CN103215068A - 一种生物质热解油的改性方法 - Google Patents

一种生物质热解油的改性方法 Download PDF

Info

Publication number
CN103215068A
CN103215068A CN2013101634495A CN201310163449A CN103215068A CN 103215068 A CN103215068 A CN 103215068A CN 2013101634495 A CN2013101634495 A CN 2013101634495A CN 201310163449 A CN201310163449 A CN 201310163449A CN 103215068 A CN103215068 A CN 103215068A
Authority
CN
China
Prior art keywords
pyrolysis oil
biomass pyrolysis
catalyst
biomass
modifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101634495A
Other languages
English (en)
Other versions
CN103215068B (zh
Inventor
汪大闪
宋德臣
刘倩倩
郑申棵
詹晓东
金家琪
张岩丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Original Assignee
Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Kaidi Engineering Technology Research Institute Co Ltd filed Critical Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Priority to CN201310163449.5A priority Critical patent/CN103215068B/zh
Publication of CN103215068A publication Critical patent/CN103215068A/zh
Priority to HUE14794452A priority patent/HUE039619T2/hu
Priority to EP14794452.4A priority patent/EP2995672B1/en
Priority to PCT/CN2014/074975 priority patent/WO2014180212A1/zh
Application granted granted Critical
Publication of CN103215068B publication Critical patent/CN103215068B/zh
Priority to US14/935,429 priority patent/US10005966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/047Breaking emulsions with separation aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/04Dewatering or demulsification of hydrocarbon oils with chemical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明提供一种生物质热解油的改性方法,具体包括以下步骤:第一步破乳分层除水:向生物质热解油中加入无机盐离子和有机破乳剂,其中无机盐与生物质热解油的质量比为1:2000~1:800,有机破乳剂与生物质热解油的质量比为1:4000~1:1000,充分混合后静置,取上层生物质热解油;第二步对生物质热解油进行催化裂化改性:采用改性催化剂:1)改性催化剂:在500℃~800℃条件下,100%水蒸汽对沸石分子筛负载白土催化剂老化处理2~8h;2)取老化后的催化剂装入反应器内,将生物质热解油注入到装有催化剂的反应器中,剂油比为1:3~16;在质量空速6~15h-1、反应温度380℃~700℃、反应压力0.1Mpa~0.8Mpa的条件下进行生物质热解油催化裂化改性。

Description

一种生物质热解油的改性方法
技术领域
本发明提供一种生物质热解油的改性方法。具体地讲是将生物质热解油经过脱水后直接催化裂化生产燃料油的技术。
背景技术
以石油、煤炭、天然气为主的化石能源日益枯竭。生物质能源是仅次于石油、煤炭、天然气的第四大能源,具有来源广泛、安全、可再生循环、零二氧化碳排放的优点。生物质来源主要包括农作物、树木、其他植物及秸秆等,生物质经过一系列的转换技术可以生产出不同类型能源燃料,如生物质碳化可以生产优质的固体燃料、生物质气化可以生产气体燃料、生物质液化可以获得液体燃料等。生物质直接转化为液体燃料技术可将低品质、低热值的生物质能转化为高品质、高热值、易于储存和运输的液体燃料。生物质经热解液化获得的生物质热解油经过改性精制后可直接作为石化燃料的替代产品。
生物质热解技术是在无氧条件下将生物质快速加热至高温,利用热能切断生物质大分子的化学键使之转变为低分子物质的过程。该技术自上个世纪80年代至今发展迅速,已经开发出多种生物质热解技术工艺。如美国佐治亚理工学院的夹带流反应器(entrained flow reactor)和太阳能研究所(SERI)的漩涡反应器(vortex reactor) 、加拿大DynaMotive Energy Systems的流化床反应器(fluidized bed reactor)和ENSYN的循环流化床反应器(upflow circulatingfluidizedbed reactor)、荷兰Twente大学和BTG的旋转锥反应器(rotatingcone reactor)等。其中荷兰BTG和加拿大DynaMotive Energy Systems已分别建成了日处理30t棕榈壳和100t木屑的热解液化工业示范装置,生物质热解油产油率均在60 %(质量百分含量)以上。但是生物质的3种主要组分纤维素、半纤维素和木质素,在热裂解过程中受热裂解不完全同步,热解过程也未达到热力学平衡,产物组成非常复杂。其中水是生物质热解油中含量最多的单种组分,一般情况下生物质热解油的含水量达30%~40%(质量百分含量),主要来源于原料中的水分和热裂解过程生物质发生缩聚反应所生成的水分。其次生物质热解油包含成百上千种有机化合物,如酸、醇、醚、酯、醛、酮、酚等,导致生物质热解油含氧量高、酸值高、粘度高、热值低,而且其物理化学性质非常不稳定。含氧量高导致生物质热解油随着存储时间变长粘度增加;含有的酚类物质随温度升高容易氧化,导致热解油结块硬化;生物质热解油的酸值高,在存储和使用过程中极易腐蚀设备。因此生物质热解油不能直接作为燃料广泛使用,需要经过改性精制,提高生物质热解油品质,满足液体燃料的质量要求。
CN1376766 介绍了一种直接加氢改性精制生物质热解油的方法,具体方法是在350℃以上、10MPa的条件下用CoMo加氢催化剂,直接加氢脱除生物质热解油中的氧,得到改性热解油。虽然加氢是脱氧最有效的方法,但是生物质热解油中含氧量达40%以上,完全脱除需消耗大量的氢气,而且加氢条件苛刻,设备工艺复杂,成本昂贵,工业生产中不具有可行性。
CN101381611介绍了一种酯化醚化改性生物质热解油的方法,具体方法是向未经除水的生物质热解油中加入低碳醇,在90℃~110℃条件下酯化或醚化反应5~8小时,再经过80℃~130℃减压蒸馏除去水分。该专利描述的生物质热解油含水量20%~30%,大量水的存在无疑会加大酯化反应的难度;酯化反应温度和蒸馏温度都高于80℃,而生物质热解油在高于80℃时,老化速度明显加快,会析出大量固体颗粒,稳定性变差。
CN101899334A介绍了一种对生物质热解油先除水,再进行酯化反应,达到生物质热解油除水除酸改性的目的。具体方法是向生物质热解油中加入异辛醇与水形成共沸物,在0.02Mpa、80℃水浴减压蒸馏分出大部分水分,再向脱水后的生物质热解油中加入乙酰氯,通过乙酰氯的水解除去剩余水分;完全除水后的生物质热解油与乙醇进行酯化反应,酯化反应生成的少量水经加入的无水硫酸镁脱除,最终达到生物质热解油的脱水除酸的效果。乙酰氯和生物质热解油中的水发生反应达到除水目的,脱水的同时也消耗了乙酰氯,无疑大大增加成本;酯化反应后加入无水硫酸镁继续脱水,需要重新分离硫酸镁,增加工艺难度同时必然增加了生物质热解油改性过程中的损耗。
现有生物质热解油改性精制的方法大致如下:第一,通过精馏,包含减压精馏、反应精馏、萃取精馏除去生物质热解油中的水分;第二,脱水后的生物质热解油经过催化酯化降低酸度和粘度;第三,对生物质热解油直接加氢改性。在这些工艺过程中,加热精馏时极易使生物质热解油粘度变大甚至结块变质。同时由于生物质热解油含有较多低沸点组分,精馏过程将造成这些低沸点组分和一些有机共沸物的损耗。而催化加氢的设备一般较复杂,成本高,在生产过程中容易发生反应器堵塞和催化剂失活。
发明内容
本发明的目的在于开发一种高效的生物质热解油改性方法,提高改性后生物质热解油的物理化学品质,以克服现有技术的不足。
本发明的技术方案:本发明的生物质热解油的改性方法具体包括以下步骤:
第一步破乳分层除水:向生物质热解油中加入无机盐离子和有机破乳剂,其中无机盐与生物质热解油的质量比为1:2000~1:800,有机破乳剂与生物质热解油的质量比为1:4000~1:1000,经震荡或者搅拌,充分混合后静置,待下层水溶液变得澄清且油水界面清晰时,分出上层生物质热解油和下层水溶液,取上层生物质热解油;
第二步对生物质热解油进行催化裂化改性:催化裂化反应采用常规催化裂化反应器,催化裂化反应的改性催化剂采用沸石分子筛负载白土制备的改性催化剂:
1)改性催化剂:在500℃~800℃条件下,100%水蒸汽对沸石分子筛负载白土催化剂老化处理2~8h;
2)取一定量老化后的催化剂装入反应器内,用柱塞泵将生物质热解油注入到装有催化剂的反应器中,剂油比为1:3~16;在质量空速6~15h-1、反应温度380℃~700℃、反应压力0.1Mpa~0.8Mpa的条件下进行生物质热解油催化裂化改性。
所述的第二步的步骤1)采用沸石分子筛负载白土制备的改性催化剂包含REY/白土、REUSY/白土、高硅REUSY/白土、LREHY/白土、ZSM-5/白土;成型催化剂经1mol/L的NH4NO3溶液离子交换后, 150℃~300℃焙烧2~4小时,得到脱氧选择性强的改性催化剂。
所述的破乳分层除水所用的无机盐为含有离子Ca2+、Na+、K+、Al3+、Fe2+、NH4 +、Cl-、SO4 2-、NO3 -的无机盐。
所述的破乳分层除水所用的有机破乳剂为聚氧丙烯醚、聚氧乙烯醚、丙二醇、正丙醇中的一种。
优选地,所述的破乳分层除水所用的无机盐为含有离子Na+、NH4 +、Cl-、SO4 2-的无机盐。
优选地,第一步无机盐与生物质热解油的质量比为1:1500~1:1000,有机破乳剂与生物质热解油的质量比为1:2000~1:1300。
优选地,所述的第二步的步骤1)改性催化剂老化处理前,催化剂经1mol/L的NH4NO3溶液离子交换后,再在150℃~300℃焙烧2~4小时,得到脱氧选择性强的改性催化剂。
优选地,所述的第一步破乳分层除水时,经震荡或者搅拌时间为3~60分钟,充分混合后静置20±5分钟。
本发明的方法具有以下优点:
1.由于采用了破乳剂与无机盐进行破乳分层除水,可在常温下进行油水分离,达到生物质热解油除水效果。破乳剂可以加速油水分离;无机盐破坏乳状液双电层,内向水析出速率加快,同时改变了乳化剂的亲水亲油平衡,增加油水分离效果;在常温下进行油水分离,可以避免生物质热解油老化。
2.经本发明方法破乳除水,油水分离可脱除原生物质热解油中大部分水,得含水量不超过8%(质量比)的上层生物质热解油。少量水的存在可以降低热解油的粘度,保持生物质热解油良好流动性,使催化裂化反应进料容易。
3. 本发明方法催化裂化反应时间极短,可在生物质热解油老化前对其进行裂化生成稳定的短链烃类和裂化气。
4.对催化裂化催化剂进行改性,特别是离子交换处理,增加了催化剂酸性,提高催化剂脱氧选择性,对生物质热解油脱氧更有效。
5.对催化裂化催化剂进行改性,催化剂具有高活性及高脱氧选择性,可以将生物质热解油中的氧以H2O、CO或CO2形式除去,而不需要消耗还原性气体。
6.该工艺简单,设备低廉,成本低,容易实现大规模工业化连续生产。
具体实施方式
下面以具体实施例来阐述本发明的技术方案:
实施例中,生物质热解油水分采用GB11146卡尔费休水分滴定法测定;热解油酸度采用GB/T264-1991石油产品酸值测定法测定;热解油粘度采用毛细管运动粘度计测定;热解油低位热值采用GB/T18856水煤浆发热量测定方法测定;热解油中的C、H、O采用元素分析仪测定。
实施例1
取1000g生物质热解油置于1500ml的三口烧瓶中,在搅拌的过程中缓慢加入0.5g氯化钠和0.25g聚氧丙烯醚。继续搅拌5分钟,生物质热解油与加入的破乳剂充分混合后,将混合液转入分液漏斗中静置20分钟。此时下层水溶液变的清澈且水油界面清晰,分出上层生物质热解油Ⅰ和下层水溶液。
将成型的高硅REUSY/白土催化剂放入80℃、1mol/L的NH4NO3溶液中浸泡6小时,浸泡后的催化剂经干燥后在150℃的条件下焙烧3小时。焙烧过的催化剂再经600℃、100%水蒸汽老化3小时。称取200g该催化剂装入固定流化床内,在质量空速6h-1、剂油比为8、反应温度450℃、反应压力0.2Mpa的条件下进行催化裂化反应。对裂化产物分析结果如表1。
表1生物质热解油Ⅰ催化裂化改性结果(P=1atm,T=28℃)
Figure BDA0000315065891
实施例2
取1000g生物质热解油置于1500ml的三口烧瓶中,在搅拌的过程中缓慢加入1g硫酸钠和1g丙二醇。继续搅拌5分钟,生物质热解油与加入的破乳剂充分混合后,将混合液转入分液漏斗中静置20分钟。此时下层水溶液变的清澈且水油界面清晰,分出上层生物质热解油Ⅱ和下层水溶液。
将成型的REY/白土催化剂放入80℃、1mol/L的NH4NO3溶液中浸泡6小时,浸泡后的催化剂经干燥后在300℃的条件下焙烧4小时。焙烧过的催化剂再经800℃、100%水蒸汽老化5小时。称取200g该催化剂装入固定流化床内,以质量空速10h-1、剂油比为8、反应温度550℃、反应压力0.3Mpa的条件下进行催化裂化反应。对产物分析结果如表2。
表2生物质热解油Ⅱ催化裂化改性结果(P=1atm,T=28℃)
Figure BDA0000315065892
实施例3
取1000g生物质热解油置于1500ml的三口烧瓶中,在搅拌的过程中缓慢加入0.6g氯化钠和0.3g聚氧丙烯醚。继续搅拌5分钟,生物质热解油与加入的破乳剂充分混合后,将混合液转入分液漏斗中静置20分钟。此时下层水溶液变的清澈且水油界面清晰,分出上层生物质热解油Ⅲ和下层水溶液。
将成型的高硅REUSY/白土催化剂放入80℃、1mol/L的NH4NO3溶液中浸泡6小时,浸泡后的催化剂经干燥后在150℃的条件下焙烧3小时。焙烧过的催化剂再经600℃、100%水蒸汽老化3小时。称取200g该催化剂装入固定流化床内,在质量空速6h-1、剂油比为8、反应温度450℃、反应压力0.2Mpa的条件下进行催化裂化反应。对裂化产物分析结果如表3。
表3生物质热解油Ⅲ催化裂化改性结果(P=1atm,T=28℃)
Figure BDA0000315065893
实施例4
取1000g生物质热解油置于1500ml的三口烧瓶中,在震荡的过程中缓慢加入0.5g硫酸铵和0.5g聚氧乙烯醚。继续震荡8分钟,生物质热解油与加入的破乳剂充分混合后,将混合液转入分液漏斗中静置20分钟。此时下层水溶液变的清澈且水油界面清晰,分出上层生物质热解油Ⅳ和下层水溶液。
将成型的REUSY/白土催化剂放入80℃、1mol/L的NH4NO3溶液中浸泡6小时,浸泡后的催化剂经干燥后在200℃的条件下焙烧2小时。焙烧过的催化剂再经700℃、100%水蒸汽老化6小时。称取200g该催化剂装入提升管反应器内,以质量空速15h-1、剂油比为3、反应温度550℃、反应压力0.3Mpa的条件下进行催化裂化反应。对产物分析结果如表4。
表4生物质热解油Ⅳ催化裂化改性结果(P=1atm,T=28℃)
Figure BDA0000315065894
实施例5
取1000g生物质热解油置于1500ml的三口烧瓶中,在搅拌的过程中缓慢加入0.5g硫酸钠和0.7g丙二醇。继续搅拌5分钟,生物质热解油与加入的破乳剂充分混合后,将混合液转入分液漏斗中静置20分钟。此时下层水溶液变的清澈且水油界面清晰,分出上层生物质热解油Ⅴ和下层水溶液。
将成型的REY/白土催化剂放入80℃、1mol/L的NH4NO3溶液中浸泡6小时,浸泡后的催化剂经干燥后在300℃的条件下焙烧4小时。焙烧过的催化剂再经800℃、100%水蒸汽老化5小时。称取200g该催化剂装入固定流化床内,以质量空速10h-1、剂油比为8、反应温度550℃、反应压力0.3Mpa的条件下进行催化裂化反应。对产物分析结果如表5。
表5生物质热解油Ⅴ催化裂化改性结果(P=1atm,T=28℃)
Figure BDA0000315065895
实施例6
取1000g生物质热解油置于1500ml的三口烧瓶中,在搅拌的过程中缓慢加入1.2g氯化钙和0.3g正丙醇。继续搅拌5分钟,生物质热解油与加入的破乳剂充分混合后,将混合液转入分液漏斗中静置20分钟。此时下层水溶液变的清澈且水油界面清晰,分出上层生物质热解油Ⅵ和下层水溶液。
将成型的LREHY/白土催化剂放入80℃、1mol/L的NH4NO3溶液中浸泡6小时,浸泡后的催化剂经干燥后在200℃的条件下焙烧2小时。焙烧过的催化剂再经500℃、100%水蒸汽老化8小时。称取200g该催化剂装入固定流化床内,以质量空速15h-1、剂油比为12、反应温度600℃、反应压力0.3Mpa的条件下进行催化裂化反应。对产物分析结果如表6。
表6生物质热解油Ⅵ催化裂化改性结果(P=1atm,T=28℃)
Figure BDA0000315065896
实施例7
取1000g生物质热解油置于1500ml的三口烧瓶中,在震荡的过程中缓慢加入0.8g氯化钠和0.4g聚氧乙烯醚。继续震荡8分钟,生物质热解油与加入的破乳剂充分混合后,将混合液转入分液漏斗中静置20分钟。此时下层水溶液变的清澈且水油界面清晰,分出上层生物质热解油Ⅶ和下层水溶液。
将成型的高硅REUSY/白土催化剂放入80℃、1mol/L的NH4NO3溶液中浸泡6小时,浸泡后的催化剂经干燥后在150℃的条件下焙烧3小时。焙烧过的催化剂再经600℃、100%水蒸汽老化3小时。称取200g该催化剂装入提升管反应器内,以质量空速12h-1、剂油比为16、反应温度650℃、反应压力0.5Mpa的条件下进行催化裂化反应。对产物分析结果如表7。
表7生物质热解油Ⅶ催化裂化改性结果(P=1atm,T=28℃)
Figure BDA0000315065897
实施例8
取1000g生物质热解油置于1500ml的三口烧瓶中,在震荡的过程中缓慢加入0.8g氯化钠和0.6g聚氧丙烯醚。继续震荡8分钟,生物质热解油与加入的破乳剂充分混合后,将混合液转入分液漏斗中静置20分钟。此时下层水溶液变的清澈且水油界面清晰,分出上层生物质热解油Ⅷ和下层水溶液。
将成型的ZSM-5/白土催化剂放入80℃、1mol/L的NH4NO3溶液中浸泡6小时,浸泡后的催化剂经干燥后在150℃的条件下焙烧3小时。焙烧过的催化剂再经500℃、100%水蒸汽老化2小时。称取200g该催化剂装入固定流化床内,以质量空速12h-1、剂油比为16、反应温度650℃、反应压力0.5Mpa的条件下进行催化裂化反应。对产物分析结果如表8。
表8生物质热解油Ⅷ催化裂化改性结果(P=1atm,T=28℃)
1、从实施例中可以得出,在本发明所给出的范围内,随着无机盐、有机破乳剂与生物质热解油的质量比增大,生物质热解油的脱水效果更明显。这是因为无机盐质量增加可以破坏油水双电层,提高水相极性,增加油水分离效果;有机破乳剂质量增加可以缩短油水分离时间。
2、成型的催化剂由于其酸中心少,分布不均匀导致其脱氧选择性低且容易失活。经1mol/L的NH4NO3溶液离子交换后,明显增加了催化剂酸中心,并且均匀分布于催化剂,因此可以提高催化剂脱氧选择性。

Claims (10)

1.一种生物质热解油的改性方法,
第一步破乳分层除水:向生物质热解油中加入无机盐离子和有机破乳剂,其中无机盐与生物质热解油的质量比为1:2000~1:800,有机破乳剂与生物质热解油的质量比为1:4000~1:1000,经震荡或者搅拌,充分混合后静置,待下层水溶液变得澄清且油水界面清晰时,分出上层生物质热解油和下层水溶液,取上层生物质热解油;
第二步对生物质热解油进行催化裂化改性:催化裂化反应采用常规催化裂化反应器,催化裂化反应的改性催化剂采用沸石分子筛负载白土制备的改性催化剂:
1)改性催化剂:在500℃~800℃条件下,100%水蒸汽对沸石分子筛负载白土催化剂老化处理2~8h;
2)取一定量老化后的催化剂装入反应器内,用柱塞泵将生物质热解油注入到装有催化剂的反应器中,剂油比为1:3~16;在质量空速6~15h-1、反应温度380℃~700℃、反应压力0.1Mpa~0.8Mpa的条件下进行生物质热解油催化裂化改性。
2.根据权利要求1所述的生物质热解油的改性方法,其特征在于:第二步的步骤1)采用沸石分子筛负载白土制备的改性催化剂包含REY/白土、REUSY/白土、高硅REUSY/白土、LREHY/白土、ZSM-5/白土;成型催化剂经1mol/L的NH4NO3溶液离子交换后,150℃~300℃焙烧2~4小时,得到脱氧选择性强的改性催化剂。
3.根据权利要求1或2所述的生物质热解油的改性方法,其特征在于:破乳分层除水所用的无机盐为含有离子Ca2+、Na+、K+、Al3+、Fe2+、NH4 +、Cl-、SO4 2-、NO3 -的无机盐。
4.根据权利要求1或2所述的生物质热解油的改性方法,其特征在于:破乳分层除水所用的有机破乳剂为聚氧丙烯醚、聚氧乙烯醚、丙二醇、正丙醇中的一种。
5.根据权利要求1或2所述的生物质热解油的改性方法,其特征在于:破乳分层除水所用的无机盐为含有离子Na+、NH4 +、Cl-、SO4 2-的无机盐。
6.根据权利要求1或2所述的生物质热解油的改性方法,其特征在于:第一步无机盐与生物质热解油的质量比为1:1500~1:1000,有机破乳剂与生物质热解油的质量比为1:2000~1:1300。
7.根据权利要求1或2所述的生物质热解油的改性方法,其特征在于:第二步的步骤1)改性催化剂老化处理前,催化剂经1mol/L的NH4NO3溶液离子交换后,再在150℃~300℃焙烧2~4小时,得到脱氧选择性强的改性催化剂。
8.根据权利要求3所述的生物质热解油的改性方法,其特征在于:第二步的步骤1)改性催化剂老化处理前,催化剂经1mol/L的NH4NO3溶液离子交换后,再在150℃~300℃焙烧2~4小时,得到脱氧选择性强的改性催化剂。
9.根据权利要求4所述的生物质热解油的改性方法,其特征在于:第二步的步骤1)改性催化剂老化处理前,催化剂经1mol/L的NH4NO3溶液离子交换后,再在150℃~300℃焙烧2~4小时,得到脱氧选择性强的改性催化剂。
10.根据权利要求1或2所述的生物质热解油的改性方法,其特征在于:第一步破乳分层除水时,经震荡或者搅拌时间为3~60分钟,充分混合后静置20±5分钟。
CN201310163449.5A 2013-05-07 2013-05-07 一种生物质热解油的改性方法 Active CN103215068B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201310163449.5A CN103215068B (zh) 2013-05-07 2013-05-07 一种生物质热解油的改性方法
HUE14794452A HUE039619T2 (hu) 2013-05-07 2014-04-09 Eljárás biomasszapirolízis-olaj módosítására
EP14794452.4A EP2995672B1 (en) 2013-05-07 2014-04-09 Method for modifying biomass pyrolysis oil
PCT/CN2014/074975 WO2014180212A1 (zh) 2013-05-07 2014-04-09 一种生物质热解油的改性方法
US14/935,429 US10005966B2 (en) 2013-05-07 2015-11-08 Method for modifying bio-oil derived from biomass pyrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310163449.5A CN103215068B (zh) 2013-05-07 2013-05-07 一种生物质热解油的改性方法

Publications (2)

Publication Number Publication Date
CN103215068A true CN103215068A (zh) 2013-07-24
CN103215068B CN103215068B (zh) 2015-06-03

Family

ID=48813242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310163449.5A Active CN103215068B (zh) 2013-05-07 2013-05-07 一种生物质热解油的改性方法

Country Status (5)

Country Link
US (1) US10005966B2 (zh)
EP (1) EP2995672B1 (zh)
CN (1) CN103215068B (zh)
HU (1) HUE039619T2 (zh)
WO (1) WO2014180212A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180212A1 (zh) * 2013-05-07 2014-11-13 武汉凯迪工程技术研究总院有限公司 一种生物质热解油的改性方法
CN104502566A (zh) * 2014-12-18 2015-04-08 中国石油天然气股份有限公司 一种原油含水率的测量方法
CN106010640A (zh) * 2016-06-16 2016-10-12 安徽新生力生物科技有限公司 一种生物质热解油的改性方法
CN107213671A (zh) * 2017-05-22 2017-09-29 中国科学院过程工程研究所 一种乳状液破乳装置及其处理方法
CN113680105A (zh) * 2021-09-02 2021-11-23 郑州爱德佳生物技术有限公司 一种油佐剂疫苗破乳剂及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107321380B (zh) * 2017-07-03 2018-07-17 蔡明泽 一种催化制备生物柴油的负载型催化剂及制备生物柴油的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558135A (zh) * 2006-08-16 2009-10-14 BIOeCON国际控股有限公司 含氧化合物的流化催化裂化
CN101885986A (zh) * 2010-07-16 2010-11-17 华东理工大学 一种生物油的精制方法
CN102712850A (zh) * 2009-10-27 2012-10-03 艾格耐特能量资源有限公司 从生物油和/或煤油制备烃产物的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058453A (en) * 1976-08-11 1977-11-15 Texaco Exploration Canada Ltd. Demulsification of oil emulsions with a mixture of polymers and alkaline earth metal halide
US4639308A (en) * 1986-01-16 1987-01-27 Phillips Petroleum Company Catalytic cracking process
US5298153A (en) * 1987-05-07 1994-03-29 Union Oil Company Of California Cracking process using an attrition resistant catalyst
US4797214A (en) * 1987-07-07 1989-01-10 Vincent Saputo Method of treatment of waste streams of oil/water emulsions or solutions
DE4009760A1 (de) * 1990-03-27 1991-10-02 Bayer Ag Verfahren zum auftrennen von oel-in-wasser- emulsionen
US5504259A (en) * 1992-10-29 1996-04-02 Midwest Research Institute Process to convert biomass and refuse derived fuel to ethers and/or alcohols
US6528447B1 (en) * 1999-03-19 2003-03-04 Indian Oil Corporation Limited Process for the preparation of a catalyst composite
CN1240811C (zh) 2002-03-29 2006-02-08 华东理工大学 生物质快速裂解油的加氢处理方法
US8979955B2 (en) * 2007-08-01 2015-03-17 Virginia Tech Intellectual Properties, Inc. Production of pyrolysis oil
US8741258B2 (en) * 2008-09-18 2014-06-03 University Of Massachusetts Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils
CN101381611B (zh) 2008-10-15 2012-04-11 中国林业科学研究院林产化学工业研究所 生物质裂解油酯化醚化提质改性为改质生物油的方法
FR2949233B1 (fr) * 2009-08-21 2011-10-14 Total Raffinage Marketing Procede de valorisation d'huile de pyrolyse en raffinerie
EP2325281A1 (en) * 2009-11-24 2011-05-25 Shell Internationale Research Maatschappij B.V. Process for the catalytic cracking of pyrolysis oils
CN101899334B (zh) 2010-07-14 2012-12-12 青岛大学 一种生物质热裂解油精制方法
US8192627B2 (en) * 2010-08-06 2012-06-05 Icm, Inc. Bio-oil recovery methods
MX2014000850A (es) * 2011-07-21 2015-05-15 Reliance Ind Ltd Aditivo catalizador fcc y método para su preparación.
CN103215068B (zh) * 2013-05-07 2015-06-03 武汉凯迪工程技术研究总院有限公司 一种生物质热解油的改性方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558135A (zh) * 2006-08-16 2009-10-14 BIOeCON国际控股有限公司 含氧化合物的流化催化裂化
CN102712850A (zh) * 2009-10-27 2012-10-03 艾格耐特能量资源有限公司 从生物油和/或煤油制备烃产物的方法
CN101885986A (zh) * 2010-07-16 2010-11-17 华东理工大学 一种生物油的精制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PAUL T.WILLIAMS等: "The influence of catalyst type on the upgraded biomass pyrolysis oils", 《JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS》, 31 December 1995 (1995-12-31) *
王予等: "生物质快速热解与生物油精制研究进展", 《生物质化学工程》, 30 September 2011 (2011-09-30) *
陈宏伟: "生物油的相分离与提质", 《硕士学位论文》, 31 January 2013 (2013-01-31) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180212A1 (zh) * 2013-05-07 2014-11-13 武汉凯迪工程技术研究总院有限公司 一种生物质热解油的改性方法
CN104502566A (zh) * 2014-12-18 2015-04-08 中国石油天然气股份有限公司 一种原油含水率的测量方法
CN106010640A (zh) * 2016-06-16 2016-10-12 安徽新生力生物科技有限公司 一种生物质热解油的改性方法
CN107213671A (zh) * 2017-05-22 2017-09-29 中国科学院过程工程研究所 一种乳状液破乳装置及其处理方法
CN107213671B (zh) * 2017-05-22 2019-12-13 中国科学院过程工程研究所 一种乳状液破乳装置及其处理方法
CN113680105A (zh) * 2021-09-02 2021-11-23 郑州爱德佳生物技术有限公司 一种油佐剂疫苗破乳剂及应用

Also Published As

Publication number Publication date
EP2995672A1 (en) 2016-03-16
EP2995672B1 (en) 2018-07-11
CN103215068B (zh) 2015-06-03
EP2995672A4 (en) 2016-12-21
US10005966B2 (en) 2018-06-26
WO2014180212A1 (zh) 2014-11-13
US20160060539A1 (en) 2016-03-03
HUE039619T2 (hu) 2019-01-28

Similar Documents

Publication Publication Date Title
CN103215068B (zh) 一种生物质热解油的改性方法
CN101144025B (zh) 生物质裂解油分离改性为改质生物油的方法
CN101531922B (zh) 反应萃取提质生物质热解油的方法
CA2835235C (en) Method for extracting biochemical products obtained from a process of hydrothermal carbonization of biomass
Elliott et al. Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: Grape pomace
CN103130602B (zh) 一种利用动植物油脂及其废弃油生产低碳烯烃的方法
JP6402051B2 (ja) 低分子リグニンの製造方法
CN102786986A (zh) 一种微藻热裂解油的精制工艺
CN112771139B (zh) 用于从藻类生物质中提取生物油的方法
CN104292193A (zh) 一种生物质分级处理后制备糠醛和两步制备乙酰丙酸的方法
CN113666893B (zh) 一种糠醛的精制方法
CN101899334B (zh) 一种生物质热裂解油精制方法
CN103980929B (zh) 一种生物质快速热裂解制备生物燃油的方法
CN102719319B (zh) 一种利用光皮树油制备生物航空燃料的方法
CN101503628B (zh) 一种利用文冠果籽油制备生物柴油的方法
EP3689847A1 (en) Catalytic and continuous thermochemical process of production of valuable derivatives from organic materials and waste
CN202610209U (zh) 一种高酸值油脂制备生物柴油的装置
CN106010640A (zh) 一种生物质热解油的改性方法
CN102796573B (zh) 一种低凝生物柴油混合燃料及其制备方法
US20150197469A1 (en) Process of Crude Glycerin Purification Originated From Transesterifications With Alkaline Catalysis Without Using Acidification and Distillation Producing Purified Glycerin 96% and 99% Purity
GB2423088A (en) Removal of impurities from liquids using gaseous nitrogen
RU2631113C1 (ru) Способ эпоксидирования органических соединений
Chang et al. Direct conversion of glucose in ethanol and ethanol/water mixed medium
CN102021048B (zh) 亚/超临界环己烷及分子筛耦合作用下的生物质液化方法
CN103130601B (zh) 一种利用动植物油脂及其废弃油生产低碳烯烃的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant