CN103311935B - Comprehensive compensation instruction current obtaining method of angle-shaped chain-type SVG (static var generator) of power distribution network - Google Patents

Comprehensive compensation instruction current obtaining method of angle-shaped chain-type SVG (static var generator) of power distribution network Download PDF

Info

Publication number
CN103311935B
CN103311935B CN201310249997.XA CN201310249997A CN103311935B CN 103311935 B CN103311935 B CN 103311935B CN 201310249997 A CN201310249997 A CN 201310249997A CN 103311935 B CN103311935 B CN 103311935B
Authority
CN
China
Prior art keywords
mtd
mrow
mtr
current
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310249997.XA
Other languages
Chinese (zh)
Other versions
CN103311935A (en
Inventor
罗安
何志兴
熊桥坡
马伏军
黎小聪
刘月华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201310249997.XA priority Critical patent/CN103311935B/en
Publication of CN103311935A publication Critical patent/CN103311935A/en
Application granted granted Critical
Publication of CN103311935B publication Critical patent/CN103311935B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

The invention discloses an comprehensive compensation instruction current obtaining method of an angle-shaped chain-type SVG of a power distribution network. The method comprises the following steps of detecting load currents of ila, ilb and ilc; obtaining load current fundamental active components through ip-iq conversion based on an instantaneous reactive power theory and LPF (lowpass filtering); subtracting the load current fundamental active components from the load current and negating the calculation result to obtain line current compensation instruction signal load currents ia*, ib*, ic* which contain fundamental reactive components, fundamental negative sequence components and reactive components; performing matrix transformation and LPF on the line current compensation instruction signal load currents to obtain a fundamental negative sequence active component and a fundamental negative sequence negative component; and multiplying the fundamental negative sequence active component and the fundamental negative sequence negative component with cos (omega t) and sin (omega t) respectively to obtain a zero sequence loop current instruction i0*, and combining the line current compensation instruction with the zero sequence loop current instruction to obtain an angle-shaped chain-type SVG phase current instruction iab*, ibc* and ica*. The comprehensive compensation instruction current obtaining method of the angle-shaped chain-type SVG of the power distribution networkload current instantaneous value takes load current instantaneous value to achieve simple calculation and can be effectively combined with an existing single-phase chain-type SVG control strategy to achieve an angle-shaped chain-type SVG comprehensive compensation function.

