CN103203529B - 非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法 - Google Patents

非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法 Download PDF

Info

Publication number
CN103203529B
CN103203529B CN201310105174.XA CN201310105174A CN103203529B CN 103203529 B CN103203529 B CN 103203529B CN 201310105174 A CN201310105174 A CN 201310105174A CN 103203529 B CN103203529 B CN 103203529B
Authority
CN
China
Prior art keywords
arc
welding
wire
welding method
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310105174.XA
Other languages
English (en)
Other versions
CN103203529A (zh
Inventor
陈树君
张亮
黄宁
王旭平
卢振洋
蒋凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201310105174.XA priority Critical patent/CN103203529B/zh
Priority to US13/917,520 priority patent/US9457420B2/en
Publication of CN103203529A publication Critical patent/CN103203529A/zh
Application granted granted Critical
Publication of CN103203529B publication Critical patent/CN103203529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

一种多电极耦合电弧交叉焊接的方法,属于焊接技术领域。该焊接方法通过采用添加两根焊丝来形成一个电弧,把原本在工件的热输入作用到焊丝上,该电弧处于非熔化极点弧下方并与之复合形成一个熔池。该焊接方法熔化焊丝的电源采用交流电源,可以使两根焊丝之间的电弧保持稳定,以使熔滴稳定过渡,这种熔滴过渡方式不仅提高了能量效率,而且减少了工件的变形和材料性能的改变,同时这种焊接方法可以很好的控制熔敷率和对工件的热输入,可以实现焊接过程中的传热、传力、传质的任意组合。

