CN103233709B - 一种基于二氧化碳辅助sagd开采超稠油油藏的ccus***及方法 - Google Patents

一种基于二氧化碳辅助sagd开采超稠油油藏的ccus***及方法 Download PDF

Info

Publication number
CN103233709B
CN103233709B CN201310175405.4A CN201310175405A CN103233709B CN 103233709 B CN103233709 B CN 103233709B CN 201310175405 A CN201310175405 A CN 201310175405A CN 103233709 B CN103233709 B CN 103233709B
Authority
CN
China
Prior art keywords
nitrogen
carbon dioxide
storage tank
well group
sagd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310175405.4A
Other languages
English (en)
Other versions
CN103233709A (zh
Inventor
李兆敏
张超
鹿腾
薛兴昌
衣怀峰
马春元
杨肖曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201310175405.4A priority Critical patent/CN103233709B/zh
Publication of CN103233709A publication Critical patent/CN103233709A/zh
Application granted granted Critical
Publication of CN103233709B publication Critical patent/CN103233709B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

本发明涉及一种基于CO2辅助SAGD开采超稠油油藏的CCUS***,包括SAGD井组和分别与SAGD井组相连开采管路,所述的开采管路包括燃烧产生二氧化碳管路、储藏二氧化碳管路、氮气管路和高温开采出液管路。本发明还涉及一种如上述***的工作方法。本发明的优势在于:形成了一套集二氧化碳捕集、利用、封存于一体的大规模示范化全流程***;本发明采用膜分离技术,将空气中的氧气、氮气按需充分利用;本发明采用循环流化床锅炉,利用富氧燃烧技术,确保燃料充分燃烧,显著降低烟气的质量流率和氮氧化物的排放,并能提高烟气中二氧化碳浓度,便于下一步进行烟气净化分离。

