CN103076607B - Method for realizing sliding spotlight mode based on SAR (Synthetic Aperture Radar) satellite attitude control - Google Patents

Method for realizing sliding spotlight mode based on SAR (Synthetic Aperture Radar) satellite attitude control Download PDF

Info

Publication number
CN103076607B
CN103076607B CN201310001124.7A CN201310001124A CN103076607B CN 103076607 B CN103076607 B CN 103076607B CN 201310001124 A CN201310001124 A CN 201310001124A CN 103076607 B CN103076607 B CN 103076607B
Authority
CN
China
Prior art keywords
msub
mtd
coordinate system
satellite
mrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310001124.7A
Other languages
Chinese (zh)
Other versions
CN103076607A (en
Inventor
陈杰
邹德意
王鹏波
朱燕青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201310001124.7A priority Critical patent/CN103076607B/en
Publication of CN103076607A publication Critical patent/CN103076607A/en
Application granted granted Critical
Publication of CN103076607B publication Critical patent/CN103076607B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The invention discloses a method for realizing a sliding spotlight mode based on SAR (Synthetic Aperture Radar) satellite attitude control, which belongs to the technical field of signal processing. According to the method, a satellite attitude is regulated and controlled, so that the direction angle of a satellite antenna is changed continuously, and the problem of angular quantification is solved; and a complete space relation geometrical model is established, so that a sliding spotlight mode can be realized more accurately, and the SAR azimuth resolution is increased. Moreover, the antenna is simple in structure, the satellite cost can be lowered, the size and the weight of a satellite are reduced, and the satellite has a wide application prospect. Compared with the conventional method for realizing the sliding spotlight mode through a phase control array, the method disclosed by the invention has the advantages that the direction of the antenna is changed continuously, and the accuracy is higher; and the structure of the satellite antenna can be greatly simplified, the satellite cost is reduced, the satellite weight is reduced, and the satellite antenna has a very important application value.

Description

Method for realizing sliding beam-bunching mode based on SAR satellite attitude control
Technical Field
The invention provides a method for realizing a sliding beam-forming mode based on SAR satellite attitude control, and belongs to the technical field of signal processing.
Background
The sliding beam bunching mode is a novel Synthetic Aperture Radar (SAR) imaging mode, controls azimuth resolution by controlling the moving speed of an antenna irradiation area on the ground, has larger imaging area than the bunching mode, can have higher resolution than a stripe mode with the same antenna size, and can make good balance in high resolution and large area imaging. The phased array antenna is a main means for realizing a sliding beam-bunching mode at present, in a radar antenna scanning mode, the pointing angle of the phased array antenna is influenced by the quantization position of the digital phase shifter, an angle quantization error exists, continuous change is impossible to realize, and the quantization problem causes the discontinuity of echo main energy and influences the azimuth resolution of the SAR. The phased array antenna has a complex structure and high manufacturing cost, and needs a complex central processing unit for control.
Disclosure of Invention
The invention provides a method for realizing a sliding spotlight mode based on SAR satellite attitude control, which is implemented by adjusting the rolling angle theta of a satelliterYaw angle thetayAnd a pitch angle thetapThe invention relates to a novel method for realizing a sliding beam-forming mode suitable for a high-mobility satellite.
A method for realizing a sliding spotlight mode based on SAR satellite attitude control comprises the following steps:
the method comprises the following steps: computing the satellite in a rotating earth-centered coordinate system EgCoordinate of (x)s,ys,zs);
Step two: calculating the time T of the front side view beam center of the satellite pointing to the center of the observation target area0Antenna coordinate system EaThe unit vector (0,1,0) in the rotating earth center coordinate system EgCoordinates of (5);
step three: calculating T0Time antenna coordinate system EaDistance R from unit vector (0,1,0) to ground0
Step four: calculating T0Slope distance delta R from moment rotating point C to ground pointing point0
Step five: calculating the coordinate system E of the rotation point C in the rotation geocentricgCoordinates of (5)
Step six: calculating the coordinate system E of the satellite and the rotation point C at the rotating earth center in the process of full sliding convergence (sliding bunching)gRelative vector (R) in (1)x,Ry,Rz);
Step seven: calculating the coordinate system E of the antenna pointing at the rotating geocentric during the full sliding convergence processgCoordinate of (x'1,y′1,z′1);
Step eight: calculating the antenna orientation in the antenna coordinate system E in the process of full sliding convergenceaCoordinate of (x ″)1,y″1,z″1);
Step nine: calculating the antenna coordinate System EaLower unit vector (0,1,0), coordinate (x) after attitude controlZT,yZT,zZT);
Step ten: calculating a satellite attitude control angle in the full sliding convergence process;
step eleven: and calculating the control law of the satellite attitude and the control curve of the angular speed of each axis in the full sliding and gathering process.
The invention provides a method for realizing a sliding beam-forming mode based on SAR satellite attitude control, which realizes continuous change of a satellite antenna pointing angle by regulating and controlling the satellite attitude, does not have the problem of angle quantization, can more accurately realize the sliding beam-forming mode by establishing a more perfect spatial relation geometric model, and improves the SAR azimuth resolution. And the antenna has a simple structure, can reduce the cost of the satellite, reduce the volume and weight of the satellite, and has wide application prospect.
The invention has the advantages that:
(1) compared with the conventional method for realizing the sliding beam-bunching mode through a phased array, the method provided by the invention has the advantages that the antenna pointing direction is continuously changed, and the accuracy is higher;
(2) the method provided by the invention is realized in a very accurate star motion model, and the accuracy is very high;
(3) the method provided by the invention can greatly simplify the structure of the satellite antenna, reduce the cost of the satellite and reduce the weight of the satellite, and has very important application value.
Drawings
FIG. 1 is a flow chart of a method of the present invention;
FIG. 2 is a graph of pitch angle versus scan time in an embodiment;
FIG. 3 is a graph of yaw angle versus scan time for an embodiment;
FIG. 4 is a graph of angular velocity of the x-axis of the satellite versus scan time in an embodiment;
FIG. 5 is a graph of the angular velocity of the y-axis of the satellite versus the scan time in the example;
FIG. 6 is a graph of angular velocity of the z-axis of the satellite versus scan time in an embodiment;
FIG. 7 is an enlarged view of the imaging result of the SLIP mode of the phased array antenna in the embodiment;
FIG. 8 is an enlarged view of imaging results of the pose-controlled sliding mode in the embodiment;
FIG. 9 is a point target analysis result of the sliding mode of the phased array antenna in the embodiment;
FIG. 10 is a result of target analysis of pose-controlled slider-gather mode points in an embodiment.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings and examples.
The invention discloses a formula parameter declaration part:
T0the moment when the center of the wave beam points to the center of the observation target area is observed from the front side view of the satellite;
Anumin order to meet the requirement of the length of the observation belt in the azimuth direction, the pulse number is transmitted;
fPRFis the pulse weightA complex frequency PRF;
θLis the radar antenna view angle;
ρathe azimuth resolution is;
Kais an azimuth beam broadening factor;
Lsis the equivalent antenna length;
the satellite on-orbit motion average angular velocity is obtained;
the earth mean rotation angular velocity;
a is the length of the earth's major semi-axis;
b is the length of the short half shaft of the earth;
m is the mean angle of approach;
e is an eccentric angle;
theta is the true proximal angle;
e is the eccentricity;
r is the radius;
p is a half positive focal length;
HGgreenwich mean hour angle at spring break;
omega is the right ascension of the orbit intersection point;
i is the track inclination angle;
omega is the amplitude angle of the orbit in the near place;
gamma is the track angle of the satellite;
θrfor rolling of satellites about the x-axisTurning;
θyis the yaw angle of the satellite about the y-axis;
θpis the pitch angle of the satellite around the z-axis;
θy_cthe satellite yaw angle after yaw control;
ω32is an equivalent angular velocity vector of rotation;
R2a rotation matrix when the satellite yaws;
R3is the rotation matrix when the satellite is pitching.
The coordinate system transformation matrix statement of the invention (for convenience of representation, cosine cos is denoted by c and sine sin is denoted by s):
A go = c H G