Description

非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法
技术领域
本发明涉及一种多电极耦合电弧焊接方法,是一种交叉电弧的多电极焊接方法,属于焊接方法领域。
背景技术
在现代制造业和工业生产进程中,焊接技术己成为一种重要的材料加工工艺。在各种不同形式的金属连接中,电弧焊接被广泛应用于生产各种高质量的连接。这是因为在许多应用中,电弧焊接已经被证明是最经济的金属连接方式。焊接技术在制造业中占有举足轻重的地位,已经广泛的应用于能源动力、交通运输、航空航天、海洋工程、重型机械等行业,应经成为现代工业不可缺少的制造技术。随着国民经济的迅速发展,焊接产品在国民经济各个部门中的应用日益广泛,以焊代铆、以焊代锻、以焊代铸,目前焊接技术已成为材料加工制造领域的主导连接工艺之一。随着焊接产品的质量和效率的要求越来越高,传统的焊接方法已不能满足实际生产的需求。因此,提高焊接生产效率和焊接质量,减少焊接缺陷的高效焊接方法成为现代焊接界的研究热点。近年来,一些新型的特种焊接方法异军突起,诸如:高能束、激光束、电子束、激光-电弧复合热源等;固态焊接/连接技术:线性摩擦焊、搅拌摩擦焊等。目前我国焊接工作量已达到世界焊接强国的水平,但焊接工作效率却远远低于发达国家,主要原因在于焊接自动化程度低,高效焊接方法广泛应用不够。因此,研究和推广高效焊接工艺成为实际生产的迫切要求。
弧焊作为一种传统的焊接方法,通过电弧过程把电能转换为热能,用以熔化焊丝(焊条)或工件,以实现金属的连接。弧焊过程的本质是一种传热、传质和传力的过程,而各种弧焊工艺都是不同的热、质、力传递过程的组合,这种组合又必须保证焊接过程和焊接质量的稳定。但是随着焊接速度的提高,要增大焊接电流以提高焊丝的熔化速度,提高生产率同时减少对工件的热输入,避免高速焊接焊缝成形缺陷的产生。目前传统的电弧焊方法的在热量输入、焊材填充和熔池受力具有固有的搭配局限,焊缝成形和焊接质量不可避免地受到非预期的传热、传质、传力的影响,很难保证焊接过程满足使用要求。因此,焊接过程中能量的自动控制与调整用以提高熔敷效率和焊接速度、减小热输入为目的高效焊接方法成为现代新型焊接的发展趋势。
非熔化极氩弧焊(GTAW)是一种广泛使用的焊接方法,可以焊接各种金属材料,它通常用于在管道的根焊和薄板的焊接,它的电弧稳定的,可以完成高质量和无飞溅的焊接,而且不需要大量的焊后清理。在开坡口的焊缝中,通常需要大量的的金属填充,然而对于非熔化极氩弧焊(GTAW)来说,它的效率是比较低的,通常采用两种方法来填充焊缝:冷丝钨极氩弧焊工艺和热丝钨极氩弧焊工艺。在冷丝非熔化极氩弧焊焊接过程中,填充焊丝直接熔化进入焊缝。而热丝钨极氩弧焊为了更快地熔化焊丝,采用在焊丝中加入一个单独的电流(常用交变电流)以使填充金属丝被预先的电阻热加热后,在理想状态下的焊丝可以达到其熔点,然后焊丝送入熔池。相对相对冷丝非熔化极氩弧焊来说热丝非熔化极氩弧焊具有较高的熔敷率,但是需要额外的电源,成本较高。
熔化极气体保护焊(GMAW)是一种广泛应用的弧焊方法。焊丝作为一个熔化电极,通过焊丝与工件之间引燃电弧,焊丝被电弧加热形成熔滴过渡到熔池中。电弧的能量一部分用来熔化焊丝形成熔滴过渡到工件上,一部分在工件上产生很多热量,但工件产热量远大于用于熔化焊丝的热量,工件的产热就成为一种能量的浪费,这种能量增加了材料性能的变化,现有的电弧模式不能改变固有的能量分配。因此,本发明专利是一种增加焊丝的熔敷率,提高能量利用效率的新型焊接方法,实现焊接过程热输入和熔敷率的自由调节。
发明内容:
本发明的目的在于克服现有焊接方法的缺陷,提出一种非熔化极电弧与双丝熔化极交流电弧交叉耦合焊接的方法,该方法可操作性强,可以灵活的控制焊接电弧的形状、焊丝的熔化速度和被焊工件的热输入,实现了在焊接过程中的传热、传质和传力的自由组合。
为了实现上述目的,本发明采取了如下技术方案:
非熔化极电弧与双丝熔化极交流电弧交叉耦合的焊接方法,首先建立非熔化极焊枪与工件间的主弧和两根焊丝之间的副弧,同时使用主弧和副弧交叉完成焊接工作。
主弧建立在非熔化极焊枪与工件之间来熔化工件,副弧建立在两根焊丝之间来熔化焊丝,副弧位于主弧下方并与主弧成交叉状态,两个电弧共同进行工作。
交叉电弧建立首先建立非熔化极和工件之间的主弧,然后建立两根焊丝之间的副弧。
两根焊丝是从主弧相对的两侧进入到主弧中。
主弧为非熔化极电弧,采用钨极惰性气体保护焊(GTAW)或等离子弧焊(PAW),主弧采用一个恒定电流的电源来提供。
副弧采用一个恒定电流或恒定电压的交流电源来提供,可以使电弧斑点交替出现在两根焊丝上,调整交流电流波形参数可以分开调整两根焊丝的熔化速度。
该焊接方法区别于传统电弧焊接方法最显著的特征就是其焊接电弧是交叉且是可控的,而传统电弧焊接方法所使用的电弧均为圆柱形且无法自由控制。焊接电弧对工件的热输入主要靠电弧的斑点热,一旦形成交叉电弧,仅主弧在被焊工件上形成斑点,主弧能量用于控制被焊工件的热输入和熔深。副弧的两个斑点在焊丝上,热量几乎全部用于熔化焊丝,没有额外的能量消耗,所以副弧对被焊工件的热输入极小。交叉电弧焊接方法实现了在大熔敷率的情况下对工件的低热输入。