Description

一种基于二氧化碳辅助SAGD开采超稠油油藏的CCUS***及方法
技术领域
本发明涉及一种基于CO2辅助SAGD开采超稠油油藏的CCUS***及方法,属于稠油热采和二氧化碳捕集、利用与埋存的技术领域。 
背景技术
近年来,由于人类对煤、石油、天然气等化石燃料的过度依赖,工业和人类生活过程中产生的温室气体排放量日益增加,由此导致的温室效应正在严重威胁着人类赖以生存的环境。在人类排放的温室气体中,65%以上为二氧化碳,这些二氧化碳中又有大约69%是与能源供应和使用相关。《世界能源展望2007》指出,如果现行和已制定的政策保持不变,2030年全球与能源相关的二氧化碳排放会比2005年增加57%,石油需求会增加40%。如何既能实现温室气体的减排,又能满足人类日益增长的能源需求成为国际社会面临的一个重大问题。 
SAGD简称蒸汽辅助重力泄油(Steam Assisted Gravity Drainage,简称SAGD)是一种将蒸汽从位于油藏底部附近的水平生产井上方的一口直井或一口水平井注入油藏,被加热的原油和蒸汽冷凝液从油藏底部的水平井产出的采油方法,具有高的采油能力、高油汽比、较高的最终采收率及降低井间干扰,避免过早井间窜通的优点。 
CCUS(Carbon Capture,Utilization and Storage)即碳捕获、利用与封存技术,是CCS(Carbon Capture and Storage)技术新的发展趋势,即把生产过程中排放的二氧化碳进行提纯,继而投入到新的生产过程中,可以循环再利用,而不是简单地封存,与CCS相比,CCUS可以将二氧化碳资源化,能产生经济效益,更具有现实操作性。目前中国的首要任务是保障发展,CCS技术建立在高能耗和高成本的基础上,该技术在中国的大范围推广与应用是不可取的,中国当前应当更加重视拓展二氧化碳资源性利用技术的研发。为此,中国国家科学技术部制定了《“十二五”国家碳捕集利用与封存科技发展专项规划》,该规划指出CCUS是应对全球气候变化的重要技术选择,世界主要国家均将CCUS技术作为抢占未来低碳竞争优势的重要着力点,发展和储备CCUS技术将为我国低碳绿色发展和应对气候变化提供技术支撑。 
国外正在运行的大型全流程CCUS示范项目有加拿大Weyburn油田CO2强化驱油项目、挪威Sleipner气田CO2盐水层封存项目等,这两个项目的CO2都来自工业过程,累计封存CO2都已超过千万吨。我国现有的全流程示范项目包括中石油吉林油田的CO2工业分离与驱油项目、神华的鄂尔多斯煤制油CO2工业分离与陆上咸水层封存项目、中石化胜利油田的燃烧后CO2捕集与驱油项目。总体上,我国全流程示范项目起步晚、规模小,需要通过大规模、跨 行业的集成示范,完善要素技术之间的匹配性与相容性,提升全流程***的经济性和可靠性。因此,如何突破CO2捕集、输运、利用与封存的关键技术,在重点行业开展CCUS工业试验,有序推动全流程CCUS示范项目建设显得至关重要。 
CO2辅助SAGD(Steam Assisted Gravity Drainage,蒸汽辅助重力泄油)开采超稠油油藏技术是在原有SAGD的基础上加注CO2气体,利用注入的CO2能够在蒸汽腔上部形成隔热层,降低热损失;维持***压力,改善流度比;降低原油粘度,提高流动能力等特性来辅助超稠油开采的技术。我国稠油资源分布广泛,陆上稠油资源约占石油资源总量的20%以上,预测最终探明的地质资源量为79.5×108t,可采资源量为19.1×108t。CO2辅助SAGD技术在我国辽河油田、新疆油田已经大规模应用,因此可以说该项技术在油田的推广将有助于CCUS技术在我国的大范围推广。 
发明内容
针对现有技术的不足,为了进一步推动CCUS技术在我国大规模的应用,实现油田开采过程中的“二氧化碳零排放”、“含油污水零排放”、“含油污泥零排放”的三个零排放目标,本发明提出一种基于CO2辅助SAGD开采超稠油油藏的CCUS***。 
本发明还提供了一种上述***的工作方法。 
本发明的技术方案如下: 
一种基于CO2辅助SAGD开采超稠油油藏的CCUS***,包括SAGD井组和分别与SAGD井组相连开采管路,所述的开采管路包括燃烧产生二氧化碳管路、储藏二氧化碳管路、氮气管路和高温开采出液管路。 
根据本发明优选的,所述的燃烧产生二氧化碳管路包括顺次相连的膜分离***、氧气储罐和循环流化床锅炉,所述循环流化床锅炉的二氧化碳出口与所述SAGD井组相连;所述膜分离***的氮气出口与所述氮气储罐相连;所述循环流化床锅炉的烟气出口与所述烟气净化分离装置相连。 
根据本发明优选的,所述储藏二氧化碳管路包括与烟气净化分离装置的二氧化碳出气口相连的二氧化碳储罐,所述二氧化碳储罐的出气口通过换热器与所述SAGD井组相连。 
根据本发明优选的,所述氮气管路包括与烟气净化分离装置的氮气出气口顺次相连的氮气储罐和泡沫发生装置,所述泡沫发生装置的出口与所述SAGD井组相连,所述泡沫发生装置根据生产的需要开启或关闭:当需要向SAGD井组的油套环空中泵入氮气时,关闭所述泡沫发生装置,所述氮气直接被送进SAGD井组的油套环空中起到隔热作用;当需要向SAGD井组内泵入氮气泡沫时,直接开启所述的泡沫发生装置即可。所述的氮气泡沫用于控制CO2辅助在SAGD井组生产过程中蒸汽、CO2的流度,氮气泡沫在非均质油层中注入时,由于泡沫的堵大不堵小、堵水不堵油的特性,注入的泡沫能够对高渗透层进行有效的封堵,从而调整后续注入的蒸汽、CO2在高低渗透层的流度差异,减少它们在高渗透层中的窜流,控制蒸汽、CO2的流度。 
根据本发明优选的,所述高温开采出液管路包括与所述SAGD井组出液端顺次相连的高 温采出液储罐、换热器、常温采出液储罐和三相分离器,所述三项分离器的污水端通过所述含油污水净化装置与所述循环流化床锅炉相连;所述三项分离器的污泥端通过沉降池与所述循环流化床锅炉相连;所述三项分离器的出气端与所述烟气净化分离装置相连。 
一种如上述***的工作方法,包括步骤如下: 
(1)膜分离***将空气中的氮气和氧气进行分离,然后将得到的氧气输入氧气储罐2中,氮气输入氮气储罐14中;所述氧气储罐2中的氧气用于循环流化床锅炉3的富氧燃烧;氮气储罐14中的氮气通过泡沫发生装置送至SAGD井组井口:所述泡沫发生装置根据生产的需要开启或关闭:当需要向SAGD井组的油套环空中泵入氮气时,关闭所述泡沫发生装置,所述氮气直接被送进SAGD井组的油套环空中起到隔热作用;当需要向SAGD井组内泵入氮气泡沫时,直接开启所述的泡沫发生装置即可;所述的氮气泡沫用于控制CO2辅助在SAGD井组生产过程中蒸汽、CO2的流度,氮气泡沫在非均质油层中注入时,由于泡沫的堵大不堵小、堵水不堵油的特性,注入的泡沫能够对高渗透层进行有效的封堵,从而调整后续注入的蒸汽、CO2在高低渗透层的流度差异,减少它们在高渗透层中的窜流,控制蒸汽、CO2的流度; 
(2)循环流化床锅炉3用于掺烧煤与含油污泥,为SAGD井组4提供蒸汽; 
(3)步骤(2)中燃烧所产生的烟气和三相分离器8中分离出的气体均经烟气净化分离装置13分离为氮气和二氧化碳,所述的氮气储存至所述的氮气储罐14中,所述的二氧化碳储存至所述的二氧化碳储罐10中; 
(4)所述二氧化碳储罐10中的二氧化碳经换热器6加热后用于辅助SAGD井组4采油;所述高温采出液储罐5用于储存SAGD井组4的采出液; 
(5)换热器6用于将高温采出液储罐5中的高温采出液转换为常温采出液,输送至常温采出液储罐7中;三相分离器8用于将常温采出液进行油、气、水三相分离:分离得到的水进入含油污水净化装置9中,净化后的水可供给循环流化床锅炉用水;分离得到的气体进入烟气净化分离装置13中,进行净化分离;分离得到的油相进入沉降池11中;沉降池11用于沉降三相分离后油相中的含油污泥,并将含油污泥通过含油污泥泵送管路12送入循环流化床锅炉3中,与煤进行掺烧。 
本发明的优势在于: 
1)本发明形成了一套集二氧化碳捕集、利用、封存于一体的大规模示范化全流程***; 
2)本发明采用膜分离技术,将空气中的氧气、氮气按需充分利用; 
3)本发明采用循环流化床锅炉,利用富氧燃烧技术,确保燃料充分燃烧,显著降低烟气的质量流率和氮氧化物的排放,并能提高烟气中二氧化碳浓度,便于下一步进行烟气净化分离; 
4)本发明采用换热处理技术,对高温采出液进行换热处理,所得热量加热待注入二氧化碳,充分利用能源,降低能耗; 
5)本发明采用三相分离技术,对采出液进行油气水三相分离,其中,分离得到的气相主 要成分为二氧化碳,通过净化分离进行循环回注,实现二氧化碳的零排放,分离得到的水相主要成分为含油污水,通过净化处理供给锅炉用水,产生水蒸气进行循环回注,实现含油污水的零排放,分离得到的油相主要成分为原油,但含油污泥,通过沉降等措施将含油污泥分离出供给循环流化床锅炉进行掺煤混烧,实现含油污泥的零排放; 
6)本发明由于SAGD井采出液为高温采出液,因此采用换热器装置充分利用采出液所带热量预热待注入的二氧化碳气体,既能节约能源,降低能耗,又能防止低温二氧化碳对油层的冷损伤; 
7)本发明利用富氧燃烧技术以及对烟气的净化分离处理,实现了CCUS中的碳捕集; 
8)本发明利用二氧化碳辅助SAGD技术,实现了CCUS中的碳利用; 
9)本发明利用对采出液的三相分离技术,实现了采出气中二氧化碳的循环回注,实现了二氧化碳的零排放,并且由于二氧化碳在油层中不断吸附、溶解、与矿物岩石反应等实现CCUS中的碳埋存。 
附图说明
图1为本发明所述基于CO2辅助SAGD开采超稠油油藏的CCUS***的整体结构示意图; 
在图1中,1—膜分离***;2—氧气储罐;3—循环流化床锅炉;4—SAGD井组;5—高温采出液储罐;6—换热器;7—常温采出液储罐;8—三相分离***;9—含油污水净化装置;10—二氧化碳储罐;11—沉降池;12—含油污泥泵送管路;13—烟气净化分离装置;14—氮气储罐;15—泡沫发生装置。 
具体实施方式
下面结合实施例和说明书附图进一步说明本发明,但不限于此。 
实施例1、 
如图1所示。 
一种基于CO2辅助SAGD开采超稠油油藏的CCUS***,包括SAGD井组4和分别与SAGD井组4相连开采管路,所述的开采管路包括燃烧产生二氧化碳管路、储藏二氧化碳管路、氮气管路和高温开采出液管路。 
所述的燃烧产生二氧化碳管路包括顺次相连的膜分离***1、氧气储罐2和循环流化床锅炉3,所述循环流化床锅炉3的二氧化碳出口与所述SAGD井组4相连;所述膜分离***1的氮气出口与所述氮气储罐14相连;所述循环流化床锅炉3的烟气出口与所述烟气净化分离装置13相连。 
所述储藏二氧化碳管路包括与烟气净化分离装置13的二氧化碳出气口相连的二氧化碳储罐10,所述二氧化碳储罐10的出气口通过换热器6与所述SAGD井组4相连。 
所述氮气管路包括与烟气净化分离装置13的氮气出气口顺次相连的氮气储罐14和泡沫发生装置15,所述泡沫发生装置15的出口与所述SAGD井组4相连,所述泡沫发生装置15根据生产的需要开启或关闭:当需要向SAGD井组4的油套环空中泵入氮气时,关闭所述泡沫发生装置15,所述氮气直接被送进SAGD井组4的油套环空中起到隔热作用;当需要向SAGD井组4内泵入氮气泡沫时,直接开启所述的泡沫发生装置15即可。所述的氮气泡沫用于控制CO2辅助在SAGD井组生产过程中蒸汽、CO2的流度,氮气泡沫在非均质油层中注入时,由于泡沫的堵大不堵小、堵水不堵油的特性,注入的泡沫能够对高渗透层进行有效的封堵,从而调整后续注入的蒸汽、CO2在高低渗透层的流度差异,减少它们在高渗透层中的窜流,控制蒸汽、CO2的流度。 
所述高温开采出液管路包括与所述SAGD井组4出液端顺次相连的高温采出液储罐5、换热器6、常温采出液储罐7和三相分离器8,所述三项分离器8的污水端通过所述含油污水净化装置9与所述循环流化床锅炉3相连;所述三项分离器8的污泥端通过沉降池11与所述循环流化床锅3炉相连;所述三项分离器8的出气端与所述烟气净化分离装置13相连。 
实施例2、 
一种如实施例1所述***的工作方法,包括步骤如下: 
(1)膜分离***将空气中的氮气和氧气进行分离,然后将得到的氧气输入氧气储罐2中,氮气输入氮气储罐14中;所述氧气储罐2中的氧气用于循环流化床锅炉3的富氧燃烧;氮气储罐14中的氮气通过泡沫发生装置送至SAGD井组井口:所述泡沫发生装置根据生产的需要开启或关闭:当需要向SAGD井组的油套环空中泵入氮气时,关闭所述泡沫发生装置,所述氮气直接被送进SAGD井组的油套环空中起到隔热作用;当需要向SAGD井组内泵入氮气泡沫时,直接开启所述的泡沫发生装置即可;所述的氮气泡沫用于控制CO2辅助在SAGD井组生产过程中蒸汽、CO2的流度,氮气泡沫在非均质油层中注入时,由于泡沫的堵大不堵小、堵水不堵油的特性,注入的泡沫能够对高渗透层进行有效的封堵,从而调整后续注入的蒸汽、CO2在高低渗透层的流度差异,减少它们在高渗透层中的窜流,控制蒸汽、CO2的流度; 
(2)循环流化床锅炉3用于掺烧煤与含油污泥,为SAGD井组4提供蒸汽; 
(3)步骤(2)中燃烧所产生的烟气和三相分离器8中分离出的气体均经烟气净化分离装置13分离为氮气和二氧化碳,所述的氮气储存至所述的氮气储罐14中,所述的二氧化碳储存至所述的二氧化碳储罐10中; 
(4)所述二氧化碳储罐10中的二氧化碳经换热器6加热后用于辅助SAGD井组4采油;所述高温采出液储罐5用于储存SAGD井组4的采出液; 
(5)换热器6用于将高温采出液储罐5中的高温采出液转换为常温采出液,输送至常温采出液储罐7中;三相分离器8用于将常温采出液进行油、气、水三相分离:分离得到的水进入含油污水净化装置9中,净化后的水可供给循环流化床锅炉用水;分离得到的气体进入烟气净化分离装置13中,进行净化分离;分离得到的油相进入沉降池11中;沉降池11用于沉降三相分离后油相中的含油污泥,并将含油污泥通过含油污泥泵送管路12送入循环流化床锅炉3中,与煤进行掺烧。 

Claims (5)

1.一种基于CO2辅助SAGD开采超稠油油藏的CCUS***,其特征在于,该***包括SAGD井组和分别与SAGD井组相连开采管路,所述的开采管路包括燃烧产生二氧化碳管路、储藏二氧化碳管路、氮气管路和高温开采出液管路;所述的燃烧产生二氧化碳管路包括顺次相连的膜分离***、氧气储罐和循环流化床锅炉,所述循环流化床锅炉的二氧化碳出口与所述SAGD井组相连;所述膜分离***的氮气出口与氮气储罐相连;所述循环流化床锅炉的烟气出口与烟气净化分离装置相连。
2.根据权利要求1所述的一种基于CO2辅助SAGD开采超稠油油藏的CCUS***,其特征在于,所述储藏二氧化碳管路包括与烟气净化分离装置的二氧化碳出气口相连的二氧化碳储罐,所述二氧化碳储罐的出气口通过换热器与所述SAGD井组相连。
3.根据权利要求1所述的一种基于CO2辅助SAGD开采超稠油油藏的CCUS***,其特征在于,所述氮气管路包括与烟气净化分离装置的氮气出气口顺次相连的氮气储罐和泡沫发生装置,所述泡沫发生装置的出口与所述SAGD井组相连,所述泡沫发生装置根据生产的需要开启或关闭:当需要向SAGD井组的油套环空中泵入氮气时,关闭所述泡沫发生装置,所述氮气直接被送进SAGD井组的油套环空中起到隔热作用;当需要向SAGD井组内泵入氮气泡沫时,直接开启所述的泡沫发生装置即可。
4.根据权利要求1所述的一种基于CO2辅助SAGD开采超稠油油藏的CCUS***,其特征在于,所述高温开采出液管路包括与所述SAGD井组出液端顺次相连的高温采出液储罐、换热器、常温采出液储罐和三相分离器,所述三相分离器的污水端通过含油污水净化装置与所述循环流化床锅炉相连;所述三相分离器的污泥端通过沉降池与所述循环流化床锅炉相连;所述三相分离器的出气端与所述烟气净化分离装置相连。
5.一种如权利要求4所述***的工作方法,其特征在于,该工作方法包括步骤如下:
(1)膜分离***将空气中的氮气和氧气进行分离,然后将得到的氧气输入氧气储罐2中,氮气输入氮气储罐14中;所述氧气储罐2中的氧气用于循环流化床锅炉3的富氧燃烧;氮气储罐14中的氮气通过泡沫发生装置送至SAGD井组井口:所述泡沫发生装置根据生产的需要开启或关闭:当需要向SAGD井组的油套环空中泵入氮气时,关闭所述泡沫发生装置,所述氮气直接被送进SAGD井组的油套环空中起到隔热作用;当需要向SAGD井组内泵入氮气泡沫时,直接开启所述的泡沫发生装置即可;
(2)循环流化床锅炉3用于掺烧煤与含油污泥,为SAGD井组4提供蒸汽;
(3)步骤(2)中燃烧所产生的烟气和三相分离器8中分离出的气体均经烟气净化分离装置13分离为氮气和二氧化碳,所述的氮气储存至所述的氮气储罐14中,所述的二氧化碳储存至所述的二氧化碳储罐10中;
(4)所述二氧化碳储罐10中的二氧化碳经换热器6加热后用于辅助SAGD井组4采油;所述高温采出液储罐5用于储存SAGD井组4的采出液;
(5)换热器6用于将高温采出液储罐5中的高温采出液转换为常温采出液,输送至常温采出液储罐7中;三相分离器8用于将常温采出液进行油、气、水三相分离:分离得到的水进入含油污水净化装置9中,净化后的水可供给循环流化床锅炉用水;分离得到的气体进入烟气净化分离装置13中,进行净化分离;分离得到的油相进入沉降池11中;沉降池11用于沉降三相分离后油相中的含油污泥,并将含油污泥通过含油污泥泵送管路12送入循环流化床锅炉3中,与煤进行掺烧。
CN201310175405.4A 2013-05-13 2013-05-13 一种基于二氧化碳辅助sagd开采超稠油油藏的ccus***及方法 Active CN103233709B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310175405.4A CN103233709B (zh) 2013-05-13 2013-05-13 一种基于二氧化碳辅助sagd开采超稠油油藏的ccus***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310175405.4A CN103233709B (zh) 2013-05-13 2013-05-13 一种基于二氧化碳辅助sagd开采超稠油油藏的ccus***及方法

Publications (2)

Publication Number Publication Date
CN103233709A CN103233709A (zh) 2013-08-07
CN103233709B true CN103233709B (zh) 2014-06-18

Family

ID=48881772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310175405.4A Active CN103233709B (zh) 2013-05-13 2013-05-13 一种基于二氧化碳辅助sagd开采超稠油油藏的ccus***及方法

Country Status (1)

Country Link
CN (1) CN103233709B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105672961B (zh) * 2014-11-20 2019-12-17 中国石油化工股份有限公司 一种开采稠油油藏过程中氮气泡沫的整体调剖工艺
CN106032746A (zh) * 2015-03-13 2016-10-19 周旭红 一种锅炉直排烟道气地面回收注入装置
CN104763397A (zh) * 2015-05-06 2015-07-08 中国石油大学(华东) 一种基于蒸汽引射的油田注汽锅炉烟气资源化利用***及其应用
CN105019874A (zh) * 2015-07-03 2015-11-04 石晓岩 一种利用空腔气体循环加热的采油方法
CN105114045B (zh) * 2015-08-05 2018-04-27 中国石油大学(华东) 一种基于气举法采油的ccus***及应用
CN107575190B (zh) * 2017-09-25 2018-08-24 中国石油大学(华东) 一种基于最优烟气co2富集率开采稠油油藏的ccus***及其工作方法
CN109943307B (zh) * 2019-04-26 2020-04-03 中国石油大学(华东) 在稠油热采过程中用于调剖封堵的泡沫溶液及其制备方法和泡沫体系以及调剖封堵的方法
CN113187450B (zh) * 2021-06-11 2023-03-31 中国石油大学(北京) 一种co2电还原埋存与采油方法
CN113266333B (zh) * 2021-06-29 2023-04-18 西北大学 一种通过挤入饱和co2盐水改善油砂储层渗透率的方法
CN113738336B (zh) * 2021-07-30 2022-06-07 西安交通大学 一种富油煤地下热解热能循环利用***
CN116498276A (zh) * 2023-03-23 2023-07-28 西南石油大学 一种高倾角底水油藏gagd-ccus一体化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007078352A1 (en) * 2005-12-20 2007-07-12 Raytheon Company Method for extraction of hydrocarbon fuels or contaminants using electrical energy and critical fluids
CA2577680A1 (en) * 2006-02-09 2007-08-09 Precision Combustion, Inc. Method for sagd recovery of heavy oil
CN101424179A (zh) * 2008-09-05 2009-05-06 李志明 超深超稠油热汽-气(co2、n2)井筒降粘采油技术
CN201433752Y (zh) * 2009-04-30 2010-03-31 中国石油集团长城钻探工程有限公司 锅炉烟道气回收二氧化碳液化注井采油装置
CN102351361A (zh) * 2011-07-07 2012-02-15 大连理工大学 一种高盐油田污水处理和稠油开采相结合的装置及工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365495B (zh) * 2009-03-04 2015-05-13 清洁能源***股份有限公司 应用含氧燃料燃烧器直接发生蒸汽的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007078352A1 (en) * 2005-12-20 2007-07-12 Raytheon Company Method for extraction of hydrocarbon fuels or contaminants using electrical energy and critical fluids
CA2577680A1 (en) * 2006-02-09 2007-08-09 Precision Combustion, Inc. Method for sagd recovery of heavy oil
CN101424179A (zh) * 2008-09-05 2009-05-06 李志明 超深超稠油热汽-气(co2、n2)井筒降粘采油技术
CN201433752Y (zh) * 2009-04-30 2010-03-31 中国石油集团长城钻探工程有限公司 锅炉烟道气回收二氧化碳液化注井采油装置
CN102351361A (zh) * 2011-07-07 2012-02-15 大连理工大学 一种高盐油田污水处理和稠油开采相结合的装置及工艺

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CCUS技术路线及发展前景探讨;韩桂芬等;《电力科技与环保》;20120831;第28卷(第4期);8-10 *
李兆敏等.超稠油水平井CO2与降黏剂辅助蒸汽吞吐技术.《石油勘探与开发》.2011,第38卷(第5期),600-605.
超稠油水平井CO2与降黏剂辅助蒸汽吞吐技术;李兆敏等;《石油勘探与开发》;20111031;第38卷(第5期);600-605 *
韩桂芬等.CCUS技术路线及发展前景探讨.《电力科技与环保》.2012,第28卷(第4期),8-10.

Also Published As

Publication number Publication date
CN103233709A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
CN103233709B (zh) 一种基于二氧化碳辅助sagd开采超稠油油藏的ccus***及方法
CN107575190B (zh) 一种基于最优烟气co2富集率开采稠油油藏的ccus***及其工作方法
JP6734298B2 (ja) 地熱プラントにおける帯水層流体の内部エネルギーの利用方法
CN102587877B (zh) 一种多元热流体驱替工艺
CN103590795A (zh) 回注co2废气提高天然气采收率和co2地质封存一体化的方法
CN103343678B (zh) 一种注二氧化碳开采水溶气的***和方法
US20200063542A1 (en) A method of water flow erosion for marine gas hydrate exploitation
CN114084569B (zh) 在深部含水层二氧化碳地质封存上开展压缩二氧化碳储能的方法
CN108005618A (zh) 一种基于太阳能-海水源热泵联合供热技术的天然气水合物开采装置及方法
US20150136400A1 (en) Oil Recovery Process with Composition-Adjustable Multi-Component Thermal Fluid (MCTF)
CN106014363A (zh) 一种提高煤矿井下瓦斯抽采效率的方法
CN105545270A (zh) 一种原位燃烧法天然气水合物开采方法与装置
CN104533368B (zh) 一种火烧油层烟道气在油藏开采中的应用及***
CN105422055A (zh) 一种协同开发天然气、水溶气和天然气水合物的***及方法
CN207829866U (zh) 基于太阳能-海水能联合供热的天然气水合物开采装置
CN109882133A (zh) 一种利用废弃高温高压气藏开采天然气水合物的装置及方法
CN113982546A (zh) 一种水平井二氧化碳注入剖面评价方法
CN101122259A (zh) 煤层气与整体联合循环多联产发电***
CN111608618B (zh) 一种低碳化海洋水合物开采及发电利用***
CN103470223A (zh) 一种化石能源低碳共采的方法和***
CN208595036U (zh) 一种二氧化碳下井的超临界二氧化碳干热岩发电机组
CN204729075U (zh) 一种石油热采***
CN107940432A (zh) 基于蒸汽调温的富氧燃烧与开发天然气水合物联产***与方法
CN104763397A (zh) 一种基于蒸汽引射的油田注汽锅炉烟气资源化利用***及其应用
CN109736754A (zh) 一种利用干热岩开采天然气水合物的装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant