CN103337057B - Based on the motion blur image blind restoration method of multiple dimensioned self similarity - Google Patents

Based on the motion blur image blind restoration method of multiple dimensioned self similarity Download PDF

Info

Publication number
CN103337057B
CN103337057B CN201310283054.9A CN201310283054A CN103337057B CN 103337057 B CN103337057 B CN 103337057B CN 201310283054 A CN201310283054 A CN 201310283054A CN 103337057 B CN103337057 B CN 103337057B
Authority
CN
China
Prior art keywords
msub
mrow
image
solving
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310283054.9A
Other languages
Chinese (zh)
Other versions
CN103337057A (en
Inventor
张艳宁
李海森
张海超
孙瑾秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201310283054.9A priority Critical patent/CN103337057B/en
Publication of CN103337057A publication Critical patent/CN103337057A/en
Application granted granted Critical
Publication of CN103337057B publication Critical patent/CN103337057B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)

Abstract

The invention discloses a kind of motion blur image blind restoration method based on multiple dimensioned self similarity, for solving the technical matters of conventional images blind restoration method restored image weak effect.Technical scheme is incorporated in image restoration problem using Image Multiscale self-similarity nature as prior imformation, using prior-constrained as next yardstick of the picture rich in detail of a upper size estimation, carry out image restoration, decrease the ringing effect of restored image at strong edge, image more clearly can be obtained.Improve the effect of restored image.

Description

Motion blurred image blind restoration method based on multi-scale self-similarity
Technical Field
The invention relates to an image blind restoration method, in particular to a motion blurred image blind restoration method based on multi-scale self-similarity.
Background
The document "robust blind restoration of motion blurred images based on edge information, photoelectronic laser 2011, Vol22(10), p 1982-1989" proposes a robust image blind restoration method for solving a blur kernel from a single blurred image and deblurring the image. The method comprises the steps of firstly estimating edge information of a non-fuzzy image through a bilateral filter and a shock wave filter, then solving a fuzzy core according to an edge relation between the fuzzy image and the non-fuzzy image, and finally setting self-adaptive parameters for each sub-algorithm under a multi-scale framework to construct a steady image blind restoration method. The method has good restoration effect on the blurred and degraded image, effectively removes motion blur and noise, and can keep edge details to a certain extent. The method disclosed by the literature is characterized in that fuzzy kernel solution is based on estimated non-fuzzy image edge information, the edge information of a fuzzy image is difficult to estimate due to diversity and complexity of the fuzzy image, so that fuzzy kernel estimation is wrong, and meanwhile, due to the ill-posed characteristic of a deconvolution problem, a final result generates a ringing effect at a strong edge due to a wrong fuzzy kernel, so that a final recovery result is seriously influenced.
Disclosure of Invention
In order to overcome the defect that the conventional image blind restoration method is poor in image restoration effect, the invention provides a motion blurred image blind restoration method based on multi-scale self-similarity. According to the method, the multi-scale self-similarity characteristic of the image is introduced into the image restoration problem as prior information, the clear image estimated in the previous scale is used as prior constraint of the next scale for image restoration, the ringing effect of the restored image at a strong edge is reduced, and a clearer image can be obtained. The effect of restoring the image can be improved.
The technical scheme adopted by the invention for solving the technical problems is as follows: a blind restoration method of a motion blurred image based on multi-scale self-similarity is characterized by comprising the following steps:
step one, carrying out multi-scale down-sampling on a blurred image B, wherein B is respectivelyo,B1,…Bs,…,BSWhere S is the number of downsamplings, B0=B,Bs=DBs-1And D is a down-sampling operator. The smaller s is, the larger the image scale is, and when s is 0, the original blurred image is obtained.
And step two, carrying out optimization solution on the blurred image with the scale S from S to 0 according to the following optimization functions in sequence:
<math> <mrow> <mo>{</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>}</mo> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> </mrow> </munder> <mo>{</mo> <mi>&alpha;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&lambda;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>-</mo> <msup> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&tau;</mi> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>G</mi> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mi>&eta;</mi> </msup> <mo>+</mo> <mi>&beta;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>}</mo> <mo></mo> <mo></mo> </mrow> </math> (1)
in the formula, Ks,LsThe scale of each is estimated as the blur kernel and sharp image under s, G is the gradient extraction filter bank,for the two-dimensional convolution operation, α, λ, τ, β are regularization coefficients, η is a norm selection parameter,to calculateEta norm of, Ls′=D-1Ls+1,D-1The inverse operation of the down-sampling operator D is the corresponding up-sampling. It should be noted that when S ═ S, S +1 does not exist, and in this case, the optimization function is:
<math> <mrow> <mo>{</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>}</mo> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> </mrow> </munder> <mo>{</mo> <mi>&alpha;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&tau;</mi> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>G</mi> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mi>&eta;</mi> </msup> <mo>+</mo> <mi>&beta;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>}</mo> <mo></mo> <mo></mo> </mrow> </math> (2)
for the solution of the expressions (1) and (2), first, L is calculatedsInitialization is carried out, and then the following steps 1 and 2 are executed in a circulating mode until the iteration is carried out to the set iteration number T.
1. Fixed LsSolving the fuzzy kernel Ks
In this case, the objective functions of both the equations (1) and (2) are simplified as follows:
<math> <mrow> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <msub> <mi>K</mi> <mi>s</mi> </msub> </munder> <mo>{</mo> <mi>&alpha;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mrow> <mo>-</mo> <mi>K</mi> </mrow> <mi>s</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&beta;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>}</mo> </mrow> </math> (3)
(3) the formula is solved through conjugate gradient to accelerate solving speed, and the solving formula is converted into:
(4)
wherein F (. cndot.) and F-1(. cndot.) is respectively the forward transform and inverse transform of two-dimensional fast Fourier transform,is the conjugate of F (·), o is the dot product operation of the matrix, and I is the identity matrix. Solving the formula (4) to obtain the current image fuzzy kernel Ks
2. Fixed KsSolving for sharp image Ls
When S ═ S, the optimization function (2) is simplified to the following equation:
<math> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> </mrow> </munder> <mo>{</mo> <mi>&alpha;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&tau;</mi> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>G</mi> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mi>&eta;</mi> </msup> <mo>}</mo> <mo></mo> <mo></mo> </mrow> </math> (5)
when S ≠ S, the optimization function (1) is simplified to:
<math> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> </mrow> </munder> <mo>{</mo> <mi>&alpha;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&lambda;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>-</mo> <msup> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&tau;</mi> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>G</mi> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mi>&eta;</mi> </msup> <mo>}</mo> <mo></mo> <mo></mo> </mrow> </math> (6)
suppose that the gradient filter bank G consists of C gradient filters G1,G2,...,GC]The components of the formula (5) and the formula (6) comprise eta norm, and the approximation solution is carried out by an iterative weighted minimum mean square error method, and the steps are as follows:
and (3) iteratively solving the following steps 1) and 2) until the iteration is carried out to the set iteration number M.
1) Calculating C weighting matrices, each being ω12,...,ωCAnd the dimension of each weighting matrix is equal to LsSame for the c-th weighting matrix omegacThe method comprises the following steps:
<math> <mrow> <msubsup> <mi>&omega;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>c</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo>|</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>c</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>|</mo> </mrow> <mrow> <mi>&alpha;</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> </mrow> </math> (7)