本发明可以获得如下有益效果:
本发明所述的焊接方法,通过改变电弧形状、单独控制焊接热输入和单独控制焊接时对熔池的传质,实现焊接过程中传力、传热和传质的解耦,从而灵活的控制焊接电弧的形状、热源形态及对被焊工件的热输入,以实现在焊接过程中的传热、传力和传质的自由组合。而目前已有的焊接方法在对熔池进行力、热和质的输入上都是相互耦合的,难以分别调整。这是一个对现有弧焊技术进行革新的发明,该方法可以利用一些现有的设备进行高效率,高质量以及经济的薄板及中厚板焊接。
附图说明:
图1交叉电弧示意图。
图2焊丝送进示意图。
图3交流电源波形图。
图4交叉电弧内部示意图。
图中101、非熔化极焊枪,102、主弧,103、副弧(丝间电弧),104、焊丝I,105、焊丝II,106、交流电源,107、两根焊丝夹角,108、被焊工件,109、焊丝电流,110、主弧电源,111、两根焊丝之间的距离,112、焊丝I送进速度,113、焊丝II送进速度,114、送丝机I,115、送丝机II,116、正脉冲电流的峰值电流,117、负脉冲电流的峰值电流,118、正脉冲电流的时间,119、负脉冲电流的时间,120、两根焊丝的交叉点,121、两根焊丝交点到工件的距离。122、焊丝I端头到工件的距离,123、焊丝II端头到工件的距离。
具体实施方式:
以下具体地说明本发明的实施方式,附图中只是说明性质,只说明了该焊接方法有关电回路方面的连接方式,焊枪所必须的气路和水路接法都是使用常规接法,所以不再进行说明。
如图所示,如图所示非熔化焊枪101和两根焊丝焊丝I104和焊丝II105分布在被焊工件108的同一侧,焊枪、焊丝I104和焊丝II105和被焊工件108分别与焊接电源及其控制***相连。焊接时,非熔化极焊枪和工件之间建立主弧102,主弧主要用来熔化被焊工件108,采用一个恒定电流的主弧电源110提供;焊丝I104和焊丝II105分别由送丝机I114和送丝机II115从主弧102相对两侧进入并产生副弧103,副弧用来熔化焊丝且采用一个交流电源106提供,交流电流可以使电弧斑点交替出现在两根焊丝上,使焊丝保持一定的熔化速度。副弧位于主弧下方并与主弧成交叉形态,两个电弧共同完成焊接工作。两个电弧的能量可以单独调节,实现了焊丝熔化速度和工件热输入的分开调节。
下面对该焊接方法的步骤进行详细说明:
(1)准备好进行焊接的工件,该方法对被焊工件的间隙和坡口等要求很低。
(2)焊枪放置在被焊工件一侧,要求非熔化极焊枪位于两根焊丝上方,两根焊丝在主电弧相对两侧由两个送丝机送入,注意调整好焊***数,保证焊接电弧形成交叉状态。
(3)将焊枪、焊丝和被焊工件都连接到焊接电源构成的回路中,每个回路中的焊接参数可根据实际情况选择。
(4)交叉电弧形成。首先调整非熔化极电弧和焊丝之间电弧的参数,然后在非熔化极焊枪和被焊工件之间形成主弧,主弧稳定后引燃焊丝间的副弧。交叉电弧建立后观察电弧进行实时调整,保证焊缝满足使用要求。交叉电弧建立后被焊工件的热输入主要是由主弧来控制的,熔敷率是由副弧熔化两根焊丝来控制的,两个电弧的参数可以分开调整,焊接过程中的传热、传力和传质的自由组合。
(5)焊丝的熔化速度取决于交流电IW113,通过调整交流电的波形参数正半波幅值Ip1119,持续时间tp1121;负半波的幅值Ip2120,持续时间tp2122改变两根焊丝平均功率来改变熔化速度,可以实现在不同送丝速度下的焊接,平均功率P1和P2可以独立调节。焊丝104和105的平均功率如下所示:
p 1 = I p 1 t p 1 V a + L p 2 t p 2 V o t p 1 + t p 2 p 2 = I p 2 t p 2 V a + L p 1 t p 1 V o t p 1 + t p 2
应该说明的是,为了维持一个稳定的副弧需要焊丝的熔化速度等于送丝速度,需要实时测量三个电压值来判断焊接过程中副弧稳定性:焊丝104与工件103之间的电压VBD,焊丝105与工件103之间的电压VCD,焊丝104与焊丝105之间的电压VBC。用这三个电压值表征他们之间的距离。为了说明副弧的稳定情况确定VBD、VCD和VBC的范围见表1。这三个特征值定义了以下3种状态。
表1VBD、VCD和VBC的特征值
0 minV maxV
VBC 0 24V 50V
VBD 0 12V 25V
VCD 0 12V 25V
①VBC:0,minVBC,maxVBC。短路状态:VBC=0;低电压状态:0<VBC<minVBC;正常电压状态:minVBC<VBC<maxVBC;高电压状态:VBC>maxVBC.。[minVBC,maxVBC]为两根焊丝间正常的电压范围,表征正常范围的丝间距离。
②VBD:0,minVBD,maxVBD。短路状态:VBD=0;低电压状态:0<VBD<minVBD;正常电压状态:minVBD<VBD<maxVBD;高电压状态:VBD>maxVBD。[minVBD,maxVBD]为焊丝104和工件之间正常的电压范围,表征焊丝和工件之间的正常范围距离。