Description

Power distribution network angular chain type SVG comprehensive compensation instruction current acquisition method
Technical Field
The invention relates to a power distribution network angular chain type SVG comprehensive compensation instruction current acquisition method.
Background
Nonlinear loads exist in a power distribution network, a large amount of reactive, negative sequence and harmonic currents are generated, electric energy loss of a power system is caused, and safe operation of the system is threatened. In order to eliminate the influence of nonlinear loads on a power grid, many scholars research the control of the power quality of medium and high voltage distribution networks. The compensation current can be classified into: reactive current compensation of the power grid, fundamental negative sequence current compensation and harmonic current compensation. The common power quality control device for the power distribution network only performs reactive compensation or harmonic control on the power grid, and has a complex structure and a large volume. The SVG that adopts angular form chain structure does not need the transformer can directly be applied to in, high voltage distribution network, and angular form chain SVG is three-phase triangle-shaped connection structure, and angular form chain SVG each looks cascade by a plurality of H bridges and constitute, and the H bridge includes single-phase bridge converter and the parallelly connected direct current side electric capacity with single-phase bridge converter, and the H bridge includes single-phase bridge converter and direct current side electric capacity. The angular chained SVG is connected between a three-phase power grid and a three-phase load in parallel. At present, students apply chain type SVG to medium and high voltage power distribution networks for reactive power compensation or harmonic wave treatment, and the angular chain type SVG is rarely considered for carrying out comprehensive compensation function on reactive power, negative sequence and harmonic wave and researching control command signals of the reactive power, negative sequence and harmonic wave.
Theoretically, a detection method based on Steinmetz principle and an ip-iq harmonic detection method based on instantaneous power theory can be combined for obtaining phase current instruction signals required by reactive, negative sequence and harmonic current comprehensive compensation, but the algorithm is complex and the engineering is difficult to realize, and the method for obtaining the angular chained SVG comprehensive compensation instruction current of the power distribution network has important significance on medium and high voltage power quality control.
Disclosure of Invention
The invention aims to solve the technical problem that aiming at the defects of the prior art, the invention provides the method for acquiring the angular chained SVG comprehensive compensation command current of the power distribution network, solves the problem of electric energy quality caused by reactive power, negative sequence and harmonic in a medium-voltage and high-voltage power distribution network, simply and quickly calculates the reactive power, negative sequence and harmonic comprehensive compensation command signal in the power distribution network, and effectively combines the method with the existing single-phase chained SVG control strategy to realize the angular chained SVG comprehensive compensation function.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows: the utility model provides a distribution network angular form chain SVG comprehensive compensation instruction electric current acquisition method, is including the angular form chain SVG that is used for idle work, negative sequence and harmonic comprehensive compensation, angular form chain SVG is three-phase triangle-shaped connection structure, angular form chain SVG each is cascaded by a plurality of H bridges and is constituteed mutually, between angular form chain SVG parallel access three-phase electric wire netting and the load, this method is:
1) detecting three-phase load current ila、ilb、ilc
2) The three-phase load current is subjected to ip-iq current transformation and low-pass filtering based on the instantaneous reactive power theory to obtain a load current fundamental wave active component;
3) subtracting the load current base from the three-phase load currentObtaining the SVG line current instruction signal containing the fundamental wave reactive component, the fundamental wave negative sequence component and the harmonic component by taking the wave active component and negating
4) Will three-phase load current ila、ilb、ilcTransformed matrix Cabc/dq -Obtaining the active component of the fundamental negative sequence by low-pass filteringAnd fundamental negative sequence reactive component
5) According to the negative sequence active component of the fundamental waveAnd fundamental negative sequence reactive componentReference instruction for calculating zero sequence circulating current instantaneous value
<math> <mrow> <msup> <msub> <mi>i</mi> <mn>0</mn> </msub> <mo>*</mo> </msup> <mo>=</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>3</mn> </mfrac> <mrow> <mo>(</mo> <msup> <msub> <mi>I</mi> <mi>q</mi> </msub> <mi>n</mi> </msup> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <msup> <msub> <mi>I</mi> <mi>p</mi> </msub> <mi>n</mi> </msup> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> </mrow> </math>
Omega is the angular frequency of the three-phase power grid voltage;
6) utilizing SVG line current command signalsReference instruction of zero-sequence circulating current instantaneous valueSynthesizing angular chained SVG phase current control instructions
i ab * i bc * i ca * = 1 3 i a * - i b * i b * - i c * i c * - i a * + i 0 * i 0 * i 0 * .
In step 4), the active component of the fundamental negative sequenceAnd a reactive componentThe calculation formula is as follows:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <msub> <mi>i</mi> <mi>p</mi> </msub> <mi>n</mi> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <msub> <mi>i</mi> <mi>q</mi> </msub> <mi>n</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>+</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>+</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>la</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>lb</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>lc</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
compared with the prior art, the invention has the beneficial effects that: the power distribution network angular chained SVG comprehensive compensation command current acquisition method provided by the invention can provide command basis for a medium and high voltage power distribution network power quality control device, the superposed zero sequence circulating current can maintain the stability of the capacitance voltage at the direct current side of each phase link, the command current calculation is simple, the engineering realization is easy, and the power quality control of the medium and high voltage power distribution network can be realized by combining with the existing single-phase chained SVG control strategy.
Drawings
FIG. 1 is a schematic diagram of an angular chained SVG for reactive, negative sequence and harmonic comprehensive compensation;
FIG. 2 is a diagram of negative sequence compensation and zero sequence circulating phasor according to an embodiment of the present invention;
FIG. 3 is a schematic diagram of phase current command signal acquisition according to an embodiment of the present invention;
FIG. 4 is a block diagram of an angular chained SVG control for current integration compensation according to an embodiment of the present invention; FIG. 4(a) control block diagram of an AB chain link main module in an angular chained SVG; FIG. 4(b) is a control block diagram of an AB chain link slave module in an angular chained SVG;
FIG. 5 is a diagram of an angular chained SVG comprehensive compensation simulation effect according to an embodiment of the present invention; FIG. 5(a) is a load current waveform; FIG. 5(b) is a zero sequence circulating current command signal waveform; FIG. 5(c) is a waveform of the integrated compensated phase current command signal; FIG. 5(d) is an angular chained SVG output phase current waveform; fig. 5(e) shows a net-side current waveform.
Detailed Description
As shown in figure 1, the angular chained SVG is connected to a three-phase three-wire system power distribution network and is used for compensating reactive, negative sequence and harmonic currents caused by nonlinear loads. The angle chain type SVG is three-phase triangle-shaped connection structure, and each looks of angle chain type SVG is cascaded by a plurality of H bridges and is constituteed, and the H bridge includes single-phase bridge type converter and the parallelly connected direct current side electric capacity with single-phase bridge type converter, and the H bridge includes single-phase bridge type converter and direct current side electric capacity. Load current ila、ilb、ilcThe system comprises active power, reactive power, a negative sequence and harmonic current, wherein the reactive power, the negative sequence and the harmonic current are injected into a power grid to cause power loss of the power grid and threaten the stable operation of the system. Angular chained SVG line current ia、ib、icThe amplitude of the current is the same as that of reactive, negative sequence and harmonic current in the load current, and the direction of the current is opposite to that of the reactive, negative sequence and harmonic current in the load current. The angular chained SVG line current and the load current are superposed to eliminate reactive power, negative sequence and harmonic current in the network side current, and the power quality of the power grid is ensured. Zero sequence circulating current i0The current flows in the angle, so that the phase current phasor is perpendicular to the line voltage, and the voltage on the direct current side of each phase link is maintained to be stable.
Fig. 2 is a negative sequence compensation and zero sequence circulating phasor diagram.
The phase current command signals for supplementing reactive, negative sequence and harmonics are decomposed as follows:
wherein,is the amplitude of the fundamental positive sequence reactive component, I-Is a negative sequence of fundamental wavesMagnitude of component, θ-Is the initial phase angle, i, of the negative sequence component of the fundamental waveah、ibh、ibhAre harmonic components.
The three-phase symmetrical grid voltage is:
U ab U bc U ca = 3 2 U s + j U s 2 - jU s - 3 2 U s + j U s 2 - - - ( 2 )
wherein, UsIs the amplitude of the line voltage.
Negative sequence component I in phase current command signalab -、Ibc -、Ica -Are respectively as
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <msub> <mi>I</mi> <mi>ab</mi> </msub> <mo>-</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <msub> <mi>I</mi> <mi>bc</mi> </msub> <mo>-</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <msub> <mi>I</mi> <mi>ca</mi> </msub> <mo>-</mo> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> <msup> <mi>I</mi> <mo>-</mo> </msup> </mrow> <mn>3</mn> </mfrac> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>-</mo> <mi>&pi;</mi> <mo>/</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>-</mo> <mi>&pi;</mi> <mo>/</mo> <mn>6</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>+</mo> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>+</mo> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>-</mo> <mn>5</mn> <mi>&pi;</mi> <mo>/</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>-</mo> <mn>5</mn> <mi>&pi;</mi> <mo>/</mo> <mn>6</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
The negative sequence components in the zero sequence circulation and phase current instruction signals are superposed to obtain phasor Iab、Ibc、Ica
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mi>ab</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>bc</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>ca</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> <msup> <mi>I</mi> <mo>-</mo> </msup> </mrow> <mn>3</mn> </mfrac> <mi>cos</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>-</mo> <mi>&pi;</mi> <mo>/</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>X</mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> <msup> <mi>I</mi> <mo>-</mo> </msup> </mrow> <mn>3</mn> </mfrac> <mi>cos</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>+</mo> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>X</mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> <msup> <mi>I</mi> <mo>-</mo> </msup> </mrow> <mn>3</mn> </mfrac> <mi>cos</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>-</mo> <mn>5</mn> <mi>&pi;</mi> <mo>/</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>X</mi> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mi>j</mi> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> <msup> <mi>I</mi> <mo>-</mo> </msup> </mrow> <mn>3</mn> </mfrac> <mi>sin</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>-</mo> <mi>&pi;</mi> <mo>/</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>Y</mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> <msup> <mi>I</mi> <mo>-</mo> </msup> </mrow> <mn>3</mn> </mfrac> <mi>sin</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>+</mo> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>Y</mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> <msup> <mi>I</mi> <mo>-</mo> </msup> </mrow> <mn>3</mn> </mfrac> <mi>sin</mi> <mrow> <mo>(</mo> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> <mo>-</mo> <mn>5</mn> <mi>&pi;</mi> <mo>/</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>Y</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, zero sequence circulating component I0Comprises the following steps:
I0=X+jY (5)
wherein X is the real axis component of the zero sequence current, and Y is the imaginary axis component of the zero sequence current.
The phase current phasor is perpendicular to the line voltage so as to maintain the stable solving of the capacitance voltage at the direct current side of each phase link to obtain a zero-sequence circulating current phasor expression
<math> <mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msup> <mi>I</mi> <mo>-</mo> </msup> <msup> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mo>-</mo> </msup> <mo>-</mo> <msup> <mi>jI</mi> <mo>-</mo> </msup> <msup> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mo>-</mo> </msup> </mrow> <msqrt> <mn>3</mn> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Fig. 3 is a schematic diagram of phase current command signal acquisition.
Load current ila、ilb、ilcTransformed matrix Cabc/dq -Obtaining the active component of the fundamental negative sequence by low-pass filteringAnd a reactive component
Wherein the expression of the transformation matrix is:
<math> <mrow> <msubsup> <mi>C</mi> <mrow> <mi>abc</mi> <mo>/</mo> <mi>dq</mi> </mrow> <mo>-</mo> </msubsup> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>+</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>+</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
negative sequence current amplitude I in AND-line current command signal-And initial phase angle theta-The relationship of (a) to (b) is as follows:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <msub> <mi>I</mi> <mi>p</mi> </msub> <mi>n</mi> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <msub> <mi>I</mi> <mi>q</mi> </msub> <mi>n</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <msup> <mi>I</mi> <mo>-</mo> </msup> <mi>cos</mi> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msup> <mi>I</mi> <mo>-</mo> </msup> <mi>sin</mi> <msup> <mi>&theta;</mi> <mo>-</mo> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
obtaining zero sequence circulation instantaneous value i0 *Comprises the following steps:
<math> <mrow> <msup> <msub> <mi>i</mi> <mn>0</mn> </msub> <mo>*</mo> </msup> <mo>=</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>3</mn> </mfrac> <mrow> <mo>(</mo> <msup> <msub> <mi>I</mi> <mi>q</mi> </msub> <mi>n</mi> </msup> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <msup> <msub> <mi>I</mi> <mi>p</mi> </msub> <mi>n</mi> </msup> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
the phase information ω t is obtained by phase-locking the phase-A voltage by the phase-locked loop.
Detecting three-phase load current ila、ilb、ilcObtaining a fundamental wave active component of the load current through an ip-iq algorithm and low-pass filtering, subtracting the fundamental wave active component from the load current to obtain a fundamental wave reactive component, a fundamental wave negative sequence component and a harmonic component in the load current, and obtaining a compensator line current instruction by negatingLoad current ila、ilb、ilcTransformed matrix Cabc/dq -Obtaining the active component of the fundamental negative sequence by low-pass filteringAnd a reactive componentFundamental negative sequence active componentMultiplication by cos (ω t), fundamental reactive componentMultiplication by sin (ω t), summation and division byAnd obtaining a zero sequence circulating current instantaneous value instruction.
Compensator line current commandRespectively multiplying by 1/3, and respectively adding a zero-sequence circulating current instantaneous value instruction to obtain a phase current instruction vertical to the line voltage
The above current instruction calculation algorithm may be implemented in a DSP.
FIG. 4 is a diagram of angular chained SVG master-slave control for current synthesis compensation. Taking the AB link as an example, fig. 4(a) is a control block diagram of the AB link master module, and fig. 4(b) is a control block diagram of the AB link slave module. One of H bridges in the chain link is selected as a master module, and the other H bridges are selected as slave modules. The main module control strategy is voltage and current double closed loop control to maintain the stability of capacitor voltage and simultaneously realize the rapid tracking of current. The voltage outer ring of the main module adopts PI control, the output of the PI control is taken as an active component, and the active component is multiplied by AB, BC and CA chain link phase information sin (ω t + π/6), sin (ω t- π/2) and sin (ω t +5 π/6) to be the active current reference command of the chain linkActive current reference command and current reference command for comprehensive compensationThe total current reference instruction is obtained by superpositionComparing the current reference command with the instantaneous value of each link current, and comparing the error with the voltage feedforward quantity of the three-phase power grid through a proportion link KSuperposing to obtain a reference waveform of a modulated wave of a main moduleWherein K can be taken as L/TsWherein L is an inductance value of the connecting reactor, TsFor the DSP control period, N is the number of H bridges contained in one chain link.
The control mode of the slave module is as follows: voltage closed loop PI control, obtaining the voltage phasor needed for maintaining the voltage balance of the DC side after the deviation of the slave module instruction voltage and the actual voltage is subjected to PIOutput voltage reference instruction phasor of main moduleMinusObtaining a slave module modulated wave reference waveformWherein i represents the ith module, and the value of i is 2-N.
Master and slave module modulated wave reference waveformsAndand obtaining signals for controlling the on-off of each switching tube through normalization processing and carrier phase shift modulation.
The above control strategy can be implemented in DSP + FPGA.
Fig. 5 is a five-level angular chained SVG simulation waveform. The load includes two groups: a first set of loads: single-phase resistive load connected between AB phases, L1=2mH,R1=4 Ω; a second group of loads: three-phase uncontrollable rectifier circuit with resistance-inductance load, Ld=5mH,Rd=20 Ω. Fig. 5(a) shows a load current waveform. The instruction signal obtained by the zero-sequence circulating current calculation method provided by the invention is shown in fig. 5(b), and the obtained comprehensive compensation phase current instruction signalAs shown in fig. 5 (c). Using the above master slaveThe actual output waveform of the compensator obtained by the control strategy is shown in fig. 5(d), the compensated power grid side current is three-phase symmetrical and close to sine, and because the load current of the rectifier circuit changes suddenly during phase change and is influenced by the response speed of the SVG, the compensation current can be tracked only after a period of time delay, so that the network side current generates burrs during phase change, as shown in fig. 5 (e). Simulation results show that the angular chained SVG comprehensive compensation function can be realized by combining the extracted phase current instruction signal acquisition method with the existing single-phase SVG control strategy.
The above simulation is implemented in PSIM 9.0.

Claims (1)

1. A method for acquiring angular chained SVG comprehensive compensation instruction current of a power distribution network is characterized by comprising the following steps:
1) detecting three-phase load current ila、ilb、ilc
2) The three-phase load current is subjected to ip-iq current transformation and low-pass filtering based on the instantaneous reactive power theory to obtain a load current fundamental wave active component;
3) subtracting the load current fundamental wave active component from the three-phase load current and taking the inverse to obtain a negative sequence containing a fundamental wave reactive component and a fundamental wave negative sequenceSVG line current instruction signal of component and harmonic component
4) Will three-phase load current ila、ilb、ilcTransformed matrix Cabc/dp -Obtaining the active component of the fundamental negative sequence by low-pass filteringAnd fundamental negative sequence reactive componentTransformation matrix Cabc/dq -The expression of (a) is:
<math> <mrow> <msubsup> <mi>C</mi> <mrow> <mi>abc</mi> <mo>/</mo> <mi>dp</mi> </mrow> <mo>-</mo> </msubsup> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>+</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>+</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
fundamental negative sequence active componentAnd fundamental negative sequence reactive componentThe calculation formula is as follows:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <msub> <mi>I</mi> <mi>p</mi> </msub> <mi>n</mi> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <msub> <mi>I</mi> <mi>q</mi> </msub> <mi>n</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>sin</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>+</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mi>&omega;t</mi> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>+</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&omega;t</mi> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>la</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>lb</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>lc</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
5) according to the negative sequence active component of the fundamental waveAnd negative fundamental waveSequence reactive componentReference instruction for calculating zero sequence circulating current instantaneous value
<math> <mrow> <msup> <msub> <mi>i</mi> <mn>0</mn> </msub> <mo>*</mo> </msup> <mo>=</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>3</mn> </mfrac> <mrow> <mo>(</mo> <msup> <msub> <mi>I</mi> <mi>q</mi> </msub> <mi>n</mi> </msup> <mi>sin</mi> <mi>&omega;t</mi> <mo>+</mo> <msup> <msub> <mi>I</mi> <mi>p</mi> </msub> <mi>n</mi> </msup> <mi>cos</mi> <mi>&omega;t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Omega is the angular frequency of the three-phase power grid voltage;
6) utilizing SVG line current command signalsReference instruction of zero-sequence circulating current instantaneous valueSynthesizing angular chained SVG phase current control instructions
i ab * i bc * i ca * = 1 3 i a * - i b * i b * - i c * i c * - i a * + i 0 * i 0 * i 0 * .
CN201310249997.XA 2013-06-21 2013-06-21 Comprehensive compensation instruction current obtaining method of angle-shaped chain-type SVG (static var generator) of power distribution network Expired - Fee Related CN103311935B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310249997.XA CN103311935B (en) 2013-06-21 2013-06-21 Comprehensive compensation instruction current obtaining method of angle-shaped chain-type SVG (static var generator) of power distribution network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310249997.XA CN103311935B (en) 2013-06-21 2013-06-21 Comprehensive compensation instruction current obtaining method of angle-shaped chain-type SVG (static var generator) of power distribution network

Publications (2)

Publication Number Publication Date
CN103311935A CN103311935A (en) 2013-09-18
CN103311935B true CN103311935B (en) 2015-04-15

Family

ID=49136853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310249997.XA Expired - Fee Related CN103311935B (en) 2013-06-21 2013-06-21 Comprehensive compensation instruction current obtaining method of angle-shaped chain-type SVG (static var generator) of power distribution network

Country Status (1)

Country Link
CN (1) CN103311935B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545828B (en) * 2013-11-04 2015-08-12 湖南大学 A kind of star chain type SVG individual-phase control method under uneven operating mode
CN103944171B (en) * 2014-05-09 2015-12-09 北京四方继保自动化股份有限公司 The circular current control method of a kind of corner connection chain type SVG
CN105406484B (en) * 2015-12-29 2017-10-20 湖南大学 A kind of angle-style cascades the line voltage adjusting method of synchronous compensator
CN107069725B (en) * 2016-12-26 2023-05-23 中电普瑞科技有限公司 Power quality comprehensive control method and system for power distribution network based on chain-type converter
CN110488092B (en) * 2019-08-19 2021-07-30 南方电网科学研究院有限责任公司 Method for measuring and compensating electric energy quality device
CN111668855B (en) * 2020-05-27 2024-03-26 广州智光电气技术有限公司 Angular static var generator control method and device
CN111799816B (en) * 2020-07-02 2024-02-06 云南电网有限责任公司电力科学研究院 Angular joint chained STATCOM current optimization method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354991A (en) * 2011-09-30 2012-02-15 湖南大学 Direct power control method of three-phase static reactive-power synchronous compensator
CN102684206A (en) * 2012-05-23 2012-09-19 东北电力大学 Static reactive power compensation control method based on sequence component method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370848B2 (en) * 2009-11-30 2013-12-18 東芝三菱電機産業システム株式会社 Self-excited reactive power compensator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354991A (en) * 2011-09-30 2012-02-15 湖南大学 Direct power control method of three-phase static reactive-power synchronous compensator
CN102684206A (en) * 2012-05-23 2012-09-19 东北电力大学 Static reactive power compensation control method based on sequence component method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
新型负序电流检测方法及其应用;唐杰等;《电力自动化设备》;20081031;第28卷(第10期);第23-27页 *

Also Published As

Publication number Publication date
CN103311935A (en) 2013-09-18

Similar Documents

Publication Publication Date Title
CN103311935B (en) Comprehensive compensation instruction current obtaining method of angle-shaped chain-type SVG (static var generator) of power distribution network
Zhang et al. Circulating harmonic current elimination of a CPS-PWM-based modular multilevel converter with a plug-in repetitive controller
Luo et al. Power electronic hybrid system for load balancing compensation and frequency-selective harmonic suppression
CN104811067B (en) PR (proportional resonant) controller-based NMC-HVDC (modular multilevel converter-high voltage direct current) circulating current suppression method
Milanés-Montero et al. Hybrid multiconverter conditioner topology for high-power applications
CN103532156B (en) A kind of STATCOM imbalance compensation control method based on modularization multi-level converter
CN104078976B (en) Harmonic suppressing method, device and the photovoltaic system of a kind of photovoltaic system grid-connected current
CN102638049B (en) Direct-current bus inter-phase voltage balancing control method for chained type triangular connection STATCOM (Static Synchronous Compensator)
CN103326399B (en) Grid-connected inverter control method under unbalanced and harmonic wave power grids
CN102684198B (en) Harmonic suppression method of bidirectional converter of energy accumulation unit in wind and light accumulation system
CN103475250A (en) General loop current control method for modular multi-level converter considering low frequency oscillation
CN104466968B (en) A kind of DSTATCOM negative-sequence currents cross coupling compensation control method
Chen et al. A solid state variable capacitor with minimum capacitor
CN203589727U (en) Large capacity unified power quality controller
Jayathilaka et al. DQ transform based current controller for single-phase grid connected inverter
Gangui et al. Research on modular multilevel converter suitable for direct-drive wind power system
CN202145570U (en) Phase current balancing device of line current asymmetric compensation of D-STATCOM
Huang et al. PR controller for grid-connected inverter control using direct pole placement strategy
CN103457267A (en) Space vector pulse width modulation control method of three-phase parallel active electric filter
CN111952995B (en) Direct-current capacitor voltage balance control method under single-phase fault of power grid
Jeong et al. High-performance control of three-phase four-wire DVR systems using feedback linearization
Luo et al. Balance Control of SOC for MMC-BESS With Power Fluctuation Suppression, PCC Voltage Regulation, and Harmonic Mitigation in Grid-Connected Wind Farm
Xiong et al. Control strategy of three-phase four-wire three-leg inverters
CN102694385A (en) Phase current balancing and amplitude-limiting method for asymmetrical compensation of line current of distribution static compensator (D-STATCOM)
Xu et al. Control design and operational characteristics comparation for VSC-HVDC supplying active/passive networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150415

CF01 Termination of patent right due to non-payment of annual fee