CN1034247C - 高温超导体的制造方法及其制成的超导体成型体 - Google Patents

高温超导体的制造方法及其制成的超导体成型体 Download PDF

Info

Publication number
CN1034247C
CN1034247C CN89106736A CN89106736A CN1034247C CN 1034247 C CN1034247 C CN 1034247C CN 89106736 A CN89106736 A CN 89106736A CN 89106736 A CN89106736 A CN 89106736A CN 1034247 C CN1034247 C CN 1034247C
Authority
CN
China
Prior art keywords
hours
annealing
superconductor
casting matrix
oxygen atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN89106736A
Other languages
English (en)
Other versions
CN1041058A (zh
Inventor
乔基姆·博克
埃伯哈德·普赖斯勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of CN1041058A publication Critical patent/CN1041058A/zh
Application granted granted Critical
Publication of CN1034247C publication Critical patent/CN1034247C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/739Molding, coating, shaping, or casting of superconducting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/782Bismuth-, e.g. BiCaSrCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

一种高温超导体的制造方法及其制成的超导体成型体,该超导体的组成为Bi2(Sr,Ca)3Cu2O8+x,其中Sr为对Ca之比为(5~2)∶1,X为0~2,该方法包括用力拌合具有化学计量比的铋、锶、钙和铜的氧化物和/或碳酸盐的化合物,在870~1100℃下加热所得到的混合物直到得到均匀的熔融体。将该熔融体浇注到模具中,并使其固化,使从模中取出的浇铸体在780~850℃下火6~30小时,最后在氧气气氛中于600~830℃的温度下处理经退火后的浇铸体至少6小时。

Description

高温超导体的制造方法及其制成的超导体成型体
本发明涉及一种高温超导体的制造方法及其制成的超导体成型体。该超导体的组成为Bi2(Sr,Ca)3Cu2O8+x,其中Sr对Ca的比例为(5~2)∶1,x为0~2。
作为授予诺贝尔奖的Bednorz和Miiller的发现结果,已知不仅在低于24K的温度下某些金属合金为超导体,而且除氧化铜以外还含有碱土氧化物和稀土氧化物的陶瓷化合物也具有超导性能,即使在较高温度下也是如此。由于它们的较高的所谓临界温度,这些化合物被称之为高温超导体。
至今,已知铋-锶-钙-铜-氧体系中有三种化合物显示出超导性能,详见如下:
Bi2(Sr,Ca)2CuO6+x(1-层化合物);
临界温度:约40K;
Bi2(Sr,Ca)3Cu2O8+x(2-层化合物);
临界温度:85K;
Bi2(Sr,Ca)4Cu3O10+x(3-层化合物);
临界温度:约105K;
同时,这两种第一命名化合物可以通过烧结粉末状氧化物或碳酸盐来生产,在该方法中,如果使用适量的原料,并在刚好低于粉末混合物的熔点下进行烧结,在相混合物中只能获得大比例的2-层化合物。为了防止部分粉末混合物在这种环境下熔化,首先使粉末混合物在低温下烧结,以便使其经几次中间研磨之后总是在稍微升高的温度下再烧结。
最后,建议熔融具有过量氧化铜的铋、锶、钙和铜的氧化物的混合物,而从这种熔体中拉出单晶,特别是2-层化合物的单晶体(参见H.G.von Schnering et al.in:“AngewandteChemie”,100(1988),604~607)。
这种第一命名的方法缺点在于技术上非常复杂。另外,二种方法都不能生产出X射线用的相纯产品。
因此,本发明的目的在于提供一种组成为Bi2(Sr,Ca)3Cu2O8+x(2-层化合物)的高温超导体的生产方法,用这种方法可以获得基本相纯的产品,而具有很小的技术复杂性。根据本发明,这一目的可通过下列方法实现,该方法包括用力拌和具有化学计量比的铋、锶、钙和铜的氧化物和/或碳酸盐,在870~1100℃最好是950~1000℃下加热该混合物,直到获得均相熔融体,将所得到的熔融体浇注到模型中,并使其在膜型中固化,再将从模型中取出的浇铸体在780~850℃下退火6~30小时,最好7~12小时,然后在氧气气氛中于600~830℃下处理退火后的浇铸体至少6小时。
本发明的方法还可以进一步选择性地改进,
a)使用铜制模型,
b)在810~830℃下进行退火,
c)在氧气氛中的处理进行8~24小时,
d)在800~820℃下进行氧气氛中的处理,
e)在退火之前,用机械方法使浇铸体转换成具有理想尺寸的型体,
f)型体的最大厚度达6mm。
最后,根据本发明的方法可以生产出型体。在这些情况下,它们的形状和尺寸可以通过用于生产浇注体的模型的形状和尺寸来决定。
在本发明的方法中,优先使用铜模,是因为在它们表面产生的氧化铜是其体系中固有的,而由此会引起很小的干扰或根本没有。
在本发明的方法中,在纯氧气中的退火只造成轻微的但却是可检测到的结构变化。为形成纯的2-层化合物,在氧气中的退火是不可缺少的。
通常,铋-锶-钙-铜的氧指数不是精确地符合从参加的元素在每种情况下均为最稳定价时计算得到的数值。某些铜和/或铋也可以是更高价的。所述的三种化合物在它们的结构中具有可以被氧占据的点阵位,但并不一定被氧占据。取决于温度和氧分压的高低,氧可能进入上述化合物中或再次离开这些化合物。氧指数a+x的规格是这样选择的:即与最稳定价(Cu:2+,Bi:3+,Sr:2+,Ca:2+)的数值相一致。其中X表示对铜和铋的较高价部分的氧当量。
实施例1(对比实例)
将467g的SrO、126g的CaO和358g的CuO的混合物在一个辊筒混合机中均匀化之后,将其在一个烧结刚至坩埚中于920℃下加热12小时。然后向得到的混合物之中加入1049g的Bi2O3。将该四组分混合物的一半首先在800℃下退火12小时。中间研磨之后,在870℃下加热6小时。所得到的产品产生出X-射线1a(参见附图1)。
将这四组分混合物的另一半在800℃、820℃、850℃、860℃和870℃的每一温度下退火12小时,在每一温度下处理之后进行中间研磨。所得的产品产生出X-射线1b(参见附图1)。
这两个X-射线图的比较表示出,一方面,通过较长的热处理,减少1-层化合物,而有利于2-层化合物,而另一方面,即使在退火72小时之后,还没有存在相纯的2-层化合物。将具有X-射线1b的产物在氧气气氛中于815℃加热8小时。其临界温度为68K。
实施例2(对比实例)
将467g的SrO、126g的CaO、358g的CuO和1049g的Bi2O3的混合物在辊筒混合机中均匀化。将300g的这种混合物倒入一个烧结刚至坩埚中,然后在一个箱式炉中于1000℃下加热1小时。将得到的均匀的熔体浇铸到一个铜模(尺寸:30×30×60mm)中,使其固化。使其冷却后,研磨得到的浇铸体。所得粉末产生出X-射线2(参见附图2);该图中没有2-层化合物的反射,而只有1-层化合物和至少另外一相的反射。
将具有X-射线2的粉末在空气中于815℃下退火三次,每次8小时,每次退火之间进行研磨,最后使其在氧气氛下于815℃下再次退火8小时。所得到的粉末产生出X-射线3(参见附图2),即,该粉末是由1-层化合物和2-层化合物组成的相混合物。
实施例3(根据本发明)
将根据实施例2生成的浇铸体用切割轮(钻石涂层的铜轮)切成3mm厚的板。将这些板的空气中于815℃下退火8小时,经退火后,所得到的X-射线图表示,除少量残余的1-层化合物外,存在2-层化合物。这些板在氧气氛中于815℃下进行的后续8小时退火期间,1-层化合物的线消失到最大可能的程度(参见附图曲线4)。
该板的临界温度为85K。
实施例4(根据本发明)
重复实施例3,不同的是使3mm厚的板在空气中于790℃下退火30小时,然后在氧气气氛下于与上同样温度下退火12小时。
从它们的X-射线图和临界温度来看,这些板与根据实施例3所获得的板一致。

Claims (11)

1.一种高温超导体的制造方法,该超导体的组成为Bi2(Sr,Ca)3Cu2O8+x,其中Sr对Ca之比为(5~2)∶1,x为0~2,该方法包括用力拌合具有化学计量比的铋、锶、钙和铜的氧化物和/或碳酸盐的化合物,在870~1100℃下加热所得到的混合物直到得到均匀的熔融体,将该熔融体浇注到模具中,并使其无骤冷固化,使从模中取出的浇铸体在780~850℃下退火6~30小时,最后在氧气气氛中于600~830℃的温度下处理经退火后的浇铸体至少6小时。
2.一种如权利要求1所述的方法,其中将所说的混合物加热到950~1000℃。
3.一种如权利要求1所述的方法,其中使用铜制的模子。
4.一种如权利要求1所述的方法,其中将所说的从膜中取出的浇铸体退火7~12小时。
5.一种如权利要求1所述的方法,其中的退火是在810~830℃下进行。
6.一种如权利要求1所述的方法,其中在氧气气氛中的处理进行8~24小时。
7.一种如权利要求1所述的方法,其中氧气气氛中的处理在800~820℃下进行。
8.一种如权利要求1所述的方法,其中浇铸体在退火之前,用机械方法将其加工成具有所需尺寸的型体。
9.一种如权利要求8所述的方法,其中所说的型体最大厚度达6mm。
10.根据权利要求1所述方法生产的成型体。
11.根据权利要求1所述方法生产的成型体,其中它们的形状和尺寸由生产浇铸体时所用的模具的形状和尺寸所决定。
CN89106736A 1988-09-03 1989-09-01 高温超导体的制造方法及其制成的超导体成型体 Expired - Fee Related CN1034247C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3830092.3 1988-09-03
DE3830092A DE3830092A1 (de) 1988-09-03 1988-09-03 Verfahren zur herstellung eines hochtemperatursupraleiters sowie daraus bestehende formkoerper

Publications (2)

Publication Number Publication Date
CN1041058A CN1041058A (zh) 1990-04-04
CN1034247C true CN1034247C (zh) 1997-03-12

Family

ID=6362299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89106736A Expired - Fee Related CN1034247C (zh) 1988-09-03 1989-09-01 高温超导体的制造方法及其制成的超导体成型体

Country Status (10)

Country Link
US (2) US5047391A (zh)
EP (1) EP0362492B1 (zh)
JP (1) JP2645470B2 (zh)
KR (1) KR100194844B1 (zh)
CN (1) CN1034247C (zh)
AT (1) ATE93503T1 (zh)
CA (1) CA1321870C (zh)
DE (2) DE3830092A1 (zh)
ES (1) ES2043976T3 (zh)
NO (1) NO300062B1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ228132A (en) * 1988-04-08 1992-04-28 Nz Government Metal oxide material comprising various mixtures of bi, tl, pb, sr, ca, cu, y and ag
DE3830092A1 (de) * 1988-09-03 1990-03-15 Hoechst Ag Verfahren zur herstellung eines hochtemperatursupraleiters sowie daraus bestehende formkoerper
DE3913397A1 (de) * 1989-04-24 1989-10-19 Asea Brown Boveri Verfahren zur herstellung eines hochtemperatur-supraleiters
US5244876A (en) * 1990-02-13 1993-09-14 Hoechst Aktiengesellschaft Method for joining parts of ceramic high-temperature superconductor material
US5151407A (en) * 1990-02-28 1992-09-29 The United States Of America As Represented By The Secretary Of The Navy Method of producing Bi-Sr-Ca-Cu-O superconducting materials in cast form
DE4011725A1 (de) * 1990-04-11 1991-10-17 Hoechst Ag Verfahren zur herstellung eines hochtemperatursupraleiters
DE4019368A1 (de) * 1990-06-18 1991-12-19 Hoechst Ag Verfahren zur herstellung rohrfoermiger formteile aus hochtemperatur-supraleiter-material sowie eine anlage zu seiner durchfuehrung
US5215961A (en) * 1990-06-25 1993-06-01 The United States Of America As Represented By The Secretary Of The Navy Machinable oxide ceramic
DE4026017A1 (de) * 1990-08-17 1992-02-20 Hoechst Ag Verfahren zur herstellung von formkoerpern aus vorstufen von hochtemperatursupraleitern
DE4026014A1 (de) * 1990-08-17 1992-02-20 Hoechst Ag Verfahren zur herstellung von formkoerpern aus vorstufen oxidischer hochtemperatursupraleiter
DE4026015A1 (de) * 1990-08-17 1992-02-20 Hoechst Ag Verfahren zur herstellung von formkoerpern aus vorstufen oxidischer hochtemperatursupraleiter
DE4109499A1 (de) * 1990-10-13 1992-04-16 Hoechst Ag Supraleitende verbindung und verfahren zu ihrer herstellung
JP2900951B2 (ja) * 1990-11-30 1999-06-02 富士通株式会社 セラミック製中空管の製造方法
US5759961A (en) * 1991-01-31 1998-06-02 The Babcock & Wilcox Company Superconductor fiber elongation with a heated injected gas
CH682358A5 (en) * 1991-02-22 1993-08-31 Asea Brown Boveri Ceramic high temp. superconductor prodn. - by pouring starting material into mould, heating, cooling, thermally treating in oxygen@ and cooling, for shield magnetic fields in switching elements
DE69227274T2 (de) * 1991-03-29 1999-06-24 Hitachi, Ltd., Tokio/Tokyo Supraleitender Gegenstand und Verfahren zur Herstellung diesen supraleitenden Gegenstand
DE4118988A1 (de) * 1991-06-08 1992-12-10 Hoechst Ag Mit metallischen leitern kontaktierte massivkoerper aus keramischem hochtemperatur-supraleiter-material sowie verfahren zu ihrer herstellung
DE4119983A1 (de) * 1991-06-18 1992-12-24 Hoechst Ag Resistiver strombegrenzer und verfahren zu seiner herstellung
DE4124823A1 (de) * 1991-07-26 1993-01-28 Hoechst Ag Hochtemperatur-supraleiter und verfahren zu seiner herstellung
DE4208378A1 (de) * 1992-03-16 1993-09-23 Asea Brown Boveri Stromzufuehrung fuer supraleitende apparate
DE4218950A1 (de) * 1992-06-10 1993-12-16 Hoechst Ag Verfahren zur Herstellung eines Hochtemperatursupraleiters und daraus gebildeter Formkörper
US5306704A (en) * 1992-07-29 1994-04-26 The Babcock & Wilcox Company Efficient incorporation of silver to improve superconducting fibers
US5236893A (en) * 1992-09-08 1993-08-17 Texaco Chemical Company Use of superconductor type catalysts in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide
EP0590456A1 (de) * 1992-09-30 1994-04-06 Hoechst Aktiengesellschaft Verfahren zur Herstellung von Formkörpern aus oxidkeramischen Hochtemperatur-Supraleitern
DE4234312A1 (de) * 1992-10-12 1994-04-14 Abb Research Ltd Verfahren zur Herstellung eines resistiven Strombegrenzers oder Schaltelementes auf der Basis eines Supraleiters
DE4234311A1 (de) * 1992-10-12 1994-04-14 Abb Research Ltd Verfahren zur Herstellung eines Hochtemperatursupraleiters mit hoher Stromdichte
DE4302267A1 (de) * 1993-01-28 1994-08-04 Abb Research Ltd Verfahren zur Herstellung einer blasenfreien Galvanikschicht aus Silber auf einem Metallsubstrat aus Nickel oder aus einer nickelhaltigen Legierung und Schmelzvorrichtung
US5541154A (en) * 1993-02-17 1996-07-30 Hoechst Aktiengesellschaft Process for preparing a high-TC superconductor as a precursor material for the oxide-powder-in-tube method (OPIT)
US5635456A (en) * 1993-04-01 1997-06-03 American Superconductor Corporation Processing for Bi/Sr/Ca/Cu/O-2223 superconductors
US5661114A (en) 1993-04-01 1997-08-26 American Superconductor Corporation Process of annealing BSCCO-2223 superconductors
DE4320753A1 (de) * 1993-06-23 1995-01-05 Hoechst Ag Verfahren zur Herstellung rohrförmiger Formteile aus Hoch-T¶c¶-Supraleiter-Material
EP0646554A1 (de) * 1993-10-04 1995-04-05 Hoechst Aktiengesellschaft Massivteile aus Hochtemperatur-Supraleiter-Material
US6194352B1 (en) 1994-01-28 2001-02-27 American Superconductor Corporation Multifilament composite BSCCO oxide superconductor
GB9409660D0 (en) * 1994-05-13 1994-07-06 Merck Patent Gmbh Process for the preparation of multi-element metaloxide powders
DE19708711C1 (de) * 1997-03-04 1998-09-03 Karlsruhe Forschzent Verfahren zur Züchtung von Einkristallen von Hochtemperatursupraleitern aus Seltenerd-Kupraten der Form SE¶1¶¶+¶¶x¶Ba¶2¶¶-¶¶x¶Cu¶3¶0¶7¶¶-¶¶delta¶ und nach dem Verfahren hergestellte Kristalle
WO1999022386A2 (de) 1997-10-13 1999-05-06 Aventis Research & Technologies Gmbh & Co. Kg Verfahren zur herstellung einer spule aus einem hochtemperatursupraleitermaterial und hochtemperatursupraleitende spule mit geringem wechselstromverlust
DE50014931D1 (de) 1999-02-17 2008-03-13 Solvay Infra Bad Hoenningen Gm Supraleitende körper aus zinkdotiertem kupferoxidmaterial
DE10106172A1 (de) * 2001-02-10 2002-08-29 Bosch Gmbh Robert Verfahren zur Herstellung eines Formteils aus einem weichmagnetischen Verbundwerkstoff
EP1650178B1 (en) 2004-10-19 2007-12-19 Nexans Improved high temperature superconductor material of BSCCO system
CN100375794C (zh) * 2005-12-28 2008-03-19 西北有色金属研究院 一种铋系Bi-2223高温超导带材的制备方法
ES2335303T3 (es) 2006-03-16 2010-03-24 Nexans Cojinete magnetico de superconductor de alta temperatura.
US7483283B2 (en) * 2007-03-30 2009-01-27 Motorola, Inc. Apparatus for efficient streaming data access on reconfigurable hardware and method for automatic generation thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3711975A1 (de) * 1987-04-09 1988-10-27 Siemens Ag Verfahren zur herstellung eines keramischen supraleiter-materials mit hoher sprungtemperatur
DE3803530C2 (de) * 1988-02-05 1997-11-27 Hoechst Ag Oxidischer Supraleiter und Verfahren zu seiner Herstellung
US5126321A (en) * 1988-08-09 1992-06-30 The United States Of America As Represented By The Department Of Energy Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors
DE3830092A1 (de) * 1988-09-03 1990-03-15 Hoechst Ag Verfahren zur herstellung eines hochtemperatursupraleiters sowie daraus bestehende formkoerper

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APP PHYS LETT 531571 1988.8.1 Preparation of Bi Sr Ca Cu o Superconductors from Oxide Glass Precursors *
APP PHYS LETT 531571 1988.8.1 Preparation of Bi Sr Ca Cu o Superconductors from Oxide Glass Precursors;JAP.J.OF APP.PHYS,VOL.27,NO.3 1988.5.1 Formotion and Decomposition of Superconducting Bi Sr Ca Cu2O4 Ceramics;JAP.J.OF APP.PHYS,VOL.27,NO.4 1988.4.1 Preparation of High TC.Superconducting Bi Ca Sr-Cu O Ceramics by the Melt;JAP.J.OF APP.PHYS,VOL.27,NO5 1988.5.1 Preparation and Properties of Singlelxystals of the High Tc Oxide Supercon *
JAP.J.OF APP.PHYS,VOL.27,NO.3 1988.5.1 Formotion and Decomposition of Superconducting Bi Sr Ca Cu2O4 Ceramics *
JAP.J.OF APP.PHYS,VOL.27,NO.4 1988.4.1 Preparation of High TC.Superconducting Bi Ca Sr-Cu O Ceramics by the Melt;JAP.J.OF APP.PHYS,VOL.27,NO5 1988.5.1 Preparation and Properties of Singlelxystals of the High Tc Oxide Supercon *

Also Published As

Publication number Publication date
DE58905375D1 (de) 1993-09-30
CA1321870C (en) 1993-09-07
EP0362492A3 (en) 1990-07-11
NO893494D0 (no) 1989-08-31
ES2043976T3 (es) 1994-01-01
NO300062B1 (no) 1997-04-01
US5409888A (en) 1995-04-25
JPH02107558A (ja) 1990-04-19
US5047391A (en) 1991-09-10
KR100194844B1 (ko) 1999-06-15
JP2645470B2 (ja) 1997-08-25
EP0362492A2 (de) 1990-04-11
EP0362492B1 (de) 1993-08-25
CN1041058A (zh) 1990-04-04
ATE93503T1 (de) 1993-09-15
DE3830092C2 (zh) 1993-06-09
DE3830092A1 (de) 1990-03-15
NO893494L (no) 1990-03-05
KR900005636A (ko) 1990-04-14

Similar Documents

Publication Publication Date Title
CN1034247C (zh) 高温超导体的制造方法及其制成的超导体成型体
EP0105122B1 (en) Processes for making ferrite powder and ferrite blocks
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JP3127015B2 (ja) 酸化物レーザ単結晶の製造方法
CA2096899A1 (en) Process for Producing a High-Temperature Superconductor and Moldings Formed Therefrom
US5215961A (en) Machinable oxide ceramic
JPH0735296B2 (ja) 高温超電導体およびその製造方法
JP3010363B2 (ja) 酸化物系超電導焼結成型体の製造法
JP2545443B2 (ja) 酸化物超電導体の製造方法
JP2518043B2 (ja) 溶融凝固法によるセラミックの製造方法
JPH06211588A (ja) Y系酸化物超電導体結晶の作製方法
JPH0733434A (ja) RE1 Ba2 Cu3 O7−x 系酸化物超電導体の製造方法
JP2685951B2 (ja) ビスマス系超電導体の製造方法
JP3073996B2 (ja) Y1Ba2Cu3O7‐x系酸化物超電導体焼結体の製造方法及びY1Ba2Cu3O7‐x系酸化物超電導体
JPH03505569A (ja) 高Tc超伝導体とその製造方法
JP2540639B2 (ja) ビスマス系超電導体の製造方法
JPH01203257A (ja) 超電導体の製造方法
JPH0489361A (ja) Bi系酸化物超電導前駆物質の鋳造成形方法
JPH04119922A (ja) Bi系酸化物超電導体の製造方法
JPH04132616A (ja) ビスマス系酸化物超電導体の製造方法
JPH05254834A (ja) 酸化物超電導体及びその製造方法
JPH02172823A (ja) Bi系酸化物超電導体の製造方法
JPH01301590A (ja) 酸化物超伝導体単結晶作製方法
JPH01270561A (ja) 酸化物超電導体の製造方法
JPH01239713A (ja) 酸化物系超電導線状体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee