CN103166239B - 集中-分布混合式新能源发电***及最大功率点跟踪控制方法 - Google Patents

集中-分布混合式新能源发电***及最大功率点跟踪控制方法 Download PDF

Info

Publication number
CN103166239B
CN103166239B CN201110410080.4A CN201110410080A CN103166239B CN 103166239 B CN103166239 B CN 103166239B CN 201110410080 A CN201110410080 A CN 201110410080A CN 103166239 B CN103166239 B CN 103166239B
Authority
CN
China
Prior art keywords
bus
converter
voltage value
generation
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110410080.4A
Other languages
English (en)
Other versions
CN103166239A (zh
Inventor
吴红飞
高峰
常东升
邢岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Convertergy Energy Technology Co Ltd
Original Assignee
Shanghai Convertergy Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Convertergy Energy Technology Co Ltd filed Critical Shanghai Convertergy Energy Technology Co Ltd
Priority to CN201110410080.4A priority Critical patent/CN103166239B/zh
Priority to PCT/CN2012/000588 priority patent/WO2013082857A1/zh
Publication of CN103166239A publication Critical patent/CN103166239A/zh
Application granted granted Critical
Publication of CN103166239B publication Critical patent/CN103166239B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了一种集中-分布混合式新能源发电***及最大功率点跟踪控制方法,属新能源发电技术领域。所述新能源发电***由多个分布式串联的新能源发电模块及集中变换器构成,所述新能源发电模块由发电设备和直流变换器构成;所述最大功率点跟踪控制方法是指:分布式的发电模块和集中变换器同时对发电设备进行最大功率点跟踪,其中,新能源发电模块和集中变换器分别对发电模块输出特性曲线的不同区域进行最大功率点跟踪。所述控制方法够使集中变换器与发电模块无需通信情况下稳定、可靠工作,集中变换器自动工作在最优的直流母线电压点,新能源发电模块同时使每个发电设备都工作在各自的最大功率点,使***自动实现最大功率输出。