wherein,to representThe element in the ith row and the jth column of the matrix after convolution.
2) The solution of equation (5) is approximated as
(8)
(6) The solution of equation is approximated as
(9)
(8) The equations (9) and (2) are 2 norm constraint solving problems
(10)
(11)
Only need to make E1、E2To LsIs 0, is solved by a conjugate gradient descent method to obtain the L solved by the current iterations
Step three, making L equal to L0And L is the solved sharp image.
The invention has the beneficial effects that: according to the method, the multi-scale self-similarity characteristic of the image is introduced into the image restoration problem as prior information, and the clear image estimated in the previous scale is used as the prior constraint of the next scale for image restoration, so that the ringing effect of the restored image at a strong edge is reduced, and a clearer image can be obtained. The effect of restoring the image is improved.
The present invention will be described in detail with reference to the following embodiments.
Detailed Description
The blind restoration method of the motion blurred image based on the multi-scale self-similarity comprises the following specific steps:
1. carrying out multi-scale down-sampling on the blurred image B, wherein B is respectivelyo,B1,…Bs,…,BSWhere S is the number of downsamplings, B0=B,Bs=DBs-1And D is a down-sampling operator. The smaller s is, the larger the image scale is, and when s is 0, the original blurred image is obtained. In this example, S is 3 and D is 0.5 times down-sampled, e.g., Bs-1Has an image size of 256 × 256, then passes through Bs=DBs-1Then, BsHas an image size of Bs-1Is 0.5 times of the total weight of the powder, namely 128 multiplied by 128.
2. And (3) carrying out optimization solution on the blurred image with the scale s from 3 to 0 according to the following optimization functions in sequence:
<math> <mrow> <mo>{</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>}</mo> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> </mrow> </munder> <mo>{</mo> <mi>&alpha;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&lambda;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>-</mo> <msup> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&tau;</mi> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>G</mi> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mi>&eta;</mi> </msup> <mo>+</mo> <mi>&beta;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>}</mo> <mo></mo> <mo></mo> </mrow> </math> (1)
in the above formula, Ks,LsThe scales of the image blur kernel and the clear image are estimated under s, G is a gradient extraction filter bank, alpha, lambda, tau and beta are regularization coefficients, eta is a norm selection parameter,to calculateEta norm of, Ls′=D-1Ls+1,D-1The inverse operation of the down-sampling operator D is the corresponding up-sampling. In this embodiment, α is 0.1, λ is 0.006, τ is 2000, β is 0.1, and η is 0.8. It should be noted that when s is 3, the optimization function is:
<math> <mrow> <mo>{</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>}</mo> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> </mrow> </munder> <mo>{</mo> <mi>&alpha;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&tau;</mi> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>G</mi> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mi>&eta;</mi> </msup> <mo>+</mo> <mi>&beta;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>}</mo> <mo></mo> <mo></mo> </mrow> </math> (2)
the solution of equations (1) and (2) is mainly performed by a method according to which alternating iterations are employed. First, for LsInitialization is carried out, and then the following steps 1 and 2 are executed in a circulating mode until the iteration is carried out to the set iteration number T.
2.1 fixation of LsSolving the fuzzy kernel Ks
In this case, the objective functions of both the equations (1) and (2) can be simplified as follows:
<math> <mrow> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <msub> <mi>K</mi> <mi>s</mi> </msub> </munder> <mo>{</mo> <mi>&alpha;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mrow> <mo>-</mo> <mi>K</mi> </mrow> <mi>s</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&beta;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>}</mo> </mrow> </math> (3)
the formula can be solved through conjugate gradient to accelerate the solving speed, and the solving formula can be converted into:
(4)
in the above formula, F (-) and F-1(. cndot.) is respectively the forward transform and inverse transform of two-dimensional fast Fourier transform,is the conjugate of F (·), o is the dot product operation of the matrix, and I is the identity matrix. Solving the formula (4) to obtain the current image blur kernel Ks
2.2 fixed KsSolving for sharp image Ls
When S ═ S, the optimization function (2) can be simplified to the following equation:
<math> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> </mrow> </munder> <mo>{</mo> <mi>&alpha;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&tau;</mi> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>G</mi> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mi>&eta;</mi> </msup> <mo>}</mo> <mo></mo> <mo></mo> </mrow> </math> (5)
when S ≠ S, the optimization function (1) can be simplified as:
<math> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> </mrow> </munder> <mo>{</mo> <mi>&alpha;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&lambda;</mi> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>-</mo> <msup> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mi>&tau;</mi> <msup> <mrow> <mo>|</mo> <mo>|</mo> <mi>G</mi> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mi>&eta;</mi> </msup> <mo>}</mo> <mo></mo> <mo></mo> </mrow> </math> (6)
suppose that the gradient filter bank G consists of 5 gradient filters G1,G2,G3,G4,G5](G1=[1,-1],G2=[1,-1]T,G3=[1,-2,1],G4=[1,-2,1]T,G5=[1,-1;-1,1]) Composition, in this case, C ═ 5. (5) The formula (6) and the formula (eta norm) can be approximately solved by an iterative weighted least mean square error method, and the method comprises the following steps:
and (3) iteratively solving the following steps 1) and 2) until the iteration is carried out until the set iteration number M is 20.
1) Calculate 5 weighting matrices, each ω12,...,ω5And the dimension of each weighting matrix is equal to LsSame for the c-th weighting matrix omegacThe method comprises the following steps:
<math> <mrow> <msubsup> <mi>&omega;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>c</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo>|</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>c</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>|</mo> </mrow> <mrow> <mi>&alpha;</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> </mrow> </math> (7)
wherein,to representThe element in the ith row and the jth column of the matrix after convolution.
2) The solution of equation (5) can be approximated as
(8)
(6) The solution of the formula can be approximated as
(9)
(8) The equations (9) and (2) are 2 norm constraint solving problems
(10)
(11)
Only need to make E1、E2To LsThe derivative is 0, and the solution is carried out by using a conjugate gradient descent method, so that the L solved by the current iteration can be obtaineds
3. Finally, let L equal to L0At this time, L is a clear image for solution.

Claims (1)

1. A blind restoration method of a motion blurred image based on multi-scale self-similarity is characterized by comprising the following steps:
step one, carrying out multi-scale down-sampling on a blurred image B, wherein B is respectivelyo,B1,…Bs,…,BSWhere S is the number of downsamplings, B0=B,Bs=DBs-1D is a down-sampling operator; the smaller s is, the larger the image scale is, and when s is 0, the original blurred image is obtained;
and step two, carrying out optimization solution on the blurred image with the scale S from S to 0 according to the following optimization functions in sequence:
(1)
in the formula, Ks,LsThe scale of each is estimated as the blur kernel and sharp image under s, G is the gradient extraction filter bank,for the two-dimensional convolution operation, α, λ, τ, β are regularization coefficients, η is a norm selection parameter,to calculateEta norm of, Ls′=D-1Ls+1,D-1Performing inverse operation of the down-sampling operator D, namely corresponding up-sampling; it should be noted that when S ═ S, S +1 does not exist, and in this case, the optimization function is:
(2)
for the solution of the expressions (1) and (2), first, L is calculatedsInitializing, and then circularly executing the following steps 1 and 2 until the iteration is carried out to a set iteration time T;
1. fixed LsSolving the fuzzy kernel Ks
In this case, the objective functions of both the equations (1) and (2) are simplified as follows:
(3)
(3) the formula is solved through conjugate gradient to accelerate solving speed, and the solving formula is converted into:
(4)
wherein F (. cndot.) and F-1(. cndot.) is respectively the forward transform and inverse transform of two-dimensional fast Fourier transform,is the conjugate of F (·), is the dot product operation of the matrix, and I is the identity matrix; solving the formula (4) to obtain the current image fuzzy kernel Ks
2. Fixed KsSolving for sharp image Ls
When S ═ S, the optimization function (2) is simplified to the following equation:
(5)
when S ≠ S, the optimization function (1) is simplified to:
(6)
suppose that the gradient filter bank G consists of C gradient filters G1,G2,...,GC]The components of the formula (5) and the formula (6) comprise eta norm, and the approximation solution is carried out by an iterative weighted minimum mean square error method, and the steps are as follows:
iteratively solving the following steps 1) and 2) until iteration reaches a set iteration number M;
1) calculating C weighting matrices, each being ω12,...,ωCAnd the dimension of each weighting matrix is equal to LsSame for the c-th weighting matrix omegacThe method comprises the following steps:
(7)
wherein,to representThe element of the ith row and the jth column of the matrix after convolution;
2) the solution of equation (5) is approximated as
(8)
(6) The solution of equation is approximated as
(9)
(8) The equations (9) and (2) are 2 norm constraint solving problems
(10)
(11)
Only need to make E1、E2To LsIs 0, is solved by a conjugate gradient descent method to obtain the L solved by the current iterations
Step three, making L equal to L0And L is the solved sharp image.
CN201310283054.9A 2013-07-05 2013-07-05 Based on the motion blur image blind restoration method of multiple dimensioned self similarity Active CN103337057B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310283054.9A CN103337057B (en) 2013-07-05 2013-07-05 Based on the motion blur image blind restoration method of multiple dimensioned self similarity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310283054.9A CN103337057B (en) 2013-07-05 2013-07-05 Based on the motion blur image blind restoration method of multiple dimensioned self similarity

Publications (2)

Publication Number Publication Date
CN103337057A CN103337057A (en) 2013-10-02
CN103337057B true CN103337057B (en) 2015-12-02

Family

ID=49245207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310283054.9A Active CN103337057B (en) 2013-07-05 2013-07-05 Based on the motion blur image blind restoration method of multiple dimensioned self similarity

Country Status (1)

Country Link
CN (1) CN103337057B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021529B (en) * 2014-06-17 2017-01-11 中国电子科技集团公司第二十八研究所 Blurred image non-blind restoration method
CN104134196B (en) * 2014-08-08 2017-02-15 重庆大学 Split Bregman weight iteration image blind restoration method based on non-convex higher-order total variation model
CN104851079B (en) * 2015-05-06 2016-07-06 中国人民解放军国防科学技术大学 Low-light (level) license plate image restoration methods based on noise/broad image pair
CN105160687B (en) * 2015-10-21 2018-01-02 华中科技大学 A kind of Pneumatic optical heat radiated noise bearing calibration and system
CN105976332B (en) * 2016-05-03 2019-03-01 北京大学深圳研究生院 Image deblurring method based on bright fringes information in image
CN105957043B (en) * 2016-06-22 2018-12-14 西北工业大学 The blurred picture blind restoration method activated automatically based on gradient
CN107742278B (en) * 2017-10-25 2021-07-13 重庆邮电大学 Binding of L0Motion blurred image blind restoration method based on norm and spatial scale information
CN110517197B (en) * 2019-08-16 2022-09-09 西北工业大学 Single image deblurring method based on parameter model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359398A (en) * 2008-06-16 2009-02-04 北京航空航天大学 Blind restoration method for moving blurred image
CN103049891A (en) * 2013-01-25 2013-04-17 西安电子科技大学 Video image deblurring method based on self-adaption window selection
CN103093436A (en) * 2013-01-29 2013-05-08 南京理工大学 Blurring kernel multi-scale iteration estimation method using directional derivative of image local structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702003B2 (en) * 2011-11-18 2014-04-22 Honeywell International Inc. Bar code readers and methods of reading bar codes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359398A (en) * 2008-06-16 2009-02-04 北京航空航天大学 Blind restoration method for moving blurred image
CN103049891A (en) * 2013-01-25 2013-04-17 西安电子科技大学 Video image deblurring method based on self-adaption window selection
CN103093436A (en) * 2013-01-29 2013-05-08 南京理工大学 Blurring kernel multi-scale iteration estimation method using directional derivative of image local structure

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Haichao Zhang 等.Multi-image Blind Deblurring Using a Coupled Adaptive Sparse Prior.《Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on》.2013,1051-1058. *
基于联合规整化约束的图像盲复原;王艮化 等;《燕山大学学报》;20120131;第36卷(第1期);50-56 *
戴朝约 等.基于边缘信息的运动模糊图像的鲁棒盲复原.《光电子·激光》.2011,第22卷(第10期),1588-1592. *
李信一 等.基于稀疏表示的单帧运动图像盲复原.《计算机应用研究》.2013,第30卷(第4期),1212-1215. *

Also Published As

Publication number Publication date
CN103337057A (en) 2013-10-02

Similar Documents

Publication Publication Date Title
CN103337057B (en) Based on the motion blur image blind restoration method of multiple dimensioned self similarity
CN103337058B (en) Based on the method for blindly restoring image of fuzzy noise image to combined optimization
CN110969577B (en) Video super-resolution reconstruction method based on deep double attention network
Yokota et al. Missing slice recovery for tensors using a low-rank model in embedded space
CN112419184B (en) Spatial attention map image denoising method integrating local information and global information
CN104599242B (en) Use the fuzzy core method of estimation of multiple dimensioned non local canonical
CN104134196B (en) Split Bregman weight iteration image blind restoration method based on non-convex higher-order total variation model
CN106709877B (en) A kind of image deblurring method based on multi-parameter canonical Optimized model
CN105469363B (en) Method and apparatus based on blurred picture generation clear image
CN103413277B (en) Blind camera shake deblurring method based on L0 sparse priors
CN102194216A (en) Image processing apparatus, image processnig method, and program
CN104112261A (en) Norm ratio regularization based rapid image blind deblurring method
KR102061967B1 (en) Method for processing x-ray computed tomography image using artificial neural network and apparatus therefor
CN110675347A (en) Image blind restoration method based on group sparse representation
CN108648162B (en) Gradient-related TV factor image denoising and deblurring method based on noise level
CN103761710A (en) Image blind deblurring method based on edge self-adaption
CN112581378B (en) Image blind deblurring method and device based on significance strength and gradient prior
CN114723630A (en) Image deblurring method and system based on cavity double-residual multi-scale depth network
CN108122262B (en) Sparse representation single-frame image super-resolution reconstruction algorithm based on main structure separation
Liu et al. Lo-regularized hybrid gradient sparsity priors for robust single-image blind deblurring
CN115345791A (en) Infrared image deblurring algorithm based on attention mechanism residual error network model
CN102682437A (en) Image deconvolution method based on total variation regularization
Chua et al. Enhanced image super-resolution technique using convolutional neural network
Canh et al. Compressive sensing reconstruction via decomposition
CN101567079A (en) Method for restoring motion blurred image based on Hopfield neural network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant