有将入射光扩径为具有与测量区域S3对应的大小的光束径的平行光束的光束扩展器27。
此外,并未设置图1的对物侧聚光透镜14、检测侧聚光透镜17、针孔18。
据此,在最初的光束扩展器11成为5mm的平行光束的入射光,穿过偏振器P、1/2波长板12、1/4波长板13而成为椭圆偏振光,而在光束扩展器27被扩径为直径1m的平行光束,而照射至试样3的测量区域S2整体。
该反射光成为直径1m的平行光束,朝反方向向光束扩展器27行进,成为直径5mm的平行光束而穿过1/4波长板13、1/2波长板12,沿着反射光路L2而穿过检光器A到达受光元件9,而测量其光强度。
此时,测量区域S2内的光学轴的方向检测出其平均的方向,只要光学轴的方向一致,则表示异向性的大小的值H较大,若有偏差,则表示异向性的大小的值H较小的点与上述的实施例相同。
[产业上的可利用性]
本发明能够适用于具有光学异向性的制品,特别适用于液晶配向膜的质量检查等。

Claims (12)

1.一种光学异向性参数测量装置基于照射至试样的测量区域的入射光及其反射光的偏振状态的变化来测量该试样的光学轴的方向与光学异向性的大小,该光学异向性参数测量装置的特征在于包括:
测量光学***,从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述测量区域,并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至受光元件;以及
运算处理装置,基于通过受光元件所检测出的反射光强度来算出光学异向性参数,
上述测量光学***在上述激光器与上述半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,在半透半反镜与试样之间配置有:1/2波长板,为了使通过上述偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,从使迟相轴的方向相对于上述1/2波长板的迟相轴偏移±δ的初始位置起,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动,其中,δ≠nπ/4,n是整数,
上述运算处理装置算出使1/4波长板从初始位置+δ起与1/2波长板同步地旋转时所检测出的反射光强度R(+δ)、与使1/4波长板从初始位置-δ起与1/2波长板同步地旋转时所检测出的反射光强度R(-δ)的差分ΔR,基于上述直线偏振光的旋转角与上述差分ΔR的关系来决定试样的光学轴的方向以及光学异向性的大小。
2.根据权利要求1所述的光学异向性参数测量装置,其特征在于:在上述测量光学***的上述激光器与半透半反镜之间,设置了将上述入射光设为具有与测定区域对应的大小的光束径的平行光束的光束扩展器。
3.根据权利要求1所述的光学异向性参数测量装置,其特征在于:
在上述测量光学***的上述激光器与半透半反镜之间,设置了将其照射光设为具有规定光束径的平行光束的光束扩展器;
在上述1/4波长板与上述试样之间,能够在其光轴方向相对移动地设有对物侧聚光透镜,该对物侧聚光透镜使上述入射光聚光以使焦点聚焦于该试样的表面上;
在上述检光器与受光元件之间,设有使上述反射光收敛于焦点位置之后,一边扩散一边引导至受光元件的检测侧聚光透镜,并且在该焦点位置设有针孔。
4.根据权利要求1所述的光学异向性参数测量装置,其特征在于:
当上述测定区域设定为大于各上述波长板的直径的情况下,
在上述测量光学***的上述激光器与半透半反镜之间,设置了将其照射光设为具有规定的光束径的平行光束的光束扩展器;
在上述1/4波长板与上述试样之间,设置了将上述入射光扩径为具有与测量区域对应的大小的光束径的平行光束的光束扩展器。
5.一种光学异向性参数测量方法,基于照射至试样的测量区域的入射光及其反射光的偏振状态的变化来测量该试样的光学轴的方向与光学异向性的大小,该光学异向性参数测量方法的特征在于包括:
测量光学***,从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述测量区域,并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至受光元件,
该测量光学***在上述激光器与上述半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,在半透半反镜与试样之间配置有:1/2波长板,为了使通过上述偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,从使迟相轴的方向相对于上述1/2波长板的迟相轴偏移±δ的初始位置起,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动,其中,δ≠nπ/4,n是整数,
该光学异向性参数测量方法具备:
反射光强度测量步骤,使上述1/4波长板一边从初始位置+δ起与1/2波长板同步地旋转一边测量反射光强度R(+δ),并且使上述1/4波长板一边从初始位置-δ起与1/2波长板同步地旋转一边测量反射光强度R(-δ);
差分算出步骤,基于所检测出的反射光强度R(+δ)以及R(-δ),通过ΔR=R(+δ)-R(-δ)来算出差分ΔR;
异向性分析步骤,基于上述直线偏振光的旋转角与上述差分ΔR的关系来决定光学轴的方向以及光学异向性的大小。