Description

集中-分布混合式新能源发电***及最大功率点跟踪控制方法
技术领域
本发明属新能源发电技术领域,具体涉及的是串联模块结构新能源发电***以及该***相对应的集中-分布混合式最大功率点跟踪控制方法,本发明尤其适用于光伏发电并网发电***和热电发电***等。
背景技术
发展和利用太阳能、热电等新型能源发电技术是应对能源和环境危机的重要举措。由于新能源发电设备成本高且能量转换效率低,极大增加了发电成本,限制了新能源发电技术的推广和应用。下面以太阳能光伏发电***为例来说明本发明的应用背景。
光伏并网发电是太阳能发电应用最主要的方式,据统计,全世界超过90%的光伏发电设备安装容量为并网应用,这是因为并网应用相对独立光伏***有成本低和免维护等优势。按照光伏组件实现最大功率跟踪(Maximum PowerPoint Tracking,MPPT)的方式,光伏并网发电***分为集中式和分布式两种类型。分布式MPPT***可以保证每个光伏组件工作在各自的最大功率点,解除各个组件直接串并联连接时存在的电压或电流耦合,消除光伏组件之间特性不一致或环境条件不一致时因为彼此相互影响导致的发电量降低问题,改善***发电效率,同时提高***可靠性高,因而受到广泛关注。
目前基于分布式MPPT的光伏并网发电***包括:(1)基于微逆变器的交流模块式***;(2)基于高压直流模块输出侧并联的光伏并网发电***;(3)基于低压直流模块输出侧串联的光伏并网发电***。由于光伏组件输出功率小、输出电压低,微逆变器或者高压直流模块通常需要借助变压器或耦合电感等实现高升压比,以满足电网电压需求,导致变换器拓扑结构复杂、效率降低、可靠性降低、成本增加。分布式串联光伏并网发电***中,多个新能源发电模块输出侧串联形成高压直流,新能源发电模块中的DC-DC变换器自身不需要高升压,因此可以采用基本的Buck、Boost或Buck/Boost变换器实现,具有效率高、可靠性高等优点。但是基本Buck、Boost或Buck/Boost变换器的变换效率与输入输出电压的差值有关,输入输出电压相差越大,其效率越低,为了使整个***获得最优的发电效率,需要通过并网逆变器实时调整输入侧直流母线电压,使得新能源发电模块中的DC-DC变换器输入输出电压接近。然而,并网逆变器无法直接获得每个新能源发电模块输出电压值,无法确定合适的输入侧直流母线电压值。通过为所有新能源发电模块和并网逆变器加入通信***的方式,可以使并网逆变器获得所有直流模块的输出电压,从而设置合适的直流母线电压值,但***成本高,且***运行需要依赖通信,可靠性差。
发明内容
本发明针对现有新能源发电***成本高且能量转换效率低等问题,提供一种集中-分布混合式新能源发电***,同时还提供一种针对分布式串联模块式新能源发电***的集中-分布混合式最大功率点跟踪控制方法。本发明通过将集中变换器的集中式最大功率跟踪控制与新能源发电模块的分布式最大功率跟踪控制相结合,使得集中变换器自动设定在最优的输入侧直流母线电压值,改善新能源发电***的***效率,达到提高发电量的目的。
为了达到上述目的,本发明采用如下的技术方案:
集中-分布混合式新能源发电***,该***包括至少一个直流模块组串和一个集中变换器,所有直流模块组串的输出端并联形成高压直流母线,并与集中变换器的输入端相连,所述直流模块组串包括复数个新能源发电模块,所述复数个新能源发电模块的输出端串联形成直流模块组串;所述新能源发电模块包括新能源发电设备和DC-DC变换器,所述新能源发电设备的输出端与DC-DC变换器的输入端相连,DC-DC变换器的输出端即为新能源直流模块的输出端。
在上述发电***的优选方案中,所述新能源发电设备可以是光伏组件、热电池。
进一步的,所述新能源发电模块中的DC-DC变换器为降压变换器或者升降压变换器。
进一步的,所述集中变换器可以是DC-DC变换器或并网逆变器,当集中变换器为DC-DC变换器时,集中变换器的输出端可以与用电负载或蓄电池相连,当集中变换器为并网逆变器时,集中变换器的输出端与电网相连。
针对上述新能源发电***,本发明提供一种集中-分布混合式最大功率点跟踪控制方法,该控制方法中新能源发电模块中的DC-DC变换器仅对与该DC-DC变换器相连的新能源发电设备进行最大功率跟踪,集中变换器对所有新能源发电设备同时进行最大功率跟踪。
在上述控制方法的优选方案中,当DC-DC变换器对新能源发电设备进行最大功率跟踪且DC-DC变换器的输入电压等于新能源发电设备最大功率点电压(UMPPT)时,DC-DC变换器的最高输出电压(Uomax)大于等于新能源发电模块的最大功率点(UMPPT)电压且小于新能源发电模块的开路电压(UOC),DC-DC变换器可以采用任意的最大功率点跟踪策略实现新能源发电模块的最大功率跟踪,而集中变换器采用如下的控制策略实现所有新能源发电模块的最大功率跟踪:
