CN103208518B - Asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof - Google Patents

Asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof Download PDF

Info

Publication number
CN103208518B
CN103208518B CN201310098165.2A CN201310098165A CN103208518B CN 103208518 B CN103208518 B CN 103208518B CN 201310098165 A CN201310098165 A CN 201310098165A CN 103208518 B CN103208518 B CN 103208518B
Authority
CN
China
Prior art keywords
grid
layer
gallium nitride
insulation film
aluminum gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310098165.2A
Other languages
Chinese (zh)
Other versions
CN103208518A (en
Inventor
刘晓勇
王鹏飞
周鹏
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201310098165.2A priority Critical patent/CN103208518B/en
Publication of CN103208518A publication Critical patent/CN103208518A/en
Priority to US14/651,984 priority patent/US20150333141A1/en
Priority to PCT/CN2014/073943 priority patent/WO2014154120A1/en
Application granted granted Critical
Publication of CN103208518B publication Critical patent/CN103208518B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

The invention belongs to RF power device technical field, be specifically related to asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof.The present invention adopts first grid technique to prepare RF power device; utilize grid curb wall to realize the autoregistration of grid and source electrode position; simultaneously; because grid is passivated layer protection; source electrode and the drain electrode of device can be formed by ion implantation technology after grid is formed; technical process is simple, reduces the drift of product parameters, enhances the electric property of RF power device.

Description

Asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof
Technical field
The present invention relates to a kind of RF power device, be specifically related to asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof, belong to RF power device field.
Background technology
High Electron Mobility Transistor (High Electron Mobility Transistors, HEMT) is generally considered one of the most rising high-speed electronic components.Owing to having the feature (especially at low temperatures) of ultrahigh speed, low-power consumption, low noise, greatly can meet the specific demand in very-high speed computer and the purposes such as signal transacting, satellite communication, so HEMT device is paid attention to widely.As New-generation microwave and millimetric wave device, HEMT device is in frequency, gain or all shows impayable advantage in efficiency.Through the development of more than 10 years, HEMT device possessed excellent microwave, millimeter wave characteristic, has become the main devices of the microwave and millimeter wave low noise amplifier in the fields such as the satellite communication of 2 ~ 100 GHz, radio astronomy.Meanwhile, HEMT device is also used to the core component making microwave mixer, oscillator and broadband travelling-wave amplifier.
HEMT RF power device gallium nitrate based at present adopts rear grid technique manufacture mostly, and its technological process manufactured mainly comprises: first manufacture source, drain electrode.Photoetching ohmic contact windows, utilize electron beam evaporation to form multi-layer electrode structure, stripping technology forms source, drain contact, uses rapid thermal annealing (RTA) equipment, 900 DEG C, form good source under 30 Sec argon shield conditions, leak ohmic contact.Then make the region that need etch away by lithography, and use reactive ion beam etching (RIBE) (RIE) equipment, pass into boron chloride, etching step.Last photoetching, electron beam evaporation and the stripping technology of again utilizing forms Schottky barrier gate metal.But along with reducing of device size, the grid that the method for this rear grid technique is difficult to realize HEMT device is aimed at source electrode, the accurate of drain locations, causes the drift of product parameters.
Summary of the invention
The object of the invention is to propose asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof, with the autoregistration of the grid and source electrode position that realize RF power device, reduce the drift of product parameters, strengthen the electric property of RF power device.
The asymmetric self aligned RF power device of a kind of source and drain that the present invention proposes, comprising:
The aluminum gallium nitride resilient coating that substrate is formed successively, gallium nitride channel layer, aluminum gallium nitride separator;
The gate dielectric layer formed on described aluminum gallium nitride separator;
The grid formed on described gate dielectric layer and the passivation layer be positioned on grid;
The grid curb wall formed in the both sides of described grid;
In described aluminum gallium nitride separator, the drain electrode of the both sides formation of described grid and source electrode;
The insulating medium layer formed between the described grid curb wall near drain electrode side and described drain electrode;
Cover the described field plate be connected with described source electrode formed near the grid curb wall of drain electrode side, in the orientation of device, described field plate extends to described insulating medium layer and on being positioned on grid passivation layer.
The invention allows for the preparation method of the asymmetric self aligned RF power device of above-mentioned source and drain, concrete steps are as follows:
The resilient coating of deposit aluminum gallium nitride successively, gallium nitride channel layer, aluminum gallium nitride separator on substrate;
Carry out active area photoetching, with photoresist as etching barrier layer, etch nitride gallium aluminium separator, gallium nitride channel layer, aluminum gallium nitride resilient coating are to be formed with source region successively, remove photoresist afterwards;
Deposit ground floor insulation film, ground floor conductive film, second layer insulation film successively on the exposed surface of formed structure;
Carry out photoetching, developing defines the position of the grid of device;
Using photoresist as etching barrier layer, etch away the second layer insulation film and ground floor conductive film that expose successively, remove photoresist afterwards, do not carved the ground floor conductive film, the second layer insulation film that fall and form the grid of device and the passivation layer that is positioned on grid;
Deposit third layer insulation film on the exposed surface of formed structure, and mask, exposure, development define the source electrode of device and the position of drain electrode, then be that etching barrier layer etches away the third layer insulation film exposed with photoresist, and continue to etch away the ground floor insulation film that exposes to expose formed aluminum gallium nitride separator, remove photoresist afterwards, remaining third layer insulation film forms the grid curb wall in grid both sides and the insulating medium layer between the grid curb wall and drain electrode of close drain electrode side;
In the aluminum gallium nitride separator exposed, inject silicon ion, in aluminum gallium nitride separator, form source electrode and the drain electrode of device;
The grid curb wall covered near drain electrode side forms the field plate be connected with source electrode, and in the orientation of device, this field plate extends to formed insulating medium layer and on being positioned on grid passivation layer.
The preparation method of the asymmetric self aligned RF power device of source and drain as above, described ground floor insulation film is silica, silicon nitride, hafnium oxide or for alundum (Al2O3), described second layer insulation film, third layer insulation film are silica or are silicon nitride.
The preparation method of the asymmetric self aligned RF power device of source and drain as above, described ground floor conductive film is containing chromium or alloy that is nickeliferous or tungstenic.
The present invention adopts first grid technique to prepare the asymmetric self aligned RF power device of source and drain; utilize grid curb wall to realize the autoregistration of grid and source electrode position; simultaneously; because grid is passivated layer protection; source electrode and the drain electrode of device can be formed by ion implantation technology after grid is formed; technical process is simple, reduces the drift of product parameters, enhances the electric property of RF power device.
Accompanying drawing explanation
Fig. 1 is the profile of an embodiment of the asymmetric self aligned RF power device of source and drain disclosed in this invention.Wherein, Fig. 1 a is the vertical view schematic diagram of the asymmetric self aligned RF power device of this source and drain, and Fig. 1 b is for structure shown in Fig. 1 a is along the profile in AA direction.
Fig. 2 to Fig. 6 is the process chart of an embodiment of the preparation method of the asymmetric self aligned RF power device of source and drain disclosed in this invention.
Embodiment
Below in conjunction with accompanying drawing and embodiment, the present invention is further detailed explanation, and in the drawings, for convenience of description, zoomed in or out the thickness of layer and region, shown size does not represent actual size.Although these figure can not the actual size reflecting device of entirely accurate, they or the complete mutual alignment reflected between region and composition structure, particularly form between structure up and down and neighbouring relations.
Fig. 1 is an embodiment of the asymmetric self aligned RF power device of source and drain proposed by the invention, and wherein, Fig. 1 a is the vertical view schematic diagram of the asymmetric self aligned RF power device of this source and drain, and Fig. 1 b is for structure shown in Fig. 1 a is along the profile in AA direction.As shown in Figure 1, the nitride buffer layer 201 that substrate comprises substrate 200 and formed on a substrate 200, is formed with aluminum gallium nitride resilient coating 202, gallium nitride channel layer 203 and aluminum gallium nitride separator 204 successively on nitride buffer layer 201.Gate dielectric layer 205 is formed, the grid 206 being formed with device on gate dielectric layer 205 and the passivation layer 207 be positioned on grid 206 on aluminum gallium nitride separator 204.
Grid curb wall 208a is formed in the both sides of grid 206.
In aluminum gallium nitride separator 204, the source electrode 209 that formed respectively of the both sides of grid 206 and drain electrode 210.
At the insulating medium layer 208b formed between the grid curb wall 208a and drain electrode 210 of drain electrode 210 sides, grid curb wall 208a and insulating medium layer 208b can be formed by insulating material 208 simultaneously, and insulating material 208 can be silica or be silicon nitride.
Cover and be formed with near the grid curb wall 208a of drain electrode 210 sides the field plate 211 be connected with source electrode 209, and in the orientation of device, field plate 211 extends on passivation layer 207 and insulating medium layer 208b.
The contact 212 being respectively used to the source electrode be connected with outer electrode with drain electrode 210 by grid 206 and the contact 213 drained also is formed on grid 206 with drain electrode 210.
The technological process of an embodiment of the preparation method of the asymmetric self aligned RF power device of following described source and drain proposed by the invention.
First, as shown in Figure 2, the aluminum gallium nitride separator 204 that deposit forms thickness is about the aluminum gallium nitride resilient coating 202 of 40 nanometers, thickness is about 40 nanometers gallium nitride channel layer 203 successively on substrate, thickness is about 22 nanometers, then on aluminum gallium nitride separator 204, deposit one deck photoresist mask, exposure, development define the position of active area, then with photoresist be etching barrier layer etch away successively expose aluminum gallium nitride separator 204, gallium nitride channel layer 203, aluminum gallium nitride resilient coating 202 to be formed with source region, then divest photoresist.Wherein, Fig. 2 a by the vertical view schematic diagram of formation structure, Fig. 2 b is for structure shown in Fig. 2 a is along the profile in AA direction.
The nitride buffer layer 201 that substrate described in the present embodiment comprises substrate 200 and formed on a substrate 200, substrate 200 can be silicon, carborundum or for alundum (Al2O3).
Next, on the exposed surface of formed structure, deposit forms ground floor insulation film 205 successively, ground floor conductive film and second layer insulation film, and on the second layer insulation film deposit one deck photoresist mask, exposure, development defines the gate location of device, then second layer insulation film and the ground floor conductive film of exposure is etched away successively using photoresist as etching barrier layer, the grid 206 that the ground floor conductive film be not etched away and second layer insulation film form device respectively and the passivation layer 207 be positioned on grid, to divest after photoresist as shown in Figure 3, wherein Fig. 3 a by the vertical view schematic diagram of formation structure, Fig. 3 b is for structure shown in Fig. 3 a is along the profile in AA direction.
Ground floor insulation film 205 can be silica, silicon nitride, hafnium oxide or for alundum (Al2O3), as the gate dielectric layer of device, its thickness is preferably 8 nanometers.Grid 206 can be such as nickel billon for containing chromium or alloy that is nickeliferous or tungstenic, chromium tungsten alloy, Polarium, platinum alloy, nickel platinum alloy or be NiPdAu alloy.Passivation layer 207 can be silica or be silicon nitride.
Next, on the exposed surface of formed structure, deposit forms third layer insulation film 208, and deposit one deck photoresist mask, exposure, development define the position of device source electrode and drain electrode on third layer insulation film 208, then the third layer insulation film 208 exposed is etched away using photoresist as etching barrier layer, and continue to etch away the ground floor insulation film 205 exposed, to expose aluminum gallium nitride separator 204.In remaining third layer insulation film 208, the insulation film 208 being positioned at grid 206 both sides can form the grid curb wall 208a of device, between grid 206 and the drain electrode be defined insulation film 208 can be formed between near the grid curb wall 208a of the side that drains and the insulating medium layer 208b between draining, the insulation film 208c part being positioned at the insulation film 208 on passivation layer 207 can as a part for the passivation layer 207 be positioned on grid 206, to divest after photoresist as shown in Figure 4, wherein Fig. 4 a by the vertical view schematic diagram of formation structure, Fig. 4 b is for structure shown in Fig. 4 a is along the profile in AA direction.
As mentioned above, when etching third layer insulation film 208, the insulation film 208c part being positioned at the part as the passivation layer 207 be positioned on grid 206 on passivation layer 207 also can be etched away, as illustrated in fig. 4 c.
Next, in the aluminum gallium nitride separator 204 exposed, silicon ion is injected by ion implantation technology, source electrode 209 and the drain electrode 210 of device is formed in aluminum gallium nitride separator 204, as shown in Figure 5, wherein Fig. 5 a by the vertical view schematic diagram of formation structure, Fig. 5 b is for structure shown in Fig. 5 a is along the profile in AA direction.
Finally, the photoresist that deposit one deck is new on the exposed surface of formed structure also defines the position of device field plate, grid, source electrode and drain electrode by photoetching process, then deposit second layer conductive film, second layer conductive film can be titanium-aluminium alloy, nickel alumin(i)um alloy, nickel platinum alloy or for nickel billon.Then the second layer conductive film be deposited on photoresist is removed by the lift-off technique known by industry, and retain the second layer conductive film be not deposited on photoresist, to form the field plate 211 of device on the grid curb wall near drain electrode 210 sides, field plate 211 is connected with source electrode 209, the contact 212 simultaneously forming the source electrode that grid 206 is connected with outer electrode with drain electrode 210 and the contact 213 drained, as shown in Figure 6.
As mentioned above, when not departing from spirit and scope of the invention, many embodiments having very big difference can also be formed.Should be appreciated that except as defined by the appended claims, the invention is not restricted to instantiation described in the description.

Claims (3)

1. a preparation method for the asymmetric self aligned RF power device of source and drain, this RF power device, comprising:
The aluminum gallium nitride resilient coating that substrate is formed successively, gallium nitride channel layer, aluminum gallium nitride separator;
The gate dielectric layer formed on described aluminum gallium nitride separator;
It is characterized in that, also comprise:
The grid formed on described gate dielectric layer and the passivation layer be positioned on grid;
The grid curb wall formed in the both sides of described grid;
In described aluminum gallium nitride separator, the drain electrode of the both sides formation of described grid and source electrode;
Between the insulating medium layer formed between the grid curb wall and described drain electrode of drain electrode side;
Cover the described field plate be connected with described source electrode formed near the grid curb wall of drain electrode side, and in the orientation of device, described field plate extends to described insulating medium layer and on being positioned on grid passivation layer;
The resilient coating of deposit aluminum gallium nitride successively, gallium nitride channel layer, aluminum gallium nitride separator on substrate;
Carry out active area photoetching, with photoresist as etching barrier layer, etch nitride gallium aluminium separator, gallium nitride channel layer, aluminum gallium nitride resilient coating are to be formed with source region successively, remove photoresist afterwards;
Deposit ground floor insulation film, ground floor conductive film, second layer insulation film successively on the exposed surface of formed structure;
Carry out photoetching, developing defines the position of the grid of device;
Using photoresist as etching barrier layer, etch away the second layer insulation film and ground floor conductive film that expose successively, remove photoresist afterwards, do not carved the ground floor conductive film, the second layer insulation film that fall and form the grid of device and the passivation layer that is positioned on grid;
Deposit third layer insulation film on the exposed surface of formed structure, and mask, exposure, development define the source electrode of device and the position of drain electrode, then be that etching barrier layer etches away the third layer insulation film exposed with photoresist, and continue to etch away the ground floor insulation film that exposes to expose formed aluminum gallium nitride separator, remove photoresist afterwards, remaining third layer insulation film forms the grid curb wall in grid both sides and the insulating medium layer between the grid curb wall and drain electrode of close drain electrode side;
In the aluminum gallium nitride separator exposed, inject silicon ion, in aluminum gallium nitride separator, form source electrode and the drain electrode of device;
The grid curb wall covered near drain electrode side forms the field plate be connected with source electrode, and in the orientation of device, this field plate extends to formed insulating medium layer and on being positioned on grid passivation layer.
2. the preparation method of the asymmetric self aligned RF power device of source and drain as claimed in claim 1, it is characterized in that, described ground floor insulation film is silica, silicon nitride, hafnium oxide or for alundum (Al2O3), described second layer insulation film, third layer insulation film are silica or are silicon nitride.
3. the preparation method of the asymmetric self aligned RF power device of source and drain as claimed in claim 1, is characterized in that, described ground floor conductive film is containing chromium or alloy that is nickeliferous or tungstenic.
CN201310098165.2A 2013-03-25 2013-03-25 Asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof Expired - Fee Related CN103208518B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310098165.2A CN103208518B (en) 2013-03-25 2013-03-25 Asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof
US14/651,984 US20150333141A1 (en) 2013-03-25 2014-03-24 A high electron mobility device based on the gate-first process and the production method thereof
PCT/CN2014/073943 WO2014154120A1 (en) 2013-03-25 2014-03-24 High-electron-mobility transistor employing gate first process and manufacturing method for the transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310098165.2A CN103208518B (en) 2013-03-25 2013-03-25 Asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof

Publications (2)

Publication Number Publication Date
CN103208518A CN103208518A (en) 2013-07-17
CN103208518B true CN103208518B (en) 2015-08-26

Family

ID=48755686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310098165.2A Expired - Fee Related CN103208518B (en) 2013-03-25 2013-03-25 Asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof

Country Status (1)

Country Link
CN (1) CN103208518B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160013304A1 (en) * 2013-03-25 2016-01-14 Fudan University A radio frequency power device for implementing asymmetric self-alignment of the source, drain and gate and the production method thereof
US20150333141A1 (en) * 2013-03-25 2015-11-19 Fudan University A high electron mobility device based on the gate-first process and the production method thereof
CN109216437B (en) * 2017-06-30 2021-08-24 无锡华润上华科技有限公司 Self-aligned manufacturing method of field plate and manufacturing method of semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211969A (en) * 2006-12-28 2008-07-02 富士通株式会社 High speed high power nitride semiconductor device and manufacturing method thereof
CN101276837A (en) * 2007-03-28 2008-10-01 中国科学院微电子研究所 AlGaN/GaN HEMT multilayer field plate device of concave grid groove and manufacturing method thereof
CN101710590A (en) * 2009-10-30 2010-05-19 西安电子科技大学 AlGaN/GaN insulated gate high electron mobility transistor (HEMT) and manufacturing method thereof
CN103219369A (en) * 2013-03-25 2013-07-24 复旦大学 Device with low parasitic resistance and high electron mobility and manufacturing method thereof
CN103219379A (en) * 2013-03-25 2013-07-24 复旦大学 High electron mobility device adopting grid first process and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273920A (en) * 2006-03-31 2007-10-18 Eudyna Devices Inc Semiconductor device and method of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211969A (en) * 2006-12-28 2008-07-02 富士通株式会社 High speed high power nitride semiconductor device and manufacturing method thereof
CN101276837A (en) * 2007-03-28 2008-10-01 中国科学院微电子研究所 AlGaN/GaN HEMT multilayer field plate device of concave grid groove and manufacturing method thereof
CN101710590A (en) * 2009-10-30 2010-05-19 西安电子科技大学 AlGaN/GaN insulated gate high electron mobility transistor (HEMT) and manufacturing method thereof
CN103219369A (en) * 2013-03-25 2013-07-24 复旦大学 Device with low parasitic resistance and high electron mobility and manufacturing method thereof
CN103219379A (en) * 2013-03-25 2013-07-24 复旦大学 High electron mobility device adopting grid first process and preparation method thereof

Also Published As

Publication number Publication date
CN103208518A (en) 2013-07-17

Similar Documents

Publication Publication Date Title
CN103219376B (en) Gallium and preparation method thereof
WO2021027241A1 (en) Gan-based radio frequency device having п-shaped gate and manufacturing method therefor
US20150333141A1 (en) A high electron mobility device based on the gate-first process and the production method thereof
CN103219369B (en) A kind of low dead resistance device with high electron mobility and preparation method thereof
JPS5950567A (en) Manufacture of field effect transistor
CN108649071B (en) Semiconductor devices and its manufacturing method
US8304332B2 (en) Structure and method for fabrication of field effect transistor gates with or without field plates
CN103928324A (en) AlGaN/GaN HEMT manufacturing method
CN103208518B (en) Asymmetric self aligned RF power device of a kind of source and drain and preparation method thereof
CN103219379B (en) A kind ofly adopt device with high electron mobility of first grid technique and preparation method thereof
CN103715255B (en) A kind of sag GaN HEMT device and preparation method thereof
CN103219378B (en) A kind of low parasitic resistance radio-frequency power device and preparation method thereof
CN107799590A (en) The GaN base microwave power device and its manufacture method of a kind of big grid width
CN108463889A (en) Field-effect tube and its manufacturing method
CN103700583A (en) Manufacturing method of T-shaped gate of GaN-based FET (Field Effect Transistor)
CN102437060A (en) Method for producing tunneling field effect transistor of U-shaped channel
CN103219377B (en) One realizes asymmetric self aligned RF power device of source and drain grid and preparation method thereof
CN107170800B (en) Composite passivation layer gate field plate GaN HEMT cell structure and device
CN105448713B (en) A kind of vacuum cavity grid structure pseudomorphic high electron mobility transistor preparation method
US20160013304A1 (en) A radio frequency power device for implementing asymmetric self-alignment of the source, drain and gate and the production method thereof
CN108649069A (en) Leak the radio frequency GaN/AlGaN devices and preparation method thereof of expansion structure
Chen et al. A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
WO2022111357A1 (en) Gan device structure, and preparation method therefor
Min et al. Analysis of issues in gate recess etching in the InAlAs/InGaAs HEMT manufacturing process
CN109461655B (en) Method for manufacturing nitride high electron mobility transistor with multi-gate structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150826

CF01 Termination of patent right due to non-payment of annual fee