6.一种光学异向性参数测量方法,基于照射至试样的测量区域的入射光及其反射光的偏振状态的变化来测量该试样的光学轴的方向与光学异向性的大小,该光学异向性参数测量方法的特征在于包括:
测量光学***,从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述测量区域,并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至受光元件;
该测量光学***在上述激光器与上述半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,在半透半反镜与试样之间配置有:1/2波长板,为了使通过上述偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,从使迟相轴的方向相对于上述1/2波长板的迟相轴偏移±δ的初始位置起,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动,其中,δ≠nπ/4,n是整数,
该光学异向性参数测量方法具备:
反射光强度测量步骤,设置上述试样,使上述1/4波长板一边从初始位置+δ起与1/2波长板同步地旋转一边测量反射光强度R(+δ),使上述1/4波长板一边从初始位置-δ起与1/2波长板同步地旋转一边测量反射光强度R(-δ);
参照反射光强度测量步骤,替代上述试样而设置无光学异向性的参照板,与上述反射光强度测量步骤同样地测量参照反射光强度RE(+δ)以及RE(-δ);
差分算出步骤,基于上述反射光强度R(+δ)以及R(-δ)、上述参照反射光强度RE(+δ)以及RE(-δ),通过
ΔR=[R(+δ)-R(-δ)]-[RE(+δ)-RE(-δ)]
来算出差分ΔR;以及
异向性分析步骤,基于上述直线偏振光的旋转角与上述差分ΔR的关系来决定光学轴的方向以及光学异向性的大小。
7.一种光学异向性参数测量方法,基于照射至试样的测量区域的入射光及其反射光的偏振状态的变化来测量该试样的光学轴的方向与光学异向性的大小,该光学异向性参数测量方法的特征在于包括:
测量光学***,从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述测量区域,并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至受光元件;
该测量光学***在上述激光器与上述半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,在半透半反镜与试样之间配置有:1/2波长板,为了使通过上述偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,从使迟相轴的方向相对于上述1/2波长板的迟相轴偏移±δ的初始位置起,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动,其中,δ≠nπ/4,n是整数,
该光学异向性参数测量方法具备:
第1反射光强度测量步骤,在将上述试样设置于任意方向的状态下,使上述1/4波长板一边从初始位置+δ起与1/2波长板同步地旋转一边测量反射光强度R0(+δ),使上述1/4波长板一边从初始位置-δ起与1/2波长板同步地旋转一边测量反射光强度R0(-δ);
第2反射光强度测量步骤,在使上述试样以入射光的光轴为中心旋转90°的状态下,与上述第1反射光强度测量步骤同样地测量反射光强度R90(+δ)以及R90(-δ);
第1差分算出步骤,基于在上述第1反射光强度测量步骤中所测量的反射光强度R0(+δ)以及R0(-δ)与在第2反射光强度测量步骤中所测量的反射光强度R90(+δ)以及R90(-δ),通过
ΔR=[R0(+δ)-R0(-δ)]-[R90(+δ)-R90(-δ)]
来算出差分ΔR;以及
异向性分析步骤,基于上述直线偏振光的旋转角与上述差分ΔR的关系来决定光学轴的方向以及光学异向性的大小。
8.一种光学异向性参数测量方法,基于照射至试样的测量区域的入射光及其反射光的偏振状态的变化来测量该试样的光学轴的方向与光学异向性的大小,该光学异向性参数测量方法的特征在于包括:
测量光学***,从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述测量区域,并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至受光元件;
该测量光学***在上述激光器与上述半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,在半透半反镜与试样之间配置有:1/2波长板,为了使通过上述偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,从使迟相轴的方向相对于上述1/2波长板的迟相轴偏移±δ的初始位置起,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动,其中,δ≠nπ/4,n是整数,
该光学异向性参数测量方法具备:
第1反射光强度测量步骤,在将上述试样设置于任意方向的状态下,使上述1/4波长板一边从初始位置+δ起与1/2波长板同步地旋转一边测量反射光强度R0(+δ),使上述1/4波长板一边从初始位置-δ起与1/2波长板同步地旋转一边测量反射光强度R0(-δ);