(1)集中变换器改变输入侧母线电压(UBus),同时检测集中变换器改变母线电压(UBus)前后的输入功率大小;
(2)如果增加母线电压值(UBus)后输入功率变小,则减小母线电压值(UBus),如果增加母线电压值(UBus)后输入功率变大,则继续增加母线电压值(UBus);
(3)如果减小母线电压值(UBus)后输入功率变小,则增加母线电压值(UBus),如果减小母线电压值(UBus)后输入功率变大,则继续减小母线电压值(UBus);
(4)如果减小母线电压值(UBus)后输入功率不变,则增加母线电压值(UBus),如果增加母线电压值(UBus)后输入功率不变,则继续增加母线电压值(UBus)。
在上述控制方法的另一优选方案中,当DC-DC变换器对新能源发电模块进行最大功率跟踪且DC-DC变换器的输入电压等于新能源发电模块最大功率点电压(UMPPT)时,DC-DC变换器的最低输出(Uomin)电压小于等于新能源发电模块的最大功率点(UMPPT)电压且大于0,同时DC-DC变换器的最高输出电压(Uomax)大于新能源发电模块的开路电压(UOC),DC-DC变换器可以采用任意的最大功率点跟踪策略实现新能源发电模块的最大功率跟踪,而集中变换器采用如下的控制策略实现所有新能源发电模块的最大功率跟踪:
(1)集中变换器改变输入侧母线电压(UBus),同时检测集中变换器改变母线电压(UBus)前后的输入功率大小;
(2)如果增加母线电压值(UBus)后输入功率变小,则减小母线电压值(UBus),如果增加母线电压值(UBus)后输入功率变大,则继续增加母线电压值(UBus);
(3)如果减小母线电压值(UBus)后输入功率变小,则增加母线电压值(UBus),如果减小母线电压值(UBus)后输入功率变大,则继续减小母线电压值(UBus);
(4)如果减小母线电压值(UBus)后输入功率不变,则继续减小母线电压值(UBus),如果增加母线电压值(UBus)后输入功率不变,则减小母线电压值(UBus)。
根据杉树方案得到的本发明够使集中变换器与发电模块无需通信情况下稳定、可靠工作,集中变换器自动工作在最优的直流母线电压点,新能源发电模块同时使每个发电设备都工作在各自的最大功率点,使***自动实现最大功率输出。
同时本发明与现有技术相比还具有以下优点:
(1)集中变换器与分布式串联的新能源发电模块不需要通信配合,***可以稳定、可靠工作,实现最大功率输出;
(2)集中变换器对所有新能源发电设备集中进行最大功率跟踪控制,能够使集中变换器的输入端直流母线电压自动设定为使新能源发电模块中的DC-DC变换器输入输出电压相近的母线电压值,改善DC-DC变换器的工作状态、提高DC-DC变换器的变换效率,提高***发电量;
(3)新能源发电模块中的DC-DC变换器分别对与各自相连的新能源发电设备进行最大功率跟踪,能够保证每一个新能源发电设备都工作在各自的最大功率点,避免光伏组件之间特性、环境条件不一致导致的相互影响,最大程度改善***发电效率。
附图说明
以下结合附图和具体实施方式来进一步说明本发明。
图1为本发明所述的新能源发电***示意图;
图2为新能源发电模块示意图;
图3为光伏直流模块示意图;
图4为光伏组件功率-电压特性曲线;
图5为传统光伏直流模块功率-电压特性曲线;
图6为采用控制策略1时分布式最大功率跟踪和集中式最大功率跟踪的跟踪区域示意图;
图7为采用控制策略1时光伏直流模块功率-电压特性曲线;
图8为采用控制策略2时分布式最大功率跟踪和集中式最大功率跟踪的跟踪区域示意图;
图9为采用控制策略2时光伏直流模块功率-电压特性曲线。
图中符号说明:PV-光伏组件;DC-DC-DC-DC变换器;DC/AC-并网逆变器;uG-电网;uBus-并网逆变器直流输入侧母线电压;uPV-光伏组件输出电压;pPV-光伏组件输出功率;PMPPT-光伏组件最大功率点电功率;UMPPT-光伏组件最大功率点电压;UOC-光伏组件开路电压;uo-光伏直流模块输出电压;po-光伏直流模块输出功率;uomax-光伏直流模块最高输出电压;uomin-光伏直流模块最低输出电压。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
参见图1,本发明提供的集中-分布混合式新能源发电***,其包括N个新能源发电模块100和一个集中变换器200。
参见图2,每个新能源发电模块100主要由新能源发电设备101和DC-DC变换器102构成,其中,新能源发电设备101的输出端与DC-DC变换器102的输入端相连,DC-DC变换器的输出端即为新能源直流模块的输出端。N个新能源发电模块100的输出端依次串联形成直流模块组串300,直流模块组串300的输出端形成高压直流母线,然后与集中变换器200的输入端相连。
在本发明中新能源发电设备101可以是光伏组件、热电池等设备。
集中变换器200可以是DC-DC变换器或并网逆变器,当集中变换器为DC-DC变换器时,集中变换器200的输出端可以与用电负载或蓄电池400相连,当集中变换器200为并网逆变器时,集中变换器的输出端与电网400相连。
作为本发明中新能源发电***另一变形,该新能源发电***由多个直流模块组串300和一个集中变换器200构成,多个直流模块组串300的输出端并联形成高压直流母线,然后再与集中变换器200的输入端相连。
根据上述方案形成的新能源发电***中新能源发电模块和集中变换器同时对新能源发电设备进行最大功率跟踪,其中新能源发电模块中的DC-DC变换器仅对与该DC-DC变换器相连的新能源发电设备进行最大功率跟踪,集中变换器对所有新能源发电设备同时进行最大功率跟踪。
基于上述原理,本发明提供的集中-分布混合式最大功率点跟中控制方法具体包括两种控制方案。
控制方案1:
在该方案中,新能源发电模块中的DC-DC变换器可以采用降压变换器或者升降压变换器,当DC-DC变换器对新能源发电设备进行最大功率跟踪且DC-DC变换器的输入电压等于新能源发电设备最大功率点电压(UMPPT)时,DC-DC变换器的最高输出电压(Uomax)大于等于新能源发电模块的最大功率点(UMPPT)电压且小于新能源发电模块的开路电压(UOC),DC-DC变换器可以采用任意的最大功率点跟踪策略实现新能源发电模块的最大功率跟踪,而集中变换器采用如下的控制策略实现所有新能源发电模块的最大功率跟踪:
(1)集中变换器改变输入侧母线电压(UBus),同时检测集中变换器改变母线电压(UBus)前后的输入功率大小;
(2)如果增加母线电压值(UBus)后输入功率变小,则减小母线电压值(UBus),如果增加母线电压值(UBus)后输入功率变大,则继续增加母线电压值(UBus);
(3)如果减小母线电压值(UBus)后输入功率变小,则增加母线电压值(UBus),如果减小母线电压值(UBus)后输入功率变大,则继续减小母线电压值(UBus);
(4)如果减小母线电压值(UBus)后输入功率不变,则增加母线电压值(UBus),如果增加母线电压值(UBus)后输入功率不变,则继续增加母线电压值(UBus)。
控制方案2:
在该方案中,新能源发电模块中的DC-DC变换器可以采用升压变换器或者升降压变换器,当DC-DC变换器对新能源发电模块进行最大功率跟踪且DC-DC变换器的输入电压等于新能源发电模块最大功率点电压(UMPPT)时,DC-DC变换器的最低输出(Uomin)电压小于等于新能源发电模块的最大功率点(UMPPT)电压且大于0,同时DC-DC变换器的最高输出电压(Uomax)大于新能源发电模块的开路电压(UOC),DC-DC变换器可以采用任意的最大功率点跟踪策略实现新能源发电模块的最大功率跟踪,而集中变换器采用如下的控制策略实现所有新能源发电模块的最大功率跟踪:
(1)集中变换器改变输入侧母线电压(UBus),同时检测集中变换器改变母线电压(UBus)前后的输入功率大小;
(2)如果增加母线电压值(UBus)后输入功率变小,则减小母线电压值(UBus),如果增加母线电压值(UBus)后输入功率变大,则继续增加母线电压值(UBus);
(3)如果减小母线电压值(UBus)后输入功率变小,则增加母线电压值(UBus),如果减小母线电压值(UBus)后输入功率变大,则继续减小母线电压值(UBus);
(4)如果减小母线电压值(UBus)后输入功率不变,则继续减小母线电压值(UBus),如果增加母线电压值(UBus)后输入功率不变,则减小母线电压值(UBus)。
下面以控制方案1为例,说明本发明分布式串联光伏并网发电***集中-分布混合式最大功率点跟踪控制方法的工作原理。为了简化分析做如下假设:(1)新能源发电***中的新能源发电设备为太阳能光伏组件,集中变换器为并网逆变器;(2)光伏组件与DC-DC变换器构成的新能源发电模块简称为光伏直流模块,如附图3所示;(3)光伏直流模块中的DC-DC变换器对光伏组件进行最大功率跟踪且DC-DC变换器的输入电压等于光伏组件最大功率点电压(UMPPT)时,DC-DC变换器的最高输出电压(Uomax)等于光伏组件的最大功率点(UMPPT)电压。
对于传统的光伏并网发电***,只能单独由并网逆变器对所有光伏组件进行集中式最大功率跟踪控制,或者只能由光伏直流模块中的DC-DC变换器对每一个光伏组件进行分布式最大功率跟踪控制,即集中式最大功率跟踪控制和分布式最大功率跟踪控制无法同时进行,这是因为两者的最大功率跟踪会发生冲突,具体原因如下:传统光伏组件的输出功率-电压特性曲线如附图4所示,特性曲线中存在唯一的最大功率点(UMPPT,PMPPT),多个光伏组件串并联以后输出功率-电压特性曲线与附图4所示的单个光伏组件的输出功率-电压特性曲线类似,即***中仍存在唯一的最大功率点,当并网逆变器同时对所有的光伏组件进行集中式最大功率跟踪时,能够通过改变并网逆变器输入端电压,也即改变光伏组件输出电压,同时对比光伏组件输出功率变化的方式,自动搜索到最大功率点,从而稳定工作,然而集中式的最大功率跟踪无法兼顾到每一个光伏组件的输出特性,保证每个组件都能工作在最大功率点;当光伏组件与DC-DC变换器相连构成光伏直流模块以后,DC-DC变换器对每一个光伏组件进行分布式的最大功率跟踪,能够保证每一个光伏组件工作在各自的最大功率点,由于DC-DC变换器一直对光伏组件进行最大功率跟踪,DC-DC变换器的输出功率一直保持光伏组件最大功率点的功率,而与DC-DC变换器的输出电压无关,由此形成的光伏直流模块输出功率-电压特性曲线如附图5所示,该曲线是一条平滑的直线,当多个光伏直流模块串并联连接后,其输出特性曲线仍为平滑的直线,即输出特性曲线中不存在最大功率点,因为所有的电压点对应的输出功率都相同,此时如果并网逆变器继续对光伏直流模块进行集中式的最大功率跟踪,则无法检测到对应固定电压点的最大功率点,即并网逆变器的集中式最大功率跟踪将失效,在这种情况下并网逆变器输入端直流母线电压将随机波动,影响***稳定运行。
对于分布式串联光伏并网发电***,仅需要通过光伏直流模块进行分布式的最大功率跟踪控制就能够保证每个光伏组件都工作在各自的最大功率点,然而光伏直流模块中的DC-DC变换效率与输入输出电压有很大的关系,对于采用基本Buck、Boost或Buck-Boost变换器的光伏直流模块,变换器的输入输出电压越接近,DC-DC变换器的变换效率越高,也就是DC-DC变换器的输出电压越接近于光伏组件的最大功率点电压,DC-DC变换器的变换效率也越高,并网发电***的发电效率也越高。为了使DC-DC变换器的输出电压接近光伏板的最大功率点电压,需要通过并网逆变器实时调整并网逆变器输入端直流母线电压的值,从而使DC-DC变换器的输出电压接近于光伏组件的最大功率点电压。然而,并网逆变器无法获得每个光伏直流模块的输出电压信息,因此无法自动选择最优的直流母线电压值。
为了解决上述问题,本发明采用集中-分布混合式最大功率跟踪控制策略,包括两种控制方案。控制方案1的基本原理如附图6所示:将光伏直流模块的输出功率-电压特性曲线以最大功率点为中心,分为左右两个部分,令光伏直流模块仅在光伏组件的左半平面进行分布式的最大功率跟踪控制,而并网逆变器则集中对所有光伏组件的右半平面进行集中式的最大功率跟踪控制。基于上述方法,光伏直流模块只在输出电压小于等于最大功率点电压时进行最大功率跟踪控制,由此光伏直流模块的输出特性曲线如附图7所示。根据附图7可知,当光伏直流模块的输出电压低于光伏组件的最大功率点电压时,光伏直流模块进行最大功率跟踪控制,光伏直流模块的输出功率-电压曲线是平滑的直线,而当光伏直流模块的输出电压高于光伏组件最大功率点电压时,光伏直流模块不进行最大功率跟踪控制,光伏直流模块的输出特性与光伏组件原有特性一致。当多个光伏直流模块串联连接时,其输出特性仍与附图7所示的功率-电压特性曲线相似,即功率-电压特性曲线不再是一条平滑的直线,当并网逆变器对所有光伏组件进行集中式最大功率跟踪时,采用本发明所述的控制策略,能够自动跟踪到光伏组件的最大功率点电压附近,该电压能够自动保证光伏直流模块的输出电压与光伏组件自身的最大功率点电压接近,从而保证光伏直流模块具有很高的变换效率,达到改善并网发电***发电效率的目的。
对于控制方案2的实现原理与控制方案1类似,仍把光伏组件的输出特性曲线以最大功率点电压为中心分为左右两个平面,如附图8所示,其中光伏直流模块仅对光伏组件的右半平面进行分布式的最大功率跟踪控制,从而得到的光伏直流模块的输出功率-电压特性曲线如附图9所示,并网逆变器进一步对光伏组件的左半平面进行集中式的最大功率跟踪控制,在本发明所述的控制策略下,能够自动跟踪到光伏组件的最大功率点电压附近,从而保证光伏直流模块的输出电压与光伏组件自身的最大功率点电压接近,从而保证光伏直流模块具有很高的变换效率,达到改善并网发电***发电效率的目的。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (2)

1.集中-分布混合式最大功率点跟踪控制方法,其特征在于,所述控制方法中新能源发电模块中的DC-DC变换器仅对与该DC-DC变换器相连的新能源发电设备进行最大功率跟踪,集中变换器对所有新能源发电设备同时进行最大功率跟踪;当DC-DC变换器对新能源发电设备进行最大功率跟踪且DC-DC变换器的输入电压等于新能源发电设备最大功率点电压(UMPPT)时,DC-DC变换器的最高输出电压(Uomax)大于等于新能源发电模块的最大功率点(UMPPT)电压且小于新能源发电模块的开路电压(UOC),DC-DC变换器可以采用任意的最大功率点跟踪策略实现新能源发电模块的最大功率跟踪,而集中变换器采用如下的控制策略实现所有新能源发电模块的最大功率跟踪:
(1)集中变换器改变输入侧母线电压(UBus),同时检测集中变换器改变母线电压(UBus)前后的输入功率大小;
(2)如果增加母线电压值(UBus)后输入功率变小,则减小母线电压值(UBus),如果增加母线电压值(UBus)后输入功率变大,则继续增加母线电压值(UBus);
(3)如果减小母线电压值(UBus)后输入功率变小,则增加母线电压值(UBus),如果减小母线电压值(UBus)后输入功率变大,则继续减小母线电压值(UBus);
(4)如果减小母线电压值(UBus)后输入功率不变,则增加母线电压值(UBus),如果增加母线电压值(UBus)后输入功率不变,则继续增加母线电压值(UBus)。
2.根据权利要求1所述的集中-分布混合式最大功率点跟踪控制方法,其特征在于,当DC-DC变换器对新能源发电模块进行最大功率跟踪且DC-DC变换器的输入电压等于新能源发电模块最大功率点电压(UMPPT)时,DC-DC变换器的最低输出(Uomin)电压小于等于新能源发电模块的最大功率点(UMPPT)电压且大于0,同时DC-DC变换器的最高输出电压(Uomax)大于新能源发电模块的开路电压(UOC),DC-DC变换器可以采用任意的最大功率点跟踪策略实现新能源发电模块的最大功率跟踪,而集中变换器采用如下的控制策略实现所有新能源发电模块的最大功率跟踪:
(1)集中变换器改变输入侧母线电压(UBus),同时检测集中变换器改变母线电压(UBus)前后的输入功率大小;
(2)如果增加母线电压值(UBus)后输入功率变小,则减小母线电压值(UBus),如果增加母线电压值(UBus)后输入功率变大,则继续增加母线电压值(UBus);
(3)如果减小母线电压值(UBus)后输入功率变小,则增加母线电压值(UBus),如果减小母线电压值(UBus)后输入功率变大,则继续减小母线电压值(UBus);
(4)如果减小母线电压值(UBus)后输入功率不变,则继续减小母线电压值(UBus),如果增加母线电压值(UBus)后输入功率不变,则减小母线电压值(UBus)。
CN201110410080.4A 2011-12-09 2011-12-09 集中-分布混合式新能源发电***及最大功率点跟踪控制方法 Expired - Fee Related CN103166239B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110410080.4A CN103166239B (zh) 2011-12-09 2011-12-09 集中-分布混合式新能源发电***及最大功率点跟踪控制方法
PCT/CN2012/000588 WO2013082857A1 (zh) 2011-12-09 2012-05-02 集中-分布混合式新能源发电***及最大功率点跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110410080.4A CN103166239B (zh) 2011-12-09 2011-12-09 集中-分布混合式新能源发电***及最大功率点跟踪控制方法

Publications (2)

Publication Number Publication Date
CN103166239A CN103166239A (zh) 2013-06-19
CN103166239B true CN103166239B (zh) 2015-07-08

Family

ID=48573526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110410080.4A Expired - Fee Related CN103166239B (zh) 2011-12-09 2011-12-09 集中-分布混合式新能源发电***及最大功率点跟踪控制方法

Country Status (2)

Country Link
CN (1) CN103166239B (zh)
WO (1) WO2013082857A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3571751A4 (en) * 2017-02-16 2020-01-08 Huawei Technologies Co., Ltd. DISTRIBUTED / CENTRAL OPTIMIZER ARCHITECTURE

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516305B (zh) * 2013-08-28 2015-10-07 浙江工业大学 含三绕组耦合电感的光伏阵列mppt接口电路
CN104578134B (zh) * 2013-10-12 2017-02-01 南京南瑞继保电气有限公司 一种最大功率点跟踪方法和***
TWI505061B (zh) * 2013-11-15 2015-10-21 Inst Information Industry 供電控制系統、方法及其非揮發性電腦可讀取紀錄媒體
CN103560541B (zh) * 2013-11-16 2015-10-14 沈阳工业大学 一种交直流混合微网故障穿越控制装置及方法
US20150340947A1 (en) * 2014-05-23 2015-11-26 Infineon Technologies Austria Ag Boost-buck based power converter
CN104079001B (zh) * 2014-07-15 2017-08-25 浙江昱能科技有限公司 基于串联型优化器的光伏并网***中对优化器的控制方法
CN104156028B (zh) * 2014-07-30 2016-08-31 深圳科士达科技股份有限公司 一种光伏发电***的mppt补偿器
CN104269883B (zh) * 2014-09-28 2016-08-17 南方电网科学研究院有限责任公司 一种基于实时数字仿真仪的光伏发电***等值方法
CN104734548B (zh) * 2015-04-07 2017-11-07 深圳市英威腾电气股份有限公司 一种光伏并网逆变器以及光伏并网逆变器的控制方法
CN105827180A (zh) * 2016-05-24 2016-08-03 西交利物浦大学 基于Beta参数差分功率控制的分布式光伏***
CN106953525B (zh) * 2017-01-18 2019-08-23 上海交通大学 阻抗型多模块串联式光伏直流升压变换器
US10651735B2 (en) 2017-02-06 2020-05-12 Futurewei Technologies, Inc. Series stacked DC-DC converter with serially connected DC power sources and capacitors
DE102017206579A1 (de) * 2017-04-19 2018-10-25 Robert Bosch Gmbh Konverter zum Steuern von Leistungsflüssen zwischen Gleichstromquellen
CN107910890A (zh) * 2017-09-13 2018-04-13 中南大学 一种串并联逆变器组合的光储微电网结构及控制方法
CN109672213B (zh) * 2017-10-17 2023-02-28 丰郅(上海)新能源科技有限公司 含有二次优化的功率优化***及其优化方法
CN107834590B (zh) * 2017-11-27 2023-07-25 广东工业大学 一种光伏发电高压直流输电装置及其方法
CN110021955B (zh) * 2018-01-08 2023-03-14 丰郅(上海)新能源科技有限公司 集成储能功能的光伏发电***及动态平衡电能的方法
CN109921455A (zh) * 2018-02-07 2019-06-21 苏州捷芯威半导体有限公司 一种分布式发电***架构以及分布式发电***架构的控制方法
CN108448621B (zh) * 2018-04-08 2021-01-08 阳光电源股份有限公司 一种光伏发电***的控制方法及设备
CN111869086B (zh) * 2018-12-29 2022-07-12 华为数字能源技术有限公司 一种逆变器
NL2023114B1 (en) * 2019-05-13 2020-12-01 Atlas Technologies Holding Bv Electric or hybrid means of transport with a solar panel.
CN110474600B (zh) * 2019-05-22 2021-11-09 上海空间电源研究所 一种基于输入独立输出串联发电电路的控制电路
CN110867846B (zh) * 2019-10-25 2021-12-17 中国科学院电工研究所 具有功率平衡器的大型光伏直流串联升压并网***
CN111446735B (zh) 2020-04-07 2022-01-28 清华大学 用于光伏中压集散***的控制***及方法
CN112421639B (zh) * 2020-10-28 2023-03-31 许继集团有限公司 分布式光伏发电接入配电台区线路电压调节***和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067437A (zh) * 2008-05-14 2011-05-18 国家半导体公司 在能量产生***中的集中式与分布式最大功率点追踪间作选择的方法与***
CN102148509A (zh) * 2011-05-13 2011-08-10 王红卫 一种太阳能电池最小单元优化的并网逆变器
CN102185532A (zh) * 2011-05-16 2011-09-14 武汉纺织大学 太阳能光伏并网离网混合发电***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088178B2 (en) * 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067437A (zh) * 2008-05-14 2011-05-18 国家半导体公司 在能量产生***中的集中式与分布式最大功率点追踪间作选择的方法与***
CN102148509A (zh) * 2011-05-13 2011-08-10 王红卫 一种太阳能电池最小单元优化的并网逆变器
CN102185532A (zh) * 2011-05-16 2011-09-14 武汉纺织大学 太阳能光伏并网离网混合发电***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
具有改进最大功率跟踪算法的光伏并网控制***及其实现;周德佳等;《中国电机工程学报》;20081105;第28卷(第31期);第94-99页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3571751A4 (en) * 2017-02-16 2020-01-08 Huawei Technologies Co., Ltd. DISTRIBUTED / CENTRAL OPTIMIZER ARCHITECTURE

Also Published As

Publication number Publication date
CN103166239A (zh) 2013-06-19
WO2013082857A1 (zh) 2013-06-13

Similar Documents

Publication Publication Date Title
CN103166239B (zh) 集中-分布混合式新能源发电***及最大功率点跟踪控制方法
Du et al. Battery-integrated boost converter utilizing distributed MPPT configuration for photovoltaic systems
CN206060577U (zh) 一种多路mppt微型逆变器
CN102780398B (zh) 智能太阳能光伏电池板的组件优化器及其控制方法
CN102611355B (zh) 一种光伏阵列汇流箱
CN102624022A (zh) 一种光伏并网发电***及其直流母线电压控制方法
CN101710716A (zh) 能减小电解电容的并网逆变器
CN104113073A (zh) 一种新能源发电***以及分布式混合最大功率跟踪方法
CN204578458U (zh) 一种汇流箱电路结构及光伏发电***
CN101938136A (zh) 光伏组件直流并网控制器
CN103633661A (zh) 一种新能源发电***以及分布式混合最大功率跟踪方法
Manojkumar et al. Power electronics interface for hybrid renewable energy system—A survey
CN104953945A (zh) 高效率的光伏发电***以及发电方法
CN104701877A (zh) 新型建筑光伏发电最大功率点跟踪与并网控制装置
CN102545709B (zh) 一种适用于太阳能发电装置的能量优化装置
CN103904638A (zh) 一种基于三端口变换器的直流分布式负载***及其控制方法
CN103956894A (zh) 一种基于三端口变换器的直流分布式供电***及其控制方法
CN208015589U (zh) 电力能源利用***
CN204794878U (zh) 电流采样光伏发电***
CN103633662A (zh) 一种分布式新能源发电***及分布式混合最大功率跟踪方法
CN205304269U (zh) 一种光伏并网发电的直流升压***
Kishor et al. Solar PV based autonomous low voltage DC microgrid for remote electrification
CN201805380U (zh) 用于太阳能电池组件的交流输出智能控制接线盒
CN204557276U (zh) 最大功率追踪的光伏***
CN204498015U (zh) 基于mppt的光伏控制***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 201203 Building 5, building 200, Newton Road, Zhangjiang hi tech park, Shanghai, Pudong New Area, 2

Applicant after: Shanghai Convertergy Energy Technology Co., Ltd.

Address before: 200090 Shanghai city Yangpu District Yangshupu Road No. 2300 Building 5 room 5012 A

Applicant before: Shanghai Convertergy Energy Technology Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150708

Termination date: 20181209

CF01 Termination of patent right due to non-payment of annual fee