CN103337452A - 在硅锗层上形成镍自对准硅化物的工艺方法 - Google Patents

在硅锗层上形成镍自对准硅化物的工艺方法 Download PDF

Info

Publication number
CN103337452A
CN103337452A CN2013102583236A CN201310258323A CN103337452A CN 103337452 A CN103337452 A CN 103337452A CN 2013102583236 A CN2013102583236 A CN 2013102583236A CN 201310258323 A CN201310258323 A CN 201310258323A CN 103337452 A CN103337452 A CN 103337452A
Authority
CN
China
Prior art keywords
germanium
silicon
nickel
silicon layer
aligned silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013102583236A
Other languages
English (en)
Inventor
蔡俊晟
孔祥涛
韩晓刚
陈建维
张旭升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN2013102583236A priority Critical patent/CN103337452A/zh
Publication of CN103337452A publication Critical patent/CN103337452A/zh
Priority to US14/097,771 priority patent/US20150004767A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了一种在硅锗层上形成镍自对准硅化物的工艺方法,包括:形成有栅极以及硅锗源/漏级的半导体衬底,在硅锗层上外延一层硅,对外延硅层进行非晶化处理,在外延硅层上沉积镍铂层,第一次快速退火,湿法去除未反应的镍之后进行第二次快速退火。通过在硅锗层上形成一层外延硅层,用外延硅层代替硅锗层与镍铂反应生成镍自对准硅化物,降低工艺的退火温度,提高薄膜的膜质均匀性,同时所成薄膜电阻降低减小了器件的功耗。

Description

在硅锗层上形成镍自对准硅化物的工艺方法
技术领域
本发明涉及半导体集成电路及其制造领域,特别涉及一种在硅锗层上形成镍自对准硅化物的工艺方法。
背景技术
镍自对准硅化物(Ni-salicide)工艺既可以有效降低源漏栅区导通电阻,又可以降低这些区域的接触电阻,已成为COMS生产流程的重要环节。通常,Ni-salicide由镍铂(NiPt)与硅(Si)衬底反应而成,具有反应温度低,形成的Ni-salicide电阻低,膜质均匀等优点。在NiPt与Si层进行快速退火后,由于Si独有的晶体结构,形成的Ni-salicide可能会沿着Si周期性晶格的特定方向生长,形成倒刺型结构,这会导致器件短路的发生,从而造成器件失效,Si层非晶化的工艺通过打乱Si的晶格结构,有效的防止这一现象的发生。
近年来,由于硅锗(SiGe)衬底的高空穴迁移率等优点,被广泛的应用在p-MOSFET的源漏极,在SiGe层形成Ni-salicide的步骤通常如图1a-1c所示。图1a为一形成有硅锗源/漏极101和102以及栅极103的半导体衬底;参考图1b,在硅锗层上沉积镍铂层104;之后进行第一次退火,所述硅锗层101和102与镍铂层104反应生成Ni-salicide,湿法去除未反应的金属后进行第二次退火,形成最终的镍自对准硅化物,如图1c所示。
尽管SiGe层的引入提高了器件的性能,但是它与NiPt形成Ni-salicide的条件与Si层形成Ni-salicide的条件不同,如在Si层生长Ni-salicide第一次退火的温度在280℃-300℃,在湿法去除未反应金属后,进行第二次退火,温度为500℃;在SiGe层生长Ni-salicide第一次退火的温度在300℃-350℃,湿法去除未反应金属后第二次退火的温度为500℃。第一次退火的温度差可以达到20℃-50℃。另外,SiGe与NiPt和Si与NiPt形成的Ni-salicide方块电阻阻值差别可以达到50%,对于镍硅化物(NiSi)电阻是12欧姆/方块,镍硅锗化物(NiSiGe)则为8欧姆/方块。特别的,SiGe与NiPt形成的Ni-salicide膜在退火后还会有结块,Ge扩散至膜表面等现象,导致薄膜的均匀性大大降低,使器件的电学性能变差。
发明内容
本发明的目的在于提供一种在硅锗层上形成镍自对准硅化物的工艺方法,从而降低工艺的退火温度,避免在硅锗层上形成的镍自对准硅化物在退火后结块或锗扩散至表面导致的膜质不均匀等现象。
本发明的技术方案是一种在硅锗层上形成镍自对准硅化物的工艺方法,包括以下步骤:
提供一半导体衬底,所述半导体衬底上形成有栅极以及硅锗源/漏级;
在硅锗层上外延一层硅;
对外延硅层进行非晶化处理;
在外延硅层上沉积镍铂层;
对外延硅层和镍铂层进行第一次快速退火;
湿法去除未反应的镍;
对外延硅层和镍铂层进行第二次快速退火。
进一步的,所述非晶化处理采用的材料为硅、锗或硅和锗的混合物。
进一步的,所述非晶化处理采用选择性离子注入方法。
进一步的,所述外延硅层的厚度为
Figure BDA00003409568700024
进一步的,所述选择性离子注入方法注入的能量为5Kev~50Kev,离子流剂量为1.0×1013/厘米2~1.0×1016/厘米2
进一步的,所述选择性离子注入方法注入的能量为5Kev~50Kev,离子流剂量为1.0×1014/厘米2~1.0×1016/厘米2
进一步的,所述外延硅层的厚度为
Figure BDA00003409568700025
进一步的,所述选择性离子注入方法注入的能量为5Kev~50Kev,离子流剂量为1.0×1013/厘米2~1.0×1016/厘米2。
进一步的,所述镍铂层的厚度为
Figure BDA00003409568700023
进一步的,所述第一次快速退火的温度为280℃~320℃。
进一步的,所述第二次快速退火的温度为500℃。
与现有技术相比,本发明具有以下优点:
1、本发明通过在硅锗层上形成一层外延硅层,用外延硅层代替硅锗层与镍铂反应生成镍自对准硅化物,降低工艺的退火温度,降低了工艺制作成本同时增大工艺窗口,并且避免镍自对准硅化物膜在退火后产生结块或锗扩散至膜表面等现象,提高镍自对准硅化物膜的均匀性,从而保证器件的电学性能;
2、与硅锗层和镍铂反应的现有技术相比,外延硅层和镍铂反应生成的镍自对准硅化物的电阻更低,降低了器件的功耗;
3、本发明采用的非晶化技术打乱了硅的晶格结构,使得生成的镍自对准硅化物膜层更加均匀,杜绝了倒刺结构的发生,从而避免器件的短路,增加了器件的可靠性。
附图说明
图1a~1c为现有技术中在硅锗层上形成镍自对准硅化物的结构示意图。
图2为本发明一实施例中在硅锗层上形成镍自对准硅化物的制作过程流程图。
图3a~3e为本发明一实施例中在硅锗层上形成镍自对准硅化物的结构示意图。
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容做进一步说明。当然本发明并不局限于该具体实施例,本领域的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
其次,本发明利用示意图进行了详细的表述,在详述本发明实例时,为了便于说明,示意图不依照一般比例局部放大,不应对此作为本发明的限定。
本发明的核心思想是:通过用外延硅层代替硅锗层与镍铂反应生成镍自对准硅化物,降低了工艺的退火温度,避免镍自对准硅化物膜在退火后产生结块或锗扩散至膜表面等现象,提高镍自对准硅化物膜的均匀性,从而保证器件的电学性能,同时通过降低电阻减小了器件的功耗。
图2为本发明一实施例中在硅锗层上形成镍自对准硅化物的制作过程流程图,如图2所示,本发明提出一种在硅锗层上形成镍自对准硅化物的工艺方法,包括以下步骤:
步骤S01:提供一半导体衬底,所述半导体衬底上形成有栅极以及硅锗源/漏级;
步骤S02:在硅锗层上外延一层硅;
步骤S03:对外延硅层进行非晶化处理;
步骤S04:在外延硅层上沉积镍铂层;
步骤S05:对外延硅层和镍铂层进行第一次快速退火;
步骤S06:湿法去除未反应的镍;
步骤S07:对外延硅层和镍铂层进行第二次快速退火。
图3a~3e为本发明一实施例中在硅锗层上形成镍自对准硅化物的结构示意图,请参考图2所示,并结合图3a~图3e,详细说明本发明提出的在硅锗层上形成镍自对准硅化物的工艺方法:
在步骤S01中,按照现有工艺在半导体衬底上形成栅极203以及硅锗源/漏极201和202,如图3a所示。
在步骤S02中,在源级201和漏极202上外延一层硅204,硅层204的厚度为
Figure BDA00003409568700049
,如图3b所示。
在步骤S03中,使用硅、锗或硅和锗的混合物作为注入材料,运用选择性离子注入的方法对外延硅204和栅极203进行非晶化处理,如图3c所示。非晶化处理打乱硅层204的晶格结构,防止形成的镍自对准硅化物沿着硅周期性晶格的特定方向成长。本实施例中注入能量为5Kev~50Kev,例如10Kev,20Kev,30Kev,40Kev,50Kev,其中较佳的能量为25Kev;离子流剂量为1.0×1013/厘米2~1.0×1016/厘米2,例如1.0×1013/厘米2,1.0×1014/厘米2,1.0×1015/厘米2,1.0×1016/厘米2,其中较佳的离子流剂量为1.0×1015/厘米2
在步骤S04中,在外延硅层204与栅极203上沉积镍铂层205,形成如图3d所示的结构。通过控制镍铂层205与硅层204的厚度,使镍铂层205与硅层204完全反应,不影响到硅锗层201和202。本实施例中,所述镍铂层205的厚度为
Figure BDA000034095687000410
例如其中较佳的厚度为
Figure BDA000034095687000412
在步骤S05中,第一次快速退火使镍铂与硅反应生成镍自对准硅化物。第一次快速退火的温度为280℃~320℃。
在步骤S06中,湿法去除未反应的镍。
在步骤S07中,进行第二次快速退火,最终形成镍自对准硅化物,如图3e所示。第二次快速退火的温度为500℃。
在本发明所提供的在硅锗层上形成镍自对准硅化物的工艺方法中,较佳的,所述硅层204与镍铂层205正好反应,无硅或镍铂层残留,从而不影响硅锗层201和202,可以通过调节工艺参数,如硅层204与镍铂层205的厚度、非晶化处理中注入的能量以及离子流剂量等来达到上述目的,因此在本发明的其他实施例中,可以选择不同的工艺参数:例如:所述外延硅层的厚度为
Figure BDA00003409568700053
所述非晶化处理注入的能量为5Kev~50Kev,离子流剂量为1.0×1013/厘米2~1.0×1016/厘米2;或者,所述外延硅层的厚度为所述非晶化处理注入的能量为5Kev~50Kev,离子流剂量为1.0×1014/厘米2~1.0×1016/厘米2
综上所述,本发明通过在硅锗层上形成一层外延硅层,用外延硅层代替硅锗层与镍铂反应生成镍自对准硅化物,降低工艺的退火温度,降低了工艺制作成本同时增大工艺窗口,并且避免镍自对准硅化物膜在退火后产生结块或锗扩散至膜表面等现象,提高镍自对准硅化物膜的均匀性,从而保证器件的电学性能;与硅锗层和镍铂反应的现有技术相比,外延硅层和镍铂反应生成的镍自对准硅化物的电阻更低,降低了器件的功耗;本发明采用的非晶化技术打乱了硅的晶格结构,使得生成的镍自对准硅化物膜层更加均匀,杜绝了倒刺结构的发生,从而避免器件的短路,增加了器件的可靠性。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (11)

1.一种在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,包括以下步骤:
提供一半导体衬底,所述半导体衬底上形成有栅极以及硅锗源/漏级;
在硅锗层上外延一层硅;
对外延硅层进行非晶化处理;
在外延硅层上沉积镍铂层;
对外延硅层和镍铂层进行第一次快速退火;
湿法去除未反应的镍;
对外延硅层和镍铂层进行第二次快速退火。
2.如权利要求1所述的在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,所述非晶化处理采用的材料为硅、锗或硅和锗的混合物。
3.如权利要求1所述的在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,所述非晶化处理采用选择性离子注入方法。
4.如权利要求3所述的在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,所述外延硅层的厚度为
Figure FDA00003409568600015
5.如权利要求4所述的在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,所述选择性离子注入方法注入的能量为5Kev~50Kev,离子流剂量为1.0×1013/厘米2~1.0×1016/厘米2
6.如权利要求4所述的在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,所述选择性离子注入方法注入的能量为5Kev~50Kev,离子流剂量为1.0×1014/厘米2~1.0×1016/厘米2
7.如权利要求3所述的在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,所述外延硅层的厚度为
Figure FDA00003409568600016
8.如权利要求7所述的在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,所述选择性离子注入方法注入的能量为5Kev~50Kev,离子流剂量为1.0×1013/厘米2~1.0×1016/厘米2
9.如权利要求1所述的在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,所述镍铂层的厚度为
Figure FDA00003409568600017
10.如权利要求1所述的在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,所述第一次快速退火的温度为280℃~320℃。
11.如权利要求1到10中任意一项所述的在硅锗层上形成镍自对准硅化物的工艺方法,其特征在于,所述第二次快速退火的温度为500℃。
CN2013102583236A 2013-06-26 2013-06-26 在硅锗层上形成镍自对准硅化物的工艺方法 Pending CN103337452A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2013102583236A CN103337452A (zh) 2013-06-26 2013-06-26 在硅锗层上形成镍自对准硅化物的工艺方法
US14/097,771 US20150004767A1 (en) 2013-06-26 2013-12-05 Method of forming nickel salicide on a silicon-germanium layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013102583236A CN103337452A (zh) 2013-06-26 2013-06-26 在硅锗层上形成镍自对准硅化物的工艺方法

Publications (1)

Publication Number Publication Date
CN103337452A true CN103337452A (zh) 2013-10-02

Family

ID=49245591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013102583236A Pending CN103337452A (zh) 2013-06-26 2013-06-26 在硅锗层上形成镍自对准硅化物的工艺方法

Country Status (2)

Country Link
US (1) US20150004767A1 (zh)
CN (1) CN103337452A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336600A (zh) * 2014-08-14 2016-02-17 中国科学院微电子研究所 形成金属硅化物的方法及其湿法腐蚀混合液配方

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989988A (en) * 1997-11-17 1999-11-23 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US6015752A (en) * 1998-06-30 2000-01-18 Advanced Micro Devices, Inc. Elevated salicide technology
US20040123922A1 (en) * 2002-12-31 2004-07-01 Cyril Cabral Retarding agglomeration of Ni monosilicide using Ni alloys
CN1649112A (zh) * 2003-11-17 2005-08-03 三星电子株式会社 镍-自对准硅化物工艺和利用该工艺制造半导体器件的方法
US20080119025A1 (en) * 2006-11-21 2008-05-22 O Sung Kwon Method of making a strained semiconductor device
CN103123897A (zh) * 2011-11-18 2013-05-29 茂达电子股份有限公司 萧基晶体管装置的制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718500B2 (en) * 2005-12-16 2010-05-18 Chartered Semiconductor Manufacturing, Ltd Formation of raised source/drain structures in NFET with embedded SiGe in PFET
US7682892B2 (en) * 2007-08-31 2010-03-23 Texas Instruments Incorporated MOS device and process having low resistance silicide interface using additional source/drain implant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989988A (en) * 1997-11-17 1999-11-23 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US6015752A (en) * 1998-06-30 2000-01-18 Advanced Micro Devices, Inc. Elevated salicide technology
US20040123922A1 (en) * 2002-12-31 2004-07-01 Cyril Cabral Retarding agglomeration of Ni monosilicide using Ni alloys
CN1649112A (zh) * 2003-11-17 2005-08-03 三星电子株式会社 镍-自对准硅化物工艺和利用该工艺制造半导体器件的方法
US20080119025A1 (en) * 2006-11-21 2008-05-22 O Sung Kwon Method of making a strained semiconductor device
CN103123897A (zh) * 2011-11-18 2013-05-29 茂达电子股份有限公司 萧基晶体管装置的制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336600A (zh) * 2014-08-14 2016-02-17 中国科学院微电子研究所 形成金属硅化物的方法及其湿法腐蚀混合液配方
CN105336600B (zh) * 2014-08-14 2019-04-19 中国科学院微电子研究所 形成金属硅化物的方法及其湿法腐蚀混合液配方

Also Published As

Publication number Publication date
US20150004767A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
CN101207011B (zh) 半导体器件的制造方法
US7553763B2 (en) Salicide process utilizing a cluster ion implantation process
CN110491944A (zh) P型mosfet及其制造方法
US8546259B2 (en) Nickel silicide formation for semiconductor components
US20110266596A1 (en) Semiconductor device and method of making the same
US9231079B1 (en) Stress memorization techniques for transistor devices
Duffy et al. Germanium doping challenges
CN102418149A (zh) 低温快速热处理的温度监控方法
CN101740514B (zh) Mos晶体管及其制作方法
TWI531004B (zh) 半導體晶片製造方法
CN110473781A (zh) 镍硅化物的制造方法
CN103337452A (zh) 在硅锗层上形成镍自对准硅化物的工艺方法
US8470703B2 (en) Semiconductor device and method of fabricating the same
WO2005096357A1 (ja) 半導体装置の製造方法
US8815738B2 (en) Salicide process
CN115458397A (zh) 氮氧化硅薄膜的制造方法
CN112885716B (zh) 半导体结构的形成方法
CN112928016A (zh) 用于晶圆的快速退火工艺
US8409975B1 (en) Method for decreasing polysilicon gate resistance in a carbon co-implantation process
US9006104B2 (en) Methods of forming metal silicide regions on semiconductor devices using millisecond annealing techniques
TWI492285B (zh) 金屬半導體化合物形成方法
US20080057685A1 (en) Method for forming doped metal-semiconductor compound regions
CN104752182B (zh) 一种利用Ti***层制作NiSiGe材料的方法
CN104282622A (zh) 集成电路的接触孔制造方法
CN103779280A (zh) 高介电层金属栅器件的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131002