第2反射光强度测量步骤,在使上述试样以入射光的光轴为中心旋转90°的状态下,与上述第1反射光强度测量步骤同样地测量反射光强度R90(+δ)以及R90(-δ);
参照反射光强度测量步骤,替代上述试样设置无光学异向性的参照板,与上述第1反射光强度测量步骤同样地测量参照反射光强度RE(+δ)以及RE(-δ);
第1差分算出步骤,基于在上述第1反射光强度测量步骤中所测量的反射光强度R0(+δ)以及R0(-δ)、参照反射光强度RE(+δ)以及RE(-δ),通过
ΔR0=[R0(+δ)-R0(-δ)]-[RE(+δ)-RE(-δ)]
来算出差分ΔR0
第2差分算出步骤,基于在上述第2反射光强度测量步骤中所测量的反射光强度R90(+δ)以及R90(-δ)、参照反射光强度RE(+δ)以及RE(-δ),通过
ΔR90=[R90(+δ)-R90(-δ)]-[RE(+δ)-RE(-δ)]
来算出差分ΔR90
第3差分算出步骤,基于各上述差分ΔR0以及ΔR90,通过
ΔR=ΔR0-ΔR90
来算出差分ΔR;以及
异向性分析步骤,基于上述直线偏振光的旋转角与上述差分ΔR的关系来决定光学轴的方向以及光学异向性的大小。
9.一种光学异向性参数测量用***,通过电脑来操作测量光学***,基于通过受光元件所检测出的反射光的强度来测量试样的光学轴的方向与光学异向性的大小,该测量光学***形成有光路,该光路是从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述试样的测量区域、并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至上述受光元件,在上述激光器与上述半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,在半透半反镜与试样之间配置有:1/2波长板,为了使通过上述偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,从使迟相轴的方向相对于上述1/2波长板的迟相轴偏移±δ的初始位置起,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动,其中,δ≠nπ/4,n是整数,
该光学异向性参数测量用***具备:
反射光强度测量单元,将上述1/4波长板设定于初始位置+δ,使该1/4波长板一边与1/2波长板同步地旋转驱动一边用上述受光元件来测量反射光强度R(+δ),并且与上述直线偏振光的旋转角关联起来而存储于预先设定的存储区域,将上述1/4波长板设定于初始位置-δ,使该1/4波长板一边与1/2波长板同步地旋转驱动一边用上述受光元件来测量反射光强度R(-δ),并且与上述直线偏振光的旋转角关联起来而存储于预先设定的存储区域;
差分算出单元,基于所存储的反射光强度R(+δ)以及R(-δ),通过
ΔR=R(+δ)-R(-δ)
来算出差分ΔR;以及
异向性分析单元,基于上述直线偏振光的旋转角与上述差分ΔR的关系来决定光学轴的方向以及光学异向性的大小。
10.一种光学异向性参数测量用***,通过电脑来操作测量光学***,基于通过受光元件所检测出的反射光的强度来测量试样的光学轴的方向与光学异向性的大小,该测量光学***形成有光路,该光路是从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述试样的测量区域、并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至上述受光元件,在上述激光器与上述半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,在半透半反镜与试样之间配置有:1/2波长板,为了使通过上述偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,从使迟相轴的方向相对于上述1/2波长板的迟相轴偏移±δ的初始位置起,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动,其中,δ≠nπ/4,n是整数,
该光学异向性参数测量用***具备:
反射光强度测量单元,将上述1/4波长板设定于初始位置+δ,使该1/4波长板一边与1/2波长板同步地旋转驱动一边用上述受光元件来测量反射光强度R(+δ),并且与上述直线偏振光的旋转角关联起来而存储于预先设定的存储区域,将上述1/4波长板设定于初始位置-δ,使该1/4波长板一边与1/2波长板同步地旋转驱动一边用上述受光元件来测量反射光强度R(-δ),并且与上述直线偏振光的旋转角关联起来而存储于预先设定的存储区域;
参照反射光强度测量单元,针对无光学异向性的参照板,与上述反射光强度测量单元同样地测量参照反射光强度RE(+δ)以及RE(-δ);
差分算出单元,基于上述反射光强度R(+δ)以及R(-δ)、上述参照反射光强度RE(+δ)以及RE(-δ),通过
ΔR=[R(+δ)-R(-δ)]-[RE(+δ)-RE(-δ)]
来算出差分ΔR;以及
异向性分析单元,基于上述直线偏振光的旋转角与上述差分ΔR的关系来决定光学轴的方向以及光学异向性的大小。
11.一种光学异向性参数测量用***,通过电脑来操作测量光学***,基于通过受光元件所检测出的反射光的强度来测量试样的光学轴的方向与光学异向性的大小,该测量光学***形成有光路,该光路是从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述试样的测量区域、并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至上述受光元件,在上述激光器与上述半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,在半透半反镜与试样之间配置有:1/2波长板,为了使通过上述偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,从使迟相轴的方向相对于上述1/2波长板的迟相轴偏移±δ的初始位置起,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动,其中,δ≠nπ/4,n是整数,
该光学异向性参数测量用***具备:
第1反射光强度测量单元,针对设置于任意方向的上述试样,使上述1/4波长板一边从初始位置+δ起与1/2波长板同步地旋转一边测量反射光强度R0(+δ),使上述1/4波长板一边从初始位置-δ起与1/2波长板同步地旋转一边测量反射光强度R0(-δ),使各反射光强度与上述直线偏振光的旋转角关联起来而存储于预先设定的存储区域;
第2反射光强度测量单元,在使上述试样以入射光的光轴为中心旋转90°的状态下,与上述第1反射光强度测量单元同样地测量反射光强度R90(+δ)以及R90(-δ),并且使各反射光强度与上述直线偏振光的旋转角关联起来而存储于预先设定的存储区域;
差分算出单元,基于在上述第1反射光强度测量单元中所测量的反射光强度R0(+δ)以及R0(-δ)与在第2反射光强度测量单元中所测量的反射光强度R90(+δ)以及R90(-δ),通过
ΔR=[R0(+δ)-R0(-δ)]-[R90(+δ)-R90(-δ)]
来算出差分ΔR;以及
异向性分析单元,基于上述直线偏振光的旋转角与上述差分ΔR的关系来决定光学轴的方向以及光学异向性的大小。
12.一种光学异向性参数测量用***,通过电脑来操作测量光学***,基于通过受光元件所检测出的反射光的强度来测量试样的光学轴的方向与光学异向性的大小,该测量光学***形成有光路,该光路是从成为光源的激光器经由半透半反镜将入射光朝垂直方向照射于上述试样的测量区域、并且将从该测量区域朝垂直方向反射的反射光经由上述半透半反镜引导至上述受光元件,在上述激光器与上述半透半反镜之间配置偏振器,并且在半透半反镜与受光元件之间配置检光器,在半透半反镜与试样之间配置有:1/2波长板,为了使通过上述偏振器所产生的直线偏振光旋转而被旋转驱动;以及1/4波长板,从使迟相轴的方向相对于上述1/2波长板的迟相轴偏移±δ的初始位置起,以旋转角度相对于该1/2波长板成为2倍的方式同步地被旋转驱动,其中,δ≠nπ/4,n是整数,
该光学异向性参数测量用***具备:
第1反射光强度测量单元,针对设置于任意方向的上述试样,使上述1/4波长板一边从初始位置+δ起与1/2波长板同步旋转一边测量反射光强度R0(+δ),使上述1/4波长板一边从初始位置-δ起与1/2波长板同步旋转一边测量反射光强度R0(-δ),并且使各反射光强度与上述直线偏振光的旋转角关联起来而存储于预先设定的存储区域;
第2反射光强度测量单元,在使上述试样以入射光的光轴为中心旋转90°的状态下,与上述第1反射光强度测量单元同样地测量反射光强度R90(+δ)以及R90(-δ),并且使各反射光强度与上述直线偏振光的旋转角关联起来而存储于预先设定的存储区域;
参照反射光强度测量单元,针对替代上述试样而设置的无光学异向性的参照板,与上述第1反射光强度测量单元同样地测量参照反射光强度RE(+δ)以及RE(-δ),并且使各反射光强度与上述直线偏振光的旋转角关联起来而存储于预先设定的存储区域;
第1差分算出单元,基于在上述第1反射光强度测量单元中所测量的反射光强度R0(+δ)以及R0(-δ)、参照反射光强度RE(+δ)以及RE(-δ),通过
ΔR0=[R0(+δ)-R0(-δ)]-[RE(+δ)-RE(-δ)]
来算出差分ΔR0
第2差分算出单元,基于在上述第2反射光强度测量单元中所测量的反射光强度R90(+δ)以及R90(-δ)、参照反射光强度RE(+δ)以及RE(-δ),通过
ΔR90=[R90(+δ)-R90(-δ)]-[RE(+δ)-RE(-δ)]
来算出差分ΔR90
第3差分算出单元,基于各上述差分ΔR0以及ΔR90,通过
ΔR=ΔR0-ΔR90
来算出差分ΔR;以及
异向性分析单元,基于上述直线偏振光的旋转角与上述差分ΔR的关系来决定光学轴的方向以及光学异向性的大小。
CN201280017649.3A 2011-04-11 2012-04-05 光学异向性参数测量装置、测量方法及测量用*** Expired - Fee Related CN103477206B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-087655 2011-04-11
JP2011087655A JP5806837B2 (ja) 2011-04-11 2011-04-11 光学異方性パラメータ測定装置、測定方法及び測定用プログラム
PCT/JP2012/059314 WO2012141061A2 (ja) 2011-04-11 2012-04-05 光学異方性パラメータ測定装置、測定方法及び測定用プログラム

Publications (2)

Publication Number Publication Date
CN103477206A CN103477206A (zh) 2013-12-25
CN103477206B true CN103477206B (zh) 2015-11-25

Family

ID=47009779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280017649.3A Expired - Fee Related CN103477206B (zh) 2011-04-11 2012-04-05 光学异向性参数测量装置、测量方法及测量用***

Country Status (5)

Country Link
JP (1) JP5806837B2 (zh)
KR (1) KR101594982B1 (zh)
CN (1) CN103477206B (zh)
TW (1) TWI545309B (zh)
WO (1) WO2012141061A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087751B2 (ja) * 2013-07-05 2017-03-01 株式会社モリテックス 光学異方性パラメータ測定装置、測定方法及び測定用プログラム
JP2015143650A (ja) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 旋光計測方法及び旋光計測装置
TWI542864B (zh) * 2014-12-30 2016-07-21 財團法人工業技術研究院 異向性量測系統、異向性量測方法及其校正方法
KR101675694B1 (ko) 2015-09-11 2016-11-23 성균관대학교산학협력단 블록 인기도에 기반한 ssd의 블록 교체방법
JP6940413B2 (ja) * 2015-12-03 2021-09-29 浜松ホトニクス株式会社 検査装置及び検査方法
KR101704936B1 (ko) 2015-12-07 2017-02-09 성균관대학교산학협력단 블록의 우선성에 기반한 ssd의 블록 교체방법 및 이를 적용하는 하이브리드 저장 시스템
CN105675541B (zh) * 2016-01-13 2018-10-26 中国科学院苏州生物医学工程技术研究所 一种具有轴向高分辨率的反射式共聚焦***
JP2018187143A (ja) * 2017-05-09 2018-11-29 ソニー株式会社 光学定数測定装置及び光学定数測定方法
EP3633351B1 (en) * 2017-05-23 2023-03-29 Hamamatsu Photonics K.K. Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device
KR102366788B1 (ko) 2017-05-23 2022-02-23 하마마츠 포토닉스 가부시키가이샤 배향 특성 측정 방법, 배향 특성 측정 프로그램, 및 배향 특성 측정 장치
CN109141828B (zh) * 2018-07-19 2020-08-28 中国科学院上海光学精密机械研究所 液晶器件相位调控特性测量装置和测量方法
KR102486442B1 (ko) * 2019-06-07 2023-01-09 주식회사 엘지화학 편광판의 액정얼룩 검사장치 및 편광판의 액정얼룩 검사방법
KR20200129033A (ko) * 2020-03-03 2020-11-17 주식회사 코엠에스 반도체 기판 보호필름 박리 여부 감시 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304645A (ja) * 1998-04-24 1999-11-05 Nec Corp 異方性薄膜評価方法および評価装置
CN1847816A (zh) * 2005-01-24 2006-10-18 株式会社茉莉特斯 光学各向异性参数测定方法及测定装置
CN101055207A (zh) * 2007-06-01 2007-10-17 清华大学 可溯源测量任意波片位相延迟的方法和装置
CN101153965A (zh) * 2006-09-25 2008-04-02 株式会社茉莉特斯 光学各向异性参数测定装置
CN101666926A (zh) * 2008-09-02 2010-03-10 株式会社茉莉特斯 光学各向异性参数测定方法及测定装置
CN101963495A (zh) * 2009-07-24 2011-02-02 瀚宇彩晶股份有限公司 测量各向异性物质的物理参数的装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610837B2 (ja) * 1998-09-18 2005-01-19 株式会社日立製作所 試料表面の観察方法及びその装置並びに欠陥検査方法及びその装置
JP2001083042A (ja) * 1999-09-13 2001-03-30 Nec Corp 光学的異方性の測定方法、測定装置及び測定方法を記録した記録媒体
JP3535786B2 (ja) * 1999-12-03 2004-06-07 Necエレクトロニクス株式会社 液晶表示素子評価法及び評価装置
JP2004294293A (ja) * 2003-03-27 2004-10-21 Neoark Corp 複数の異なる試料の光学特性を一括して観察・測定する方法
JP4663529B2 (ja) * 2005-01-24 2011-04-06 株式会社モリテックス 光学的異方性パラメータ測定方法及び測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304645A (ja) * 1998-04-24 1999-11-05 Nec Corp 異方性薄膜評価方法および評価装置
CN1847816A (zh) * 2005-01-24 2006-10-18 株式会社茉莉特斯 光学各向异性参数测定方法及测定装置
CN101153965A (zh) * 2006-09-25 2008-04-02 株式会社茉莉特斯 光学各向异性参数测定装置
CN101055207A (zh) * 2007-06-01 2007-10-17 清华大学 可溯源测量任意波片位相延迟的方法和装置
CN101666926A (zh) * 2008-09-02 2010-03-10 株式会社茉莉特斯 光学各向异性参数测定方法及测定装置
CN101963495A (zh) * 2009-07-24 2011-02-02 瀚宇彩晶股份有限公司 测量各向异性物质的物理参数的装置及方法

Also Published As

Publication number Publication date
WO2012141061A3 (ja) 2012-12-06
JP2012220381A (ja) 2012-11-12
JP5806837B2 (ja) 2015-11-10
TW201250228A (en) 2012-12-16
KR101594982B1 (ko) 2016-02-17
WO2012141061A2 (ja) 2012-10-18
KR20140011346A (ko) 2014-01-28
TWI545309B (zh) 2016-08-11
CN103477206A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
CN103477206B (zh) 光学异向性参数测量装置、测量方法及测量用***
US8009292B2 (en) Single polarizer focused-beam ellipsometer
CN107076663B (zh) 双折射测定装置及方法、膜检查装置及方法
CN101153965B (zh) 光学各向异性参数测定装置
CN110687051B (zh) 一种检测设备及方法
CN102589428B (zh) 基于非对称入射的样品轴向位置跟踪校正的方法和装置
CN113777049B (zh) 一种角分辨快照椭偏仪及其测量***与方法
CN104165582A (zh) 一种基于反射光栅的相移点衍射干涉检测装置及检测方法
CN102183221A (zh) 显微***光轴垂直度的测量方法
JP3507319B2 (ja) 光学的特性測定装置
CN115561220A (zh) 一种光散射角分辨检测分析***
CN110530821B (zh) 一种光学材料折射率的测量装置及其测量方法
US20160163077A1 (en) Refractometer
CN216771491U (zh) 一种偏振分辨二次谐波测试装置
CN205374277U (zh) 一种可变角度的光学元件表面吸收特性测量装置
CN109855737A (zh) 偏振态测量装置和测量方法
CN112540044A (zh) 一种椭圆偏振测量设备及其聚焦方法和测量方法
CN109187368A (zh) 一种基于多通道测量的液晶偏振特性实时检测***及方法
CN215727693U (zh) 一种偏振光反射率测量装置
CN220490702U (zh) 一种基于光散射技术的晶体体缺陷三维检测装置
CN116045835B (zh) 一种超大口径平面或球面光学干涉测试装置
CN217465704U (zh) 一种基于白光干涉的微纳光纤直径检测装置
TWI818047B (zh) 檢測設備及其檢測方法
RU2497165C1 (ru) Автоколлимационное теневое устройство
CN114441454A (zh) 一种偏振分辨二次谐波测试装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Saitama Prefecture, Japan

Patentee after: Moritex Co. Ltd.

Address before: Saitama Prefecture, Japan

Patentee before: Moritex Corp.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20190405