CN103426484A - 一种防止反应堆堆内熔融物熔损压力容器的方法以及用于实施这种方法的*** - Google Patents

一种防止反应堆堆内熔融物熔损压力容器的方法以及用于实施这种方法的*** Download PDF

Info

Publication number
CN103426484A
CN103426484A CN2012101654333A CN201210165433A CN103426484A CN 103426484 A CN103426484 A CN 103426484A CN 2012101654333 A CN2012101654333 A CN 2012101654333A CN 201210165433 A CN201210165433 A CN 201210165433A CN 103426484 A CN103426484 A CN 103426484A
Authority
CN
China
Prior art keywords
irvr
reactor
pressure vessel
injects
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101654333A
Other languages
English (en)
Inventor
赵瑞昌
刘志弢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL NUCLEAR POWER TECHNOLOGY Co Ltd
Original Assignee
NATIONAL NUCLEAR POWER TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL NUCLEAR POWER TECHNOLOGY Co Ltd filed Critical NATIONAL NUCLEAR POWER TECHNOLOGY Co Ltd
Priority to CN2012101654333A priority Critical patent/CN103426484A/zh
Publication of CN103426484A publication Critical patent/CN103426484A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

本发明涉及一种防止反应堆堆内熔融物熔损压力容器的方法,该方法包括:当监测到堆芯出口温度升高至650℃时,启动反应堆容器内注入IRVR***,向压力容器内注入冷却剂。本发明还涉及用于实施本发明的方法的反应堆容器内注入IRVR***。

Description

一种防止反应堆堆内熔融物熔损压力容器的方法以及用于实施这种方法的***
技术领域
本发明涉及核安全技术领域,更特别地涉及在核电站发生重大事故时防止反应堆堆芯熔融物熔损反应堆压力容器的技术领域。
背景技术
在核电站设计中,核安全是需考虑的首要问题。1979年美国三哩岛核电站事故和1986年前苏联切尔诺贝利核电站事故发生后,严重事故的预防和缓解成为核电站设计必须考虑的因素。2011年日本福岛事故后,核电站严重事故的预防和缓解更受到各国公众、政府和***当局的重视。核电站风险主要来自潜在的堆芯熔化事故及造成的放射性物质的对环境的大规模释放。如何降低严重事故的发生频率,缓解严重事故的后果,提高核电站的安全水平,已成为各国核工业界和核***当局关注的重点之一。中国国家核***早在2004年4月18日发布了《核动力厂设计安全规定》(HAF102),对新建核动力厂设计时必须考虑严重事故已提出明确要求,可见进行严重事故预防和缓解措施设计的重要性。
压水堆核电站发生严重事故时,堆芯由于失去冷却水使堆芯裸露并开始升温、过热,燃料元件由于冷却不足而发生熔化,堆芯熔融物落入压力容器下腔室,对压力容器的完整性形成威胁。一旦压力容器熔穿,熔融物流入堆腔室后,将可能发生堆外蒸汽***、熔融物与混凝土反应等现象,致使安全壳内升温升压,对安全壳的完整性构成威胁。因此,如何对熔融物进行有效的冷却是缓解核电站严重事故的关键。
为缓解严重事故后果,根据严重事故发展过程特点,已提出多种应对严重事故的策略。熔融物堆内滞留(In-Vessel Retention,IVR)策略是重要的严重事故缓解方案之一。该策略在假定严重事故工况下,通过从压力容器外部对熔融物进行充分有效的冷却,将堆芯熔融物滞留在压力容器内,从而避免压力容器熔穿,保证压力容器的完整性,进而防止多数可能威胁安全壳完整性的堆外现象的发生。
作为缓解事故后果的关键措施的一种,IVR策略近年来在核工业界获得了实际应用。各种非能动乃至能动型反应堆,如西屋AP600/AP1000、芬兰IVO改进Loviisa VVER440、三菱MS600设计(非能动型),俄罗斯VVER640设计(能动型)以及韩国APR1400等,纷纷采用IVR方案;我国出口巴基斯坦的C2核电站设计、中广核的CPR1000核电站最新设计也分别采取这一方案,并进行了评价。其他运行核电站如Zion PWR、BWR和CANDU核电站也在进行应用IVR的研究。
对于较低功率核电站AP600,经过Theofanous等的分析研究,AP600 IVR的评价结论是:只要保证反应堆冷却剂***卸压,并且确保压力容器淹没于水中的深度至少高于熔融池,压力容器安全裕度较大,即熔融物作用于压力容器的热流密度小于对应位置临界热流密度,AP600不会发生压力容器热熔穿失效。
AP1000核电站以AP600核电站为基础升级开发,也采用IVR事故缓解措施。并完成了相应的工程验证试验。使AP1000设计获得通过。
虽然IVR策略在AP600、AP1000中的应用获得了美国核管会的认可,但是对于其在超大型先进压水堆中的应用,却仍存在着很多不确定性。
US7117158采用反应堆压力容器外冷却(ERVC) )作为实施IVR策略的手段。主要是利用换料水箱的水和失水事故(LOCA)时破口流出的水淹没压力容器外的堆腔室,其水位直至超过堆内下腔室熔融物的高度,从反应堆压力容器外提供冷却,避免下封头的过热熔损。这种方法存在一定的局限性,当反应堆堆芯功率较高时,由于受堆外冷却的传热效率的限制,反应堆外的水冷不足以带出堆内的热量,所以不能避免熔融物熔损压力容器。
CN201689688U提出在上述反应堆压力容器外冷却的基础上的反应堆容器内注入(IRVR)的方法。这种方法能够增强***冷却能力,提高了成功实施IVR策略的有效性。但是,该专利中所提出的方法仍然存在一定的局限性。IRVR通过主冷却管注入,这种方法存在一定的风险,如果主冷却管发生破损,就会导致IRVR注入失败。冷却水注入没有流量控制,这样如果注入太慢,会导致冷却效果不明显,如果注入太快,则可能会导致短时间内产生大量的氢气和水蒸汽。另外,该方法是在反应堆发生事故时,即在堆芯发生熔化之前,就开始进行实施堆内注水冷却,因此这种堆内注入可能会不必要地人为损害反应堆的堆芯。这些局限,限制了其在工程中的实际应用。
发明内容
本发明要解决的主要技术问题是解决核电站的超大功率(超过1000MWe)压水堆在严重事故情况下,即堆芯开始发生熔化时,防止反应堆堆内熔融物熔损压力容器以保持压力容器完整性的问题,同时提高压力容器外淹没与压力容器内冷却相结合的冷却方式的有效性。
为了解决上述技术问题,本发明提出一种防止反应堆堆内熔融物熔损压力容器的方法,该方法包括:当监测到堆芯出口温度升至约650℃时,启动反应堆容器内注入(IRVR)***,向压力容器内注入冷却剂。
本发明方法的优点是实施简单、可靠性高、对现有工艺***及堆内布置影响较小、可避免***间的不利相互作用,最重要的是可以避免由于提前进行堆内注入冷却而引起的可能不必要的人为的堆芯损害。
附图说明
图1表示用于实施本发明的方法的反应堆容器内注入(IRVR)***原理图。
具体实施方式
下面结合图1和AP 系列非能动安全型压水堆来举例说明本发明的技术方案,而本发明绝不限于所举例的这种类型的反应堆。本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,否则本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。
压水堆的压力容器外冷却***(ERVC)是本领域已知的,为了简洁起见,其具体细节在本文中不再赘述。
非能动安全型压水堆(例如,AP1000 )一般使用铀-锆包壳的燃料元件作为核燃料,在正常运行时,堆芯出口温度为约320℃。当超大功率的非能动安全型压水堆(功率超过1000MWe)核电站发生严重事故时,例如,自动降压***(ADS4,Automatic Depressurization System)误开的情况下,冷却水不再进入堆芯中,使堆芯裸露。即使反应堆已停止运行并且启动反应堆压力容器外冷却(ERVC),但由于部分地存在的核衰变反应使得反应堆继续释放出衰变热,这时反应堆压力容器外冷却(ERVC)的冷却功率不足以将堆芯产生的衰变热带到压力容器外,使得堆芯衰变热随着时间在压力容器中不断积累,当温度升高超过堆芯熔点时,堆芯便开始熔化。在超大功率的非能动安全型压水堆(功率超过1000MWe)最严重的事故序列时,由于反应堆压力容器外冷却功率不足引起堆芯温度不断升高,如果在堆芯温度升高至其熔点温度之前,没有采取足够措施阻止堆芯温度继续升高的情况下,堆芯则不可避免地开始熔化,而且堆芯出口温度也将会升高。通过技术分析发现在堆芯开始熔化约3000 秒后,堆芯出口温度将升至大约650 ℃。换句话说,当堆芯出口温度达到约650℃时,可以确定燃料元件的锆包壳已开始氧化、破损和熔化,但该熔融物还未对压力容器产生损害。由于在该事故条件下,反应堆压力容器内环境恶劣,有关直接监测手段及测量方法很难有效实现。而堆芯出口温度的监测相对简单可靠,容易实施,所以在启动反应堆容器内注入(IRVR)***之前,通过监测堆芯出口温度来确定反应堆容器内注入(IRVR)***的启动(触发)时间。由此选择堆芯出口温度达到约650℃时作为触发条件,这时启动反应堆容器内注入(IRVR)***通过例如与该压力容器连接的管道向容器内注入冷却剂对已开始熔化堆芯进行冷却。这种方法的优点是:可以使用更少量的水进行堆内注入,可以避免在现有技术中存在的缺点,即在反应堆堆芯还未开始熔化破损时由于过早注入冷却剂而导致不必要的人为损害堆芯。
通过启动反应堆容器内注入(IRVR)***向压力容器内注入冷却剂,可以使由于反应堆压力容器外冷却(ERVC)***的冷却功率不足而引起的压力容器内不断积累的热量迅速带出压力容器外。由于反应堆堆芯释放的衰变热功率不断降低,当反应堆堆芯释放的衰变热功率降低至低于反应堆压力容器外冷却(ERVC)***的冷却功率时,即压力容器外冷却足够可以带出该反应堆产生的衰变热,则可以停止反应堆容器内注入,根据分析计算,该反应堆容器内注入持续时间有利地为约10分钟。
根据图1,在本发明方法中所涉及的反应堆容器内注入IRVR***一般包括至少一个IRVR注入箱20、用于使该IRVR注入箱20和反应堆压力容器10连接的管道和堆芯出口温度监测装置(未示出),任选地其还包括阀门21以及用于阀门的控制***(未示出)。所述用于阀门的控制***可以是自动控制***,也可以是手动控制***,优选是自动控制***。
根据上述方法的一个优选实施方案,所述反应堆容器内注入(IRVR)***包括一个或多个,优选一个IRVR注入箱,该IRVR注入箱用于装冷却剂,并且是加压的或非加压的,即该IRVR注入箱可以是敞开的或是密闭的;如果该IRVR注入箱是非加压的话,则注入箱的底部必须高于所述管道到压力容器的入口水平面,冷却剂能在重力作用下能自动流入到压力容器中,而且必要时需要对压力容器进行卸压;如果该IRVR注入箱是加压的话,则冷却剂在施于冷却剂液面的压力作用下流入压力容器中,这样的话则不需要在注入之前对压力容器进行卸压;因此优选地,该IRVR注入箱是加压的。根据本发明一个实施方案,该加压的IRVR注入箱的压力为约4~5个大气压,其中加压所使用的气体可以是惰性气体,如氮气。
进一步地,当只包括一个IRVR注入箱时,可以考虑该IRVR注入箱设有用于检测其液面高度的液面检测仪,如果液面低于某个高度值,则自动启动从安全壳外的冷却剂储罐(未示出)向该IRVR注入箱中补充冷却剂。当包括多个IRVR注入箱时,它们可以并联或串联地进行连接,优选地是并联连接,但这使得该反应堆的设计趋于更加复杂。
所述连接该IRVR注入箱底部和反应堆压力容器的管道是实现将冷却剂注入到压力容器中的管道,其可以是任何与反应堆压力容器连接的管道,包括在反应堆正常运行时用于带出热量的主冷却管道410,或者反应堆压力容器的直接注入管道(DVI, direct vessel injection)510等,但优选地为直接注入管道DVI。该直接注入管道DVI是用于使堆内换料水箱(IRWST) 30与压力容器20连接的管道。由于在事故条件下,压力容器内温度与压力均较高,为了避免注入冷却剂时可能产生的蒸汽***危险,则优选地使用反应堆压力容器的直接注入管道DVI进行注入。DVI使冷却剂从压力容器下降段注入堆芯,从而减小直接注入方式在熔融物上部表面产生蒸汽而引起***的可能。因此根据上述方法的一个优选实施方案,所述冷却剂通过反应堆压力容器的直接注入管道(DVI)注入。更进一步地,根据上述方法的一个优选实施方案,所述冷却剂从压力容器下降段注入堆芯。
所述阀门可以是能实现液体控制的任何类型阀门,如自动或手动阀门,优选自动***阀。
用于堆内注入的冷却剂可以是本领域技术人员已知的用于核反应堆堆芯冷却的任何类型的冷却剂。该冷却剂优选地含有硼,优选地该冷却剂为水,最优选为含3500ppm硼的水溶液。
更特别地,由于该IRVR注入箱设置在反应堆安全壳内,所以IRVR注入箱的体积受到空间限制,同时为了获得需要的技术效果,因此需要通过IRVR带出反应堆压力容器的热量来确定最小冷却剂体积量。如果选择水作为冷却剂进行注入时,IRVR注入最小水体积量V(m3)通过以下公式确定:
V=0.02×P 0                       [1],
其中,P 0为堆芯功率,单位为MWe。
该计算公式[1]是根据Way-Wigner衰变热计算公式[2],创造性地借助于压力容器的临界热流密度与衰变热之间的比例关系、衰变热后延时间等参数推导出:
Pd(t)/P0 = 0.0622×[t-0.2-(t+T0)-0.2]                      [2]
其中,
Pd(t)是停堆后t时刻时的衰变功率;
P0是额定热功率;
t是停堆后的时刻t,单位为秒[s];
T是反应堆停堆前额定功率运行时间,单位秒[s]。
根据计算机模拟实验,根据该式[1]确定的水量完全能实现将由反应堆的核衰变反应产生的在压力容器中积累的热量带出压力容器,能防止堆内熔融物熔损压力容器,而且有效地控制了IRVR注入箱的体积,使反应堆安全壳的空间得到合理利用。
根据本发明方法的一个优选实施方案,上述的IRVR注入水量V在约10min内注入完毕,并因此根据所需的流速来调节反应堆压力容器的直接注入管道DVI的管径。
如果选择水作为冷却剂进行注入时,水将与熔融物产生化学反应,生成可燃易爆的氢气。这一部分氢气仅占堆芯熔化时产生氢气总量的一部分,可与大部分轻质不凝性气体一起排至安全壳中,并通过安全壳中的消氢装置进行消除(AP 系列压水堆核电站安全壳中已设置氢气复合器与氢气点火器)。
如上所述,根据本发明的技术方案有许多优点:驱动简单、可靠性高、对现有工艺***及堆内布置影响较小、可避免***间的不利相互作用。虽然上面描述参照附图对本发明的具体实施方式进行了详细说明,但是并不意在将本发明限定为上述具体实施方式。本领域技术人员在阅读上面描述和附图后,能够对本发明做出适当修改和变化,这些修改和变化不脱离本发明保护范围,这些改变和变型都包含在本发明的范围内。
最后本发明还涉及用于实施本发明方法的反应堆容器内注入IRVR***,该***包括IRVR注入箱20、使该IRVR注入箱20和反应堆压力容器10连接的管道和堆芯出口温度监测装置(未示出),任选地其还包括在该管道上的阀门21和用于阀门的控制***(未示出)。该***在堆芯出口温度监测装置检测到在管道420处的堆芯出口温度升至约650℃时,打开阀门21,通过使该IRVR注入箱20和反应堆压力容器10连接的管道以及管道上的阀门21向压力容器内注入冷却剂。
在下文中,将通过非限制性实施例并结合附图来举例说明本发明。
实施例
如图1所示,当核电站(功率1400MWe)失去冷却时,立即启动ERVC***进行反应堆压力容器外冷却,并同时监测堆芯出口温度,即冷却管420处的出口温度。在堆芯出口温度监测装置检测到堆芯出口温度升至650℃时,则自动控制***(未显示)启动反应堆容器内注入IRVR***,打开在管道210上的阀门21,将装在IRVR注入箱20中的28m3的含硼水溶液经由管道210和直接注入管道510注入到反应堆压力容器中,注入时间约10分钟,在此期间ERVC***保持工作。

Claims (10)

1. 一种防止反应堆堆内熔融物熔损压力容器的方法,该方法包括:当监测到堆芯出口温度升高至650℃时,启动反应堆容器内注入IRVR***,向压力容器内注入冷却剂。
2. 根据权利要求1的方法,特征在于所述反应堆容器内注入IRVR***包括至少一个IRVR注入箱,该IRVR注入箱是加压的或非加压的。
3. 根据权利要求2的方法,特征在于所述IRVR注入箱是加压的。
4. 根据权利要求3的方法,特征在于所述加压的IRVR注入箱的压力为约4~5个大气压。
5. 根据权利要求1-4任一项的方法,特征在于所述冷却剂通过与反应堆压力容器连接的管道,优选地反应堆压力容器的直接注入管道DVI注入。
6. 根据权利要求1-4任一项的方法,特征在于所述冷却剂从压力容器下降段注入堆芯。
7. 根据权利要求1-4任一项的方法,特征在于所述冷却剂为水,优选含硼水溶液。
8. 根据权利要求7的方法,特征在于所述反应堆容器内注入IRVR***的水体积量,以m3计,根据下式进行计算:V=0.02×P 0,其中P 0为堆芯功率,单位为MWe。
9. 根据权利要求8的方法,特征在于上述的反应堆容器内注入IRVR***的总注入水量在10分钟期间注入完毕。
10. 用于实施权利要求1-9任一项的方法的反应堆容器内注入IRVR***,特征在于其包括至少一个IRVR注入箱、用于使该IRVR注入箱和反应堆压力容器连接的管道和堆芯出口温度监测装置,其任选地还包括在管道上的阀门和控制***。
CN2012101654333A 2012-05-25 2012-05-25 一种防止反应堆堆内熔融物熔损压力容器的方法以及用于实施这种方法的*** Pending CN103426484A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101654333A CN103426484A (zh) 2012-05-25 2012-05-25 一种防止反应堆堆内熔融物熔损压力容器的方法以及用于实施这种方法的***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101654333A CN103426484A (zh) 2012-05-25 2012-05-25 一种防止反应堆堆内熔融物熔损压力容器的方法以及用于实施这种方法的***

Publications (1)

Publication Number Publication Date
CN103426484A true CN103426484A (zh) 2013-12-04

Family

ID=49651098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101654333A Pending CN103426484A (zh) 2012-05-25 2012-05-25 一种防止反应堆堆内熔融物熔损压力容器的方法以及用于实施这种方法的***

Country Status (1)

Country Link
CN (1) CN103426484A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161145A (zh) * 2015-08-03 2015-12-16 上海核工程研究设计院 一种提高熔融物压力容器内滞留有效性的方法
CN106651217A (zh) * 2017-01-06 2017-05-10 中国核动力研究设计院 装备堆芯捕集器的核电厂的堆芯注水评价方法
CN109147969A (zh) * 2018-09-13 2019-01-04 中国核动力研究设计院 核反应堆熔融物堆芯滞留非能动冷却***
CN110415840A (zh) * 2019-08-06 2019-11-05 中国核动力研究设计院 一种提升压力容器外部临界热流密度的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164293A (ja) * 1990-10-29 1992-06-09 Toshiba Corp 非常用炉心冷却装置
CN1783353A (zh) * 2004-12-03 2006-06-07 大亚湾核电运营管理有限责任公司 一种提高核电站安注***整体可靠性的方法
CN101127251A (zh) * 2007-09-27 2008-02-20 华北电力大学 一种核电站的温度感应式安全注射***
CN201689688U (zh) * 2010-06-04 2010-12-29 中科华核电技术研究院有限公司 堆芯冷却、堆腔充水及安全壳热量导出的***
CN201698775U (zh) * 2010-06-04 2011-01-05 中科华核电技术研究院有限公司 用于核反应堆压力容器的直接安注***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164293A (ja) * 1990-10-29 1992-06-09 Toshiba Corp 非常用炉心冷却装置
CN1783353A (zh) * 2004-12-03 2006-06-07 大亚湾核电运营管理有限责任公司 一种提高核电站安注***整体可靠性的方法
CN101127251A (zh) * 2007-09-27 2008-02-20 华北电力大学 一种核电站的温度感应式安全注射***
CN201689688U (zh) * 2010-06-04 2010-12-29 中科华核电技术研究院有限公司 堆芯冷却、堆腔充水及安全壳热量导出的***
CN201698775U (zh) * 2010-06-04 2011-01-05 中科华核电技术研究院有限公司 用于核反应堆压力容器的直接安注***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张龙飞,张大发,徐金良: "压水堆核电厂全厂断电事故及其缓解措施", 《原子能科学技术》 *
林诚格: "《非能动安全先进核电厂AP1000》", 31 August 2008, 原子能出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161145A (zh) * 2015-08-03 2015-12-16 上海核工程研究设计院 一种提高熔融物压力容器内滞留有效性的方法
CN106651217A (zh) * 2017-01-06 2017-05-10 中国核动力研究设计院 装备堆芯捕集器的核电厂的堆芯注水评价方法
CN109147969A (zh) * 2018-09-13 2019-01-04 中国核动力研究设计院 核反应堆熔融物堆芯滞留非能动冷却***
CN110415840A (zh) * 2019-08-06 2019-11-05 中国核动力研究设计院 一种提升压力容器外部临界热流密度的方法

Similar Documents

Publication Publication Date Title
CN201689688U (zh) 堆芯冷却、堆腔充水及安全壳热量导出的***
CN107945891A (zh) 一种具有反应堆堆芯熔融物堆内滞留和堆外滞留功能的***
KR101234570B1 (ko) 냉각재 상실사고 완화가 가능한 일체형 원자로 및 그 완화방법
CN205751540U (zh) 核电站严重事故缓解***
Chang et al. SMART behavior under over-pressurizing accident conditions
Park et al. Effect of SAMG entry condition on operator action time for severe accident mitigation
CN103426484A (zh) 一种防止反应堆堆内熔融物熔损压力容器的方法以及用于实施这种方法的***
Chun et al. Safety evaluation of small-break LOCA with various locations and sizes for SMART adopting fully passive safety system using MARS code
US9911514B2 (en) Nuclear reactor cavity floor passive heat removal system
CN103426485A (zh) 一种防止反应堆堆内熔融物熔损压力容器的方法以及用于实施这种方法的***
Schleisiek et al. Mol 7C experiments on local fault propagation in irradiated LMFBR fuel subassemblies
Li et al. Analysis of PWR RPV lower head SBLOCA scenarios with the failure of high-pressure injection system using MAAP5
Zhang et al. Evaluation of intentional depressurization strategy in Chinese 600 MWe PWR NPP
Ullah et al. Steam Generator Tube Rupture Accident at a NPP and Exploration of Mitigation Strategies for Its Consequence
Chatterjee et al. Verification of Severe Accident Management strategies for VVER 1000 (V320) reactor
Kaliatka et al. Approach to accident management in RBMK-1500
Gong et al. Progress of experimental research on nuclear safety in NPIC
Xia et al. Feasibility Analysis and Demonstration of In-Vessel-Injection in the Early Stage of Severe Accident
Israel EPR: steam generator tube rupture analysis in Finland and in France
Stępień et al. Overview of the safety systems used in generation III and III+ of reactors
Shumway General features of emergency core cooling systems
Han-Chul In Plant Accident Management
Mehta et al. New generation of BWRs
Toshinsky et al. Principles of Inherent Self-Protection Realized in the Project of Small Size Modular Reactor SVBR-100
Alharbi et al. Evaluation of Total Loss of Reactor Coolant Flow for an Advanced Integral Reactor, SMART

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20131204

RJ01 Rejection of invention patent application after publication