③VCD:0,minVCD,maxVCD。短路状态:VCD=0;低电压状态:0<VCD<minVCD;正常电压状态:minVCD<VCD<maxVCD;高电压状态:VCD>maxVCD。[minVCD,maxVCD]为焊丝105和工件之间正常的焊电压范围,表征焊丝和工件之间的正常范围距离。
短路过程是一个极端的状态。如果这三个电压中不存在短路的状态,可以用于判断焊接参数如何偏离正常范围,及用于确定如何对焊接参数需要进行调整,以保持稳定的电压。为此,编写成一个向量电压(VBC,VBD,VCD),每个组成电压状态定义为:低,正常和高三种状态。
当丝间电压为低或正常,就会有以下9个状态:
①V=(低或正常,低,低)表示一个小或正常的d1,一个小的l1和一个小的l2。一个小d1(小的丝间的距离)只要是不连续为零,其他参数不需要调整,因此,当丝间电压为低和正常时时就认为可以组合在一起来表示的丝间距离。对于一个小的l1,焊丝104需要熔化得更快一些,这可以通过提高焊丝104的平均功率P1来实现。同样对于对于一个小的l2也可以通过提高焊丝105的平均功率P2来实现。
②V=(低或正常,正常,低)表示一个小或正常的d1,一个正常的l1和一个小的l2。在这个状态下,焊丝104平均功率P1不需要变化,但需要增加焊丝105的平均功率P2来熔化更多的焊丝。
③V=(低或正常,正常,正常)表示一个小或正常的d1,一个正常的l1和一个正常的l2。在这个状态下,没有参数需要调整。
④V=(低或正常,正常,高)表示一个小或正常的d1,一个正常的l1和一个大的l2。在这个状态下,焊丝104平均功率P1不需要变化,但需要降低焊丝105平均功率P2降低焊丝熔化速度。
⑤V=(低或正常,低,正常)表示一个小或正常的d1,一个小的l1和一个正常的l2。在这个状态下,需要增加焊丝104平均功率P1熔化更多的焊丝。焊丝105平均功率P2不需要变化,
⑥V=(低或正常,高,正常)表示一个小或正常的d1,一个大的l1和一个正常的l2。在这个状态下,需要降低焊丝104平均功率P1熔化较少的焊丝。焊丝105平均功率P2不需要变化。
⑦V=(低或正常,低,高)表示一个小或正常的d1,一个小的l1和一个大的l2。在这个状态下,需要增加焊丝104平均功率P1熔化更多的焊丝,也需要降低焊丝105平均功率P2熔化较少的焊丝。
⑧V=(低或正常,高,高)表示一个小或正常的d1,一个大的l1和一个大的l2。在这个状态下,需要降低焊丝104平均功率P1熔化较少的焊丝,也需要降低焊丝105平均功率P2熔化较少的焊丝。
⑨V=(低或正常,高,低)表示一个小或正常的d1,一个大的l1和一个小的l2。在这个状态下,需要降低焊丝104平均功率P1熔化较少的焊丝,但需要增加焊丝105平均功率P2熔化更多的焊丝。
上述9种状态所定义的矢量的值,是以正常的运行状态为前提,不包括极端的状态。9种状态中所需控制的参数如表2所示。
表2正常运行状态下的控制参数表(丝间电压低或正常)
VCD VCD正常 VCD
VBD 增加P1和P2 增加P1 加P1,减少P2
VBD正常 提高P2 没有变化 减少P2
VBD 减少P1,增加P2 减少P1 减少P1和P2
*:VBC低和正常,VBD≠0,VCD≠0。
当的丝间电压为高时,会有以下4种状态:
①V=(高,低或正常,低或正常)表示两根焊丝已经穿过或非常接近交叉点,这时高丝的电压说明焊丝之间的距离太大。在这种情况下,就需要调整焊枪。
②V=(高,高,低或正常)表示焊丝104与工件的距离较大造成两根焊丝并没有穿过交叉点或非常接近交叉点。在这个状态下,需要降低焊丝104平均功率P1以熔化较少的焊丝。
③V=(高,低或正常,高)表示焊丝105与工件的距离较大造成两根焊丝并没有穿过交叉点或非常接近交叉点。在这个状态下,需要降低焊丝105平均功率P2以需熔化较少的焊丝。
④V=(高,高,高)表示由于焊丝104和105与工件的距离较大造成两根焊丝并没有穿过交叉点。在这个状态下,需要降低两根焊丝的平均功率来熔化较少的焊丝。
表3高丝间电压无短路的状态下的控制参数表
VCD低或正常 VCD
VBD低或正常 丝间距离d1过大 减少P2,增加P1(VBD低)
VBD 减少P1,增加P2(VCD低) 减少P1和P2
*:VBC高,VBD≠0,VCD≠0。
当丝间的电压为零时:
①V=(0,0,0)表示两根焊丝都接触到工件,这种状态下需要增加焊丝熔化速度,这可以通过提高两根焊丝的平均功率P1和P2来实现,如果增加这两个平均功率并不会改变焊丝的状态,则运行状态操作不正常;如果状态改变,控制参数则可根据新的状态来选择。
②V=(0,0,非0)表示焊丝间的距离是零,焊丝104与工件接触。这种状态是不正常。
③V=(0,非0,0)表示焊丝间的距离是零,焊丝105接触工件。这种状态也是不正常。
④V=(0,非0,非0)表示焊丝间的距离为零。这种状态也是不正常。
表4零丝间电压状态下的控制参数表
VCD VCD非零
VBD 增加P1和P2 丝间距离d1=0
VBD非零 丝间距离d1=0 丝间距离d1=0
*:VBC=0。

