CN103451773A - 铁酸铋纳米纤维材料及其制备方法 - Google Patents

铁酸铋纳米纤维材料及其制备方法 Download PDF

Info

Publication number
CN103451773A
CN103451773A CN2012101677072A CN201210167707A CN103451773A CN 103451773 A CN103451773 A CN 103451773A CN 2012101677072 A CN2012101677072 A CN 2012101677072A CN 201210167707 A CN201210167707 A CN 201210167707A CN 103451773 A CN103451773 A CN 103451773A
Authority
CN
China
Prior art keywords
bismuth
bismuth ferrite
hydrate
fiber
nano fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101677072A
Other languages
English (en)
Other versions
CN103451773B (zh
Inventor
林元华
刘海洋
郑斌
南策文
沈洋
杨小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201210167707.2A priority Critical patent/CN103451773B/zh
Publication of CN103451773A publication Critical patent/CN103451773A/zh
Application granted granted Critical
Publication of CN103451773B publication Critical patent/CN103451773B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种铁酸铋纳米纤维及其制备方法。该铁酸铋纳米纤维的制备方法,包括下述步骤:1)以硝酸铋或其水合物、以及硝酸铁或其水合物为原料,将二者溶解于溶剂中,加入络合剂,搅拌获得溶胶,然后在铁酸铋溶胶中加入聚合物作为助纺剂,搅拌均匀得到前驱体溶液;2)前驱体溶液进行静电纺丝获得铁酸铋前躯体的纤维;3)铁酸铋前躯体的纤维进行热处理去除聚合物,得到铁酸铋纳米纤维。本方法制得的BiFeO3纳米纤维,纤维的晶粒沿轴向排列,形成类竹节结构。具有禁带宽度小(2.1~~2.3eV),对可见光的利用率高,比表面积大,存在的晶界与晶面较少,可以有效提高光生载流子的分离和降低光生电子和空穴的复合率,量子效率较高,表现出比纳米粒子更优异的光催化性能。

Description

铁酸铋纳米纤维材料及其制备方法
技术领域
本发明涉及一种铁酸铋纳米纤维材料及其制备方法。
背景技术
伴随世界范围内的能源危机和环境恶化问题的出现,能源与环境是21世纪人类面临和亟需解决的两个重要挑战。国家十二五规划纲要中指出,要加快建设资源节约型、环境友好型社会,提高生态文明水平。因此,探索、研究开发利用新能源资源是一项迫切与紧要的课题。如何利用自然界最清洁丰富的能源——太阳能,引起了众多的物理,化学,材料,环境领域研究工作者的关注。与光催化相关的研究应运而生并发展迅猛,每年都有数千篇研究论文发表,包括基于利用太阳光的能源转化和利用、环境净化、光化学合成以及太阳能电池等多个领域,尤其是集中在太阳能化学转化与环境友好光催化领域。同时,半导体光催化技术在污水处理、净化空气、消毒杀菌、自清洁技术等各个方面都取得了广泛的应用。
1972年发现了TiO2电极上水的光解现象,拉开了研究光催化现象和光催化材料的序幕。目前半导体光催化材料(如TiO2)还存在以下主要问题:一是半导体的光吸收波长范围主要集中在紫外及近紫外区,太阳光能利用率低;二是光生电子与空穴的复合率非常高,以致量子效率低。近十年来,一些研究者致力于往TiO2掺杂N、P、S等元素,调整TiO2的带隙结构,或者构造TiO2和其他半导体(如Pd、NiO、WO3等)组成的异质结,来获得更好的光敏特性;另一些研究者致力于开发新型并且效率更高的光催化材料,主要是复杂的金属氧化物,如含有In3+、Ga3+、Sb5+、Bi5+和Ag+的铌酸盐、钒酸盐、钽酸盐和锗酸盐等,BiFeO3光催化材料也是其中之一。考虑到纳米结构具有很大的比表面积、丰富的表面形态和容易器件化,很好地符合了光催化剂的特性,因此目前制备的BiFeO3光催化材料都是纳米颗粒型催化剂。
发明内容
本发明的目的是提供一种铁酸铋纳米纤维及其制备方法与应用。
本发明所提供的铁酸铋纳米纤维的制备方法,包括下述步骤:
1)以硝酸铋或其水合物、以及硝酸铁或其水合物为原料,将二者溶解于溶剂中,加入络合剂,搅拌均匀,获得含硝酸铋和硝酸铁的溶胶,然后在含硝酸铋和硝酸铁的溶胶中加入聚合物作为助纺剂,搅拌均匀,得到前驱体溶液;
2)将步骤1)获得的前驱体溶液进行静电纺丝获得铁酸铋前躯体的纤维;
3)将步骤2)获得的铁酸铋前躯体的纤维进行热处理去除聚合物,得到铁酸铋纳米纤维。
所述步骤1)中所述前驱体溶液中铁离子浓度为0.2-0.4mol/L。
所述步骤1)中,所述聚合物选自聚乙烯吡咯烷酮、聚丙烯腈、聚乙烯醇、聚乙烯醇缩甲醛和聚膦腈中的一种或两种以上任意组合;所述溶剂选自N,N-二甲基甲酰胺、二甲基乙酰胺、二甲亚砜、四氢呋喃和三氯甲烷中的一种或两种以上任意组合;所述步骤1)中,所述聚合物选自聚乙烯吡咯烷酮和聚乙烯醇中的一种或两种以上任意组合;所述溶剂选自N,N-二甲基甲酰胺和四氢呋喃中的一种或两种组合。
所述步骤1)中,所述络合剂为柠檬酸或其水合物。
所述步骤1)中,所述硝酸铋或其水合物与硝酸铁或其水合物的摩尔比1.03~1.1∶1;优选为1.05∶1;所述硝酸铋或其水合物在其溶于溶剂后的获得的溶液中的摩尔浓度为0.1~1.0mol/L;所述硝酸铁或其水合物在其溶于溶剂后的获得的溶液中的摩尔浓度为0.1~1.0mol/L;所述络合剂添加的终浓度为0.3~3.0mol/L。
由于在热处理的过程中,铋元素较为容易挥发,若铋离子∶铁离子的加料为1∶1,热处理后容易造成实际上铋离子量少于铁离子,因此需要进行适量的铋元素补充。
所述步骤1)中,所述聚合物的终质量百分比浓度为4~8%;所述添加络合物后搅拌的时间为1小时以上,获得含硝酸铋和硝酸铁的溶胶;所述加入聚合物的步骤后搅拌的时间为1小时以上;所述步骤1)中还包括将所述加入聚合物搅拌均匀后的液体静置24-48小时的步骤,优选静置24小时。
所述步骤2)中,所述静电纺丝用注射器针头内径为0.5~1.0mm,施加的静电电压为10~20KV,纺丝液的流量为0.5~1.0ml/h,接收距离为10~20cm,接收滚筒在转动中的外径线速度为3~8m/s。
所述步骤3)中,所述的热处理的步骤为先升温到180-220℃,保温1-2小时,再升温到380-420℃,保温1-2小时,再升温至600-800℃保温2-4小时;然后以降温速率为1~10℃/min降至室温(20-25℃)。所述的热处理的步骤优选为先升温到200℃,保温一个小时,再升温到400℃,保温1h,再升温至600-800℃保温两个小时,然后以降温速率为1~10℃/min降至室温(20-25℃);所述升温速率为1-5℃/min,优选为5℃/min。
本发明所提供的铁酸铋纳米纤维可以为上述方法制备的铁酸铋纳米纤维。该铁酸铋纳米纤维直径为70~350nm。
本发明首先采用溶胶凝胶--电纺丝工艺制得直径较均匀的BiFeO3/PVP复合纳米纤维结构。在此基础上,采用热处理工艺,将有机物除去,得到直径分布较均匀(的BiFeO3纳米纤维。改变前驱体溶胶的铋离子和铁离子浓度,可以控制BiFeO3纳米纤维直径在100nm到300nm之间,改变了BiFeO3纳米纤维禁带宽度,在某种程度上调制了其光催化活性。
本发明的铁酸铋纳米纤维具有优异的光催化性,可以作为光催化材料中的应用。通过本发明方法制得的BiFeO3纳米纤维,纤维的晶粒沿轴向排列,形成类竹节结构。该直径100nm到300nm之间纳米纤维具有禁带宽度小(2.1~2.3eV)(图6),对可见光的利用率高,比表面积大,存在的晶界与晶面较少(图2、图4),可以有效提高光生载流子的分离和降低光生电子和空穴的复合率,量子效率较高,表现出比纳米粒子更优异的光催化性能。
实验证明,100nm直径的纤维在3h内可以降解75%的有机物,这种300nm直径的纳米纤维在3h内能降解50%以上的目标降解物,显示了其优异的可见光光催化活性。这些纳米纤维是一类具有广阔应用前景的新型光催化材料。
附图说明
图1为实施例1中产物XRD图。
图2为实施例1中产物的SEM照片。
图3为实施例1中产物的光催化活性。
图4为实施例2中产物的SEM照片。
图5为实施例2中产物的光催化活性。
图6为实施例1(图中D-100nm)和实施例2(图中D-300nm)制备的的铁酸铋纳米纤维的紫外可见吸收光谱图。
具体实施方式
下述实施例中的实验方法,如无特别说明,均为常规方法。
下述实施例中的百分含量,如无特别说明,均为质量百分含量。
实施例1、BiFeO3纳米纤维材料的制备及其光催化活性检测
一、BiFeO3纳米纤维材料的制备
1、将五水硝酸铋(Bi(NO3)3·5H2O)与九水硝酸铁(Fe(NO3)3·9H2O)按照摩尔比为1.05∶1的比例(即五水硝酸铋4.2mmol或2.453克,九水硝酸铁4.0mmol或1.616克),加入到20ml N,N-二甲基甲酰胺(DMF,N,N-dimethylformamide)中,室温下搅拌约半个小时至完全溶解,溶液呈无色透明,接着加入12.0mmol(2.522g)柠檬酸(C6H8O7·H2O),搅拌1.5小时后得到黄色透明的含硝酸铁和硝酸铋的溶胶。然后加入2.076克聚乙烯吡咯烷酮(PVP,M=1300000)使其终质量百分浓度为8%,搅拌2小时充分混匀,然后静置24h得到铁离子浓度为0.2mol/L均匀粘稠的前驱体溶液。
2、将上述前驱体溶液转至10ml的注射器中,纺丝标准采用5号标准注射器针头(针头为金属针头,针头附近接高压装置的其中一极,针头内径为0.5mm),接收器为圆柱形滚筒,直径为10cm,横置宽度为15cm,接收器接高压装置的另外一极,铝箔包覆接收器的滚筒外)纺丝电压10kV,纺丝液的流量为0.5ml/h,接收距离10cm,接收滚筒在转动中的外径线速度为3m/s。经过4h-8h的收集,在铝箔上获得略带黄色的BiFeO3/PVP复合纳米纤维。
3、将步骤2获得的BiFeO3/PVP复合纳米纤维采用5℃/min的升温速率,从室温20-25℃开始,升温到200℃,保温1h,再按同一升温速率加热到400℃,保温1h,再升温至600℃保温2h,然后以降温速率为1~10℃/min降温至室温(即在室温(20-25℃)下自然降温),得到黄色的BiFeO3纳米纤维黄褐色的粉末状。如图1所示,其X射线衍射分析(XRD)测试结果表明,物相为钙钛矿BiFeO3结构。图2为上述制备的BiFeO3纳米纤维的SEM图,纤维呈现竹节似结构,纤维直径为100±30nm。纤维长度在20-800μm之间。图6为铁酸铋纳米纤维的紫外可见吸收光谱图(图中D-100nm),结果表明其禁带宽度为2.23eV。
二、BiFeO3纳米纤维材料的光催化活性检测
实验使用500W的高压氙灯作为光源。为了测量样品在可见光下的光催化效率,采用截止波长为400nm的滤光片滤掉紫外光。光催化实验采用50ml浓度为20mg/L的刚果红溶液作为目标降解物,催化剂为步骤一制备的BiFeO3纳米纤维材料,催化剂浓度为2g/L,以未加催化剂处理作为空白对照,反应过程中,刚果红和催化剂的体系置于冰水混合物的环境中,以保证体系的散热,同时保持搅拌,使刚果红在催化剂上解吸附平衡。每隔一段特定的时间,将体系溶液取出,离心,铁酸铋纳米纤维催化剂沉底,取上清液进行紫外分光光度计测试,以确定目标降解物的浓度。测试完毕后,把上清液与催化剂混合,倒回原烧杯中,继续进行光催化的过程,直到得到5~7个数据点,结果如图3所示,图3显示了其可见光光催化活性,3h内能降解75%的目标产物。
实施例2、BiFeO3纳米纤维材料的制备及其光催化活性检测
一、BiFeO3纳米纤维材料的制备
1、将五水硝酸铋(Bi(NO3)3·5H2O)与九水硝酸铁(Fe(NO3)3·9H2O)按照摩尔比1.05∶1的比例(即五水硝酸铋8.4mol或2.453克,九水硝酸铁8.0mol或3.232克),加入到20ml四氢呋喃(THF)中,室温下搅拌约半个小时至完全溶解,溶液呈无色透明,接着加入24.0mmol(5.043g)柠檬酸(C6H8O7·H2O),搅拌1.5小时后得到黄色透明的的含硝酸铁和硝酸铋的溶胶。然后加入1.966克聚乙烯醇(PEG,M=66000~83600)使其终质量百分浓度为4%,搅拌5h充分混匀后,静置24h得到浓度为0.4mol/L均匀粘稠的前驱体溶液。
2、将上述前驱体溶液转至10ml注射器中,纺丝标准采用7号标准注射器针头(针头为金属针头,针头附近接高压装置的其中一极,针头内径为1.0mm),接收器为接收器为圆柱形滚筒,直径为10cm,横置宽度为15cm,滚筒上包覆着一层铝箔,用来接收纺丝得到的纤维,接收器接高压装置的另外一极)纺丝电压20kV,纺丝液的流量为1.0ml/h,接收距离20cm,接收滚筒在转动中的外径线速度为8m/s。经过4h-8h的收集,在铝箔上获得略带黄色的BiFeO3/PVP复合纳米纤维。
3、将步骤2获得的BiFeO3/PVP复合纳米纤维采用5℃/min的升温速率从室温20-25℃开始,升温到200℃,保温一个小时,再按同一升温速率加热到400℃,保温1h,再升温至800℃保温两个小时,然后以降温速率为1~10℃/min降温至室温(20℃)(即在室温自然降温),得到黄色的BiFeO3纳米纤维黄褐色的粉末状。其X射线衍射分析(XRD)测试结果表明,物相为钙钛矿BiFeO3结构。图4为述制备的BiFeO3纳米纤维的的SEM图,纤维直径为300±50nm。纤维长度在20-800μm之间。图6为铁酸铋纳米纤维的紫外可见吸收光谱图(图中D-300nm),结果表明其禁带宽度为2.16eV。
二、BiFeO3纳米纤维材料的光催化活性检测
按照实施例一中的步骤二的方法检测步骤一制备的BiFeO3纳米纤维材料的光催化活性,结果如图5所示,图5显示了其可见光光催化活性,3h内能降解50%的目标产物。

Claims (11)

1.铁酸铋纳米纤维的制备方法,包括下述步骤:
1)以硝酸铋或其水合物、以及硝酸铁或其水合物为原料,将二者溶解于溶剂中,加入络合剂,搅拌均匀,获得含硝酸铋和硝酸铁的溶胶,然后在含硝酸铋和硝酸铁的溶胶中加入聚合物作为助纺剂,搅拌均匀,得到前驱体溶液;
2)将步骤1)获得的前驱体溶液进行静电纺丝获得铁酸铋前躯体的纤维;
3)将步骤2)获得的铁酸铋前躯体的纤维进行热处理去除聚合物,得到铁酸铋纳米纤维。
2.根据权利要求1所述的方法,其特征在于:所述步骤1)中所述前驱体溶液中铁离子浓度为0.2-0.4mol/L。
3.根据权利要求1或2所述的方法,其特征在于:所述步骤1)中,所述聚合物选自聚乙烯吡咯烷酮、聚丙烯腈、聚乙烯醇、聚乙烯醇缩甲醛和聚膦腈中的一种或两种以上任意组合;所述溶剂选自N,N-二甲基甲酰胺、二甲基乙酰胺、二甲亚砜、四氢呋喃和三氯甲烷中的一种或两种以上任意组合;所述聚合物优选选自聚乙烯吡咯烷酮和聚乙烯醇一种或两种组合;所述溶剂优选选自N,N-二甲基甲酰胺和四氢呋喃中的一种或两种组合。
4.根据权利要求1-3中任意一项所述的方法,其特征在于:所述步骤1)中,所述络合剂为柠檬酸或其水合物。
5.根据权利要求1-4中任意一项所述的方法,其特征在于:所述步骤1)中,所述硝酸铋或其水合物与硝酸铁或其水合物的摩尔比1.03~1.1∶1;优选为1.05∶1;所述硝酸铋或其水合物在其溶于溶剂后的获得的溶液中的摩尔浓度为0.1~1.0mol/L;所述硝酸铁或其水合物在其溶于溶剂后的获得的溶液中的摩尔浓度为0.1~1.0mol/L;所述络合剂添加的终浓度为0.3~3.0mol/L。
6.根据权利要求1-5中任意一项所述的方法,其特征在于:所述步骤1)中,所述聚合物的终质量百分比浓度为4~8%;所述添加络合物后搅拌的时间为1小时以上,获得含硝酸铋和硝酸铁的溶胶;所述加入聚合物的步骤后搅拌的时间为1小时以上;所述步骤1)中还包括将所述加入聚合物搅拌均匀后的液体静置24-48小时的步骤,优选静置24小时。
7.根据权利要求1-6中任意一项所述的方法,其特征在于:所述步骤2)中,所述静电纺丝用注射器针头内径为0.5~1.0mm,施加的静电电压为10~20KV,纺丝液的流量为0.5~1.0ml/h,接收距离为10~20cm,接收滚筒在转动中的外径线速度为3~8m/s。
8.根据权利要求1-7中任意一项所述的方法,其特征在于:所述步骤3)中,所述的热处理的步骤为先升温到180-220℃,保温1-2小时,再升温到380-420℃,保温1-2小时,再升温至600-800℃保温2-4小时;所述的热处理的步骤优选为先升温到200℃,保温一个小时,再升温到400℃,保温1h,再升温至600-800℃保温两个小时;所述升温速率为1~5℃/min。
9.权利要求1-8所述的方法制备的铁酸铋纳米纤维。
10.根据权利要求9所述的,其特征在于:所述铁酸铋纳米纤维直径为70~350nm。
11.权利要求9或10所述的铁酸铋纳米纤维在作为光催化材料中的应用。
CN201210167707.2A 2012-05-28 2012-05-28 铁酸铋纳米纤维材料及其制备方法 Expired - Fee Related CN103451773B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210167707.2A CN103451773B (zh) 2012-05-28 2012-05-28 铁酸铋纳米纤维材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210167707.2A CN103451773B (zh) 2012-05-28 2012-05-28 铁酸铋纳米纤维材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103451773A true CN103451773A (zh) 2013-12-18
CN103451773B CN103451773B (zh) 2016-01-06

Family

ID=49734591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210167707.2A Expired - Fee Related CN103451773B (zh) 2012-05-28 2012-05-28 铁酸铋纳米纤维材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103451773B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104386757A (zh) * 2014-10-21 2015-03-04 天津师范大学 铁酸铋一维纳米管及其制备方法与应用
CN105019054A (zh) * 2015-07-01 2015-11-04 宁波工程学院 TiO2中空全介孔纳米纤维
CN105386158A (zh) * 2015-11-03 2016-03-09 浙江大学 一种多孔中空的铁酸铋纳米纤维的制备方法
CN106811832A (zh) * 2017-02-16 2017-06-09 济南大学 一种珠帘状BiFeO3微纳米纤维的制备方法及所得产品
CN106830092A (zh) * 2017-01-23 2017-06-13 重庆市畜牧科学院 一种具有一维纳米纤维结构的钼酸铁/钨酸铁的制备方法及产品和应用
CN108691034A (zh) * 2018-06-07 2018-10-23 上海海事大学 一种钡铁氧体中空纤维吸波粉体及其制备方法
CN109158106A (zh) * 2018-09-30 2019-01-08 西安工程大学 自支撑金属氧化物纳米纤维催化净化材料及其制备方法
CN110540430A (zh) * 2019-08-12 2019-12-06 西安理工大学 一种具有多级结构的压电光催化复合纤维的制备方法
CN111036223A (zh) * 2019-12-19 2020-04-21 江南大学 一种Bi2O3/BiFeO3纳米纤维复合光催化剂及其制备方法
CN111554523A (zh) * 2020-05-18 2020-08-18 江苏理工学院 一种BiFeO3-MoO2复合材料及其制备方法和应用
CN111690220A (zh) * 2020-06-22 2020-09-22 中国科学技术大学 一种多功能多铁陶瓷聚合物复合材料以及应用
CN111939770A (zh) * 2020-08-03 2020-11-17 浙江大学 一种吸附气态碘的铋基功能材料及其制备方法和应用
CN112226849A (zh) * 2020-09-18 2021-01-15 西安工程大学 一种含有二氧化铈/钨酸铋复合光触媒纤维及其制备方法
CN112569955A (zh) * 2020-12-09 2021-03-30 江南大学 一种降解有机染料废水的CeO2/BiFeO3纳米纤维光催化剂及制备方法
CN112871213A (zh) * 2020-06-30 2021-06-01 深圳大学 铁酸铋复合光催化材料及其制备方法
CN113617359A (zh) * 2021-08-16 2021-11-09 大连工业大学 一种铁酸铋纤维状热释电催化剂的制备方法及应用
CN113686834A (zh) * 2021-09-22 2021-11-23 暨南大学 综合热释电和等离激元共振效应sers基底的制备方法
CN113717589A (zh) * 2021-09-09 2021-11-30 徐州特之达包装科技有限公司 一种防水自清洁的纤维涂层及其制备方法
CN114808194A (zh) * 2022-04-06 2022-07-29 山东大学 一种单相铁酸铋陶瓷纤维的制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830514A (zh) * 2010-03-23 2010-09-15 武汉理工大学 无模板水热合成一维纳米Bi2Fe4O9的方法
CN102173458A (zh) * 2011-01-20 2011-09-07 西北工业大学 铁酸铋纳米粉体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830514A (zh) * 2010-03-23 2010-09-15 武汉理工大学 无模板水热合成一维纳米Bi2Fe4O9的方法
CN102173458A (zh) * 2011-01-20 2011-09-07 西北工业大学 铁酸铋纳米粉体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MANOJ KUMAR ET AL.: ""Large magnetization and weak polarization in sol–gel derived BiFeO3 ceramics"", 《MATERIALS LETTERS》 *
S. H. XIE ET AL.: ""Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning"", 《APPLIED PHYSICS LETTERS》 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104386757A (zh) * 2014-10-21 2015-03-04 天津师范大学 铁酸铋一维纳米管及其制备方法与应用
CN105019054A (zh) * 2015-07-01 2015-11-04 宁波工程学院 TiO2中空全介孔纳米纤维
CN105019054B (zh) * 2015-07-01 2018-07-10 宁波工程学院 TiO2中空全介孔纳米纤维
CN105386158A (zh) * 2015-11-03 2016-03-09 浙江大学 一种多孔中空的铁酸铋纳米纤维的制备方法
CN106830092A (zh) * 2017-01-23 2017-06-13 重庆市畜牧科学院 一种具有一维纳米纤维结构的钼酸铁/钨酸铁的制备方法及产品和应用
CN106830092B (zh) * 2017-01-23 2019-03-08 重庆市畜牧科学院 一种具有一维纳米纤维结构的钼酸铁/钨酸铁的制备方法及产品和应用
CN106811832A (zh) * 2017-02-16 2017-06-09 济南大学 一种珠帘状BiFeO3微纳米纤维的制备方法及所得产品
CN106811832B (zh) * 2017-02-16 2019-10-25 济南大学 一种珠帘状BiFeO3微纳米纤维的制备方法及所得产品
CN108691034A (zh) * 2018-06-07 2018-10-23 上海海事大学 一种钡铁氧体中空纤维吸波粉体及其制备方法
CN109158106A (zh) * 2018-09-30 2019-01-08 西安工程大学 自支撑金属氧化物纳米纤维催化净化材料及其制备方法
CN109158106B (zh) * 2018-09-30 2021-03-30 西安工程大学 自支撑金属氧化物纳米纤维催化净化材料及其制备方法
CN110540430A (zh) * 2019-08-12 2019-12-06 西安理工大学 一种具有多级结构的压电光催化复合纤维的制备方法
CN110540430B (zh) * 2019-08-12 2021-10-22 西安理工大学 一种具有多级结构的压电光催化复合纤维的制备方法
CN111036223A (zh) * 2019-12-19 2020-04-21 江南大学 一种Bi2O3/BiFeO3纳米纤维复合光催化剂及其制备方法
CN111036223B (zh) * 2019-12-19 2022-10-11 江南大学 一种Bi2O3/BiFeO3纳米纤维复合光催化剂及其制备方法
CN111554523A (zh) * 2020-05-18 2020-08-18 江苏理工学院 一种BiFeO3-MoO2复合材料及其制备方法和应用
CN111554523B (zh) * 2020-05-18 2021-11-30 江苏理工学院 一种BiFeO3-MoO2复合材料及其制备方法和应用
CN111690220A (zh) * 2020-06-22 2020-09-22 中国科学技术大学 一种多功能多铁陶瓷聚合物复合材料以及应用
CN111690220B (zh) * 2020-06-22 2021-08-13 中国科学技术大学 一种多功能多铁陶瓷聚合物复合材料以及应用
CN112871213A (zh) * 2020-06-30 2021-06-01 深圳大学 铁酸铋复合光催化材料及其制备方法
CN111939770A (zh) * 2020-08-03 2020-11-17 浙江大学 一种吸附气态碘的铋基功能材料及其制备方法和应用
CN112226849A (zh) * 2020-09-18 2021-01-15 西安工程大学 一种含有二氧化铈/钨酸铋复合光触媒纤维及其制备方法
CN112226849B (zh) * 2020-09-18 2023-01-17 西安工程大学 一种含有二氧化铈/钨酸铋复合光触媒纤维及其制备方法
CN112569955A (zh) * 2020-12-09 2021-03-30 江南大学 一种降解有机染料废水的CeO2/BiFeO3纳米纤维光催化剂及制备方法
CN112569955B (zh) * 2020-12-09 2022-05-17 江南大学 一种降解有机染料废水的CeO2/BiFeO3纳米纤维光催化剂及制备方法
CN113617359A (zh) * 2021-08-16 2021-11-09 大连工业大学 一种铁酸铋纤维状热释电催化剂的制备方法及应用
CN113717589A (zh) * 2021-09-09 2021-11-30 徐州特之达包装科技有限公司 一种防水自清洁的纤维涂层及其制备方法
CN113686834A (zh) * 2021-09-22 2021-11-23 暨南大学 综合热释电和等离激元共振效应sers基底的制备方法
CN114808194A (zh) * 2022-04-06 2022-07-29 山东大学 一种单相铁酸铋陶瓷纤维的制备方法及应用

Also Published As

Publication number Publication date
CN103451773B (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
CN103451773B (zh) 铁酸铋纳米纤维材料及其制备方法
Zhang et al. Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity
Liu et al. In-situ fabrication of 3D hierarchical flower-like β-Bi2O3@ CoO Z-scheme heterojunction for visible-driven simultaneous degradation of multi-pollutants
CN103785434B (zh) 一种g-C3N4纳米片/CdS复合可见光催化剂
Xu et al. Electrospun TiO2‐based photocatalysts
Xie et al. Construction of up-converting fluorescent carbon quantum dots/Bi20TiO32 composites with enhanced photocatalytic properties under visible light
Yin et al. In-situ preparation of MIL-125 (Ti)/Bi2WO6 photocatalyst with accelerating charge carriers for the photodegradation of tetracycline hydrochloride
CN103877966B (zh) 一种异质结构光催化剂的制备方法
CN103184685B (zh) 基于二氧化钛/氧化镁核壳纳米棒的光催化功能织物的制备方法
CN102941103A (zh) 一种用于光催化领域的铁酸铋-石墨烯复合材料及其制备方法
CN103433060A (zh) 核-壳型TiO2/ZnIn2S4复合光催化剂及其制备方法与应用
CN105396606A (zh) 一种氧化铈/石墨烯量子点/类石墨烯相氮化碳复合光催化材料及其制备方法
Yang et al. Electrospun ZnO/Bi 2 O 3 nanofibers with enhanced photocatalytic activity
CN103028406A (zh) 一种纳米Cu2O复合TiO2电纺纤维光催化剂的制备方法
Harish et al. Functional properties and enhanced visible light photocatalytic performance of V3O4 nanostructures decorated ZnO nanorods
CN106390986A (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
CN104815684A (zh) 一种Ta3N5/Bi2MoO6异质结纤维光催化剂及其制备方法
CN111705419A (zh) 一种负载金属掺杂氮化碳的石墨烯基柔性无纺布及其制备方法和应用
CN104826643A (zh) 一种Ta3N5/CdS异质结纤维光催化剂及其制备方法
Bao et al. Constructing 2D layered PCN/Ti3C2/Bi2MoO6 heterojunction with MXene as charge mediator for enhanced photocatalytic performance
Xue et al. Preparation of a Bi4O5I2/Bi2O2CO3 pn heterojunction with enhanced photocatalytic degradation performance by a one-pot solvothermal method
Li et al. Electrospinning synthesis and photocatalytic property of CaFe2O4/MgFe2O4 heterostructure for degradation of tetracycline
CN109759122A (zh) 一种溴氧化铋三元异质结构光催化剂及其制备方法和应用
CN104923277A (zh) 一种Ta3N5/Bi2WO6异质结纤维光催化剂及其制备方法
CN113289669A (zh) 一种串珠状的碳纳米纤维负载氧化钛光催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160106