Claims (6)

1.非熔化极电弧与双丝熔化极交流电弧交叉耦合的焊接方法,其特征在于:一种建立非熔化极与工件间的电弧为主弧和两根焊丝间的电弧为副弧,同时使用两个电弧交叉完成焊接的;
主弧建立在非熔化极和工件之间来熔化工件,副弧建立在两根焊丝之间来熔化焊丝,副弧位于主弧下方,并与主弧成交叉状态,两个电弧进行共同工作。
2.根据权利要求1所述的非熔化极电弧与双丝熔化极交流电弧交叉耦合的焊接方法,其特征在于:其特征在于两根焊丝是从相对的两侧进入到主弧中。
3.根据权利要求1所述的非熔化极电弧与双丝熔化极交流电弧交叉耦合的焊接方法,其特征在于:主弧为非熔化极电弧,采用钨极惰性气体保护焊或等离子焊,主弧采用一个恒定电流的电源来提供。
4.根据权利要求1所述的非熔化极电弧与双丝熔化极交流电弧交叉耦合的焊接方法,其特征在于:副弧采用一个恒定电流或恒定电压的电源来提供。
5.根据权利要求1所述的非熔化极电弧与双丝熔化极交流电弧交叉耦合的焊接方法,其特征在于:建立两个单独电弧的方法,该方法包括:首先建立由非熔化极和工件之间的主弧,然后建立两根焊丝之间副弧。
6.根据权利要求5所述的非熔化极电弧与双丝熔化极交流电弧交叉耦合的焊接方法,其特征在于:焊接方法中,使用AC电源提供丝间的电流;通过调整交流电流波形的参数来调整两根焊丝的熔化速度。
CN201310105174.XA 2013-03-28 2013-03-28 非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法 Active CN103203529B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310105174.XA CN103203529B (zh) 2013-03-28 2013-03-28 非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法
US13/917,520 US9457420B2 (en) 2013-03-28 2013-06-13 Gas tungsten arc welding with cross AC arcing twin wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310105174.XA CN103203529B (zh) 2013-03-28 2013-03-28 非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法

Publications (2)

Publication Number Publication Date
CN103203529A CN103203529A (zh) 2013-07-17
CN103203529B true CN103203529B (zh) 2015-12-09

Family

ID=48751046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310105174.XA Active CN103203529B (zh) 2013-03-28 2013-03-28 非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法

Country Status (2)

Country Link
US (1) US9457420B2 (zh)
CN (1) CN103203529B (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130136940A1 (en) * 2011-11-28 2013-05-30 General Electric Company Welding system, welding process, and welded article
CN104428099B (zh) * 2012-08-14 2017-07-04 依赛彼公司 用于埋弧焊的方法和***
CN103737158B (zh) * 2013-12-31 2016-08-17 哈尔滨工程大学 一种基于热输入控制的双熔化极电弧焊枪及其焊接方法
DE102014003634A1 (de) * 2014-03-14 2015-09-17 Linde Aktiengesellschaft Verfahren zum Wolfram-Inertgasschweißen
CN104400168B (zh) * 2014-10-17 2017-12-19 武汉凌云光电科技有限责任公司 一种自动送锡激光焊接方法
CN104526171B (zh) * 2014-11-04 2016-10-12 南方增材科技有限公司 金属构件电熔成形方法
CN104526115B (zh) * 2014-11-04 2017-01-18 南方增材科技有限公司 核电站压力容器筒体电熔成形方法
CN104858554B (zh) * 2015-06-04 2017-01-04 哈尔滨工业大学(威海) 一种等离子弧与双mig进行复合的焊炬
CN105149751B (zh) * 2015-10-14 2017-08-25 刘昇澔 一种同时具有熔化极与非熔化极的焊接***及其焊接方法
CN105499765B (zh) * 2016-01-12 2017-12-15 北京工业大学 熔化极环状负压电弧焊接方法
CN105537723B (zh) * 2016-01-12 2017-11-24 北京工业大学 双空心阴极摆动电弧焊接方法
WO2017193132A1 (en) 2016-05-06 2017-11-09 Hypertherm, Inc. Controlling plasma arc processing systems and related systems and devices
CN106493457B (zh) * 2016-11-01 2019-05-24 辽宁石油化工大学 一种氩气保护下的复合电弧装置及其焊接方法
CN106312264B (zh) * 2016-11-01 2019-09-20 辽宁石油化工大学 脉冲mig焊与tig焊的复合焊炬及其焊接方法
CN106695071B (zh) * 2016-12-30 2018-09-04 唐山松下产业机器有限公司 引弧控制方法及装置
CN106862718B (zh) * 2017-02-17 2019-06-28 北京工业大学 交流主电弧与旁路交流热丝电弧的复合电弧成形制造方法
CN108788395A (zh) * 2018-06-22 2018-11-13 山东大学 一种通过侧壁对称双送丝的一体式tig焊喷嘴及焊枪
CN109014522A (zh) * 2018-08-02 2018-12-18 哈尔滨工程大学 一种基于旁路双丝等离子弧的金属间化合物增材制造方法及装置
CN110722249B (zh) * 2019-09-26 2021-02-26 南京英尼格玛工业自动化技术有限公司 一种采用等离子热源进行双金属电弧增材制造的方法
US11919110B2 (en) 2020-07-21 2024-03-05 Esab Ab Balance and offset in adaptive submerged arc welding
CN113182647B (zh) * 2021-03-23 2022-05-20 石家庄铁道大学 一种用于异种金属连接的双丝熔化极气体保护焊焊接方法
CN114523180A (zh) * 2022-03-11 2022-05-24 青岛海纳等离子科技有限公司 一种快速熔覆耐磨涂层的方法
CN114700643A (zh) * 2022-05-06 2022-07-05 盐城工学院 高熔敷低热输入的等离子-双丝旁路电弧焊接装置及方法
CN115041787B (zh) * 2022-06-16 2024-02-20 盐城工学院 Tig电弧与双丝熔化极电弧斜交耦合的增材装置及方法
CN114939711B (zh) * 2022-06-16 2023-12-26 盐城工学院 一种单双丝熔化极电弧斜交耦合的焊接装置及方法
CN115008045B (zh) * 2022-06-27 2023-11-21 盐城工学院 等离子弧与变位姿双丝熔化极电弧复合焊接装置及方法
CN115106622B (zh) * 2022-07-08 2024-02-02 中国核工业华兴建设有限公司 核电站不锈钢水池双钨极热丝tig自动焊施工方法
CN116038077B (zh) * 2022-12-30 2024-03-12 深圳市麦格米特焊接技术有限公司 气体保护焊接***及其控制方法、控制器、存储介质
CN116944640B (zh) * 2023-09-20 2023-12-12 惠生(南通)重工有限公司 一种多电极熔化极气保护焊接拼接的方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773596A (zh) * 2012-07-23 2012-11-14 昆山瑞凌焊接科技有限公司 窄间隙双丝焊枪

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934251B2 (ja) * 1997-06-10 2007-06-20 株式会社東芝 Tig溶接方法および装置
US9233432B2 (en) * 2007-02-12 2016-01-12 Yu Ming Zhang Arc welder and related system
US8278587B2 (en) * 2008-02-11 2012-10-02 Adaptive Intelligent Systems, LLC Systems and methods to modify gas metal arc welding and its variants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773596A (zh) * 2012-07-23 2012-11-14 昆山瑞凌焊接科技有限公司 窄间隙双丝焊枪

Also Published As

Publication number Publication date
CN103203529A (zh) 2013-07-17
US20140291297A1 (en) 2014-10-02
US9457420B2 (en) 2016-10-04

Similar Documents

Publication Publication Date Title
CN103203529B (zh) 非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法
CN107414259B (zh) 用于梯度材料制造的辅助填丝gma增材制造装置及方法
CN103071935B (zh) 基于热输入控制的激光与电弧复合焊接装置及焊接方法
CN103567654B (zh) 用于钛-钢复合板的焊接材料及焊接方法
CN103521885A (zh) 双丝间接电弧交替旁路的焊接方法
CN1819887B (zh) 电弧焊控制方法和电弧焊机
CN103372713B (zh) 一种航空发动机叶片损伤的修复方法
CN101391331B (zh) 基于焊丝分流的双面电弧焊装置及焊接方法
CN102069265B (zh) 双丝动态三电弧焊接方法
CN104144762A (zh) 利用tig/等离子体焊接的同步混合气体保护金属极弧焊
CN103008835B (zh) 一种耦合电弧的短路过渡焊接***及其控制方法
Park et al. The arc phenomenon by the characteristic of EN ratio in AC pulse GMAW
CN102371421A (zh) 一种冷金属过渡的焊接方法及其装置
CN107442941A (zh) 一种铝合金双丝激光增材制造方法
CN101972879B (zh) 一种复合电弧焊接的方法
CN104772552A (zh) 一种三丝气体保护间接电弧焊接方法、装置、堆焊方法及窄间隙焊接方法
CN102886612A (zh) 一种激光-等离子弧双面复合焊接方法
CN107570874A (zh) 激光电弧复合焊
CN102357719B (zh) 一种双熔化极单电弧旁路耦合复合焊接***及方法
CN101530943A (zh) 一种旁路分流双面电弧焊装置及焊接方法
CN103433630A (zh) 一种脉动送丝激光-电弧复合点焊方法
JP2007237225A (ja) 薄鋼板の高速ホットワイヤ多電極tig溶接方法
CN105269124B (zh) 一种熔丝钨极氩弧焊方法
CN102699546A (zh) 一种激光-双熔化极单电弧旁路耦合复合焊接***及方法
CN106312252B (zh) 克服磁场对焊接电弧磁偏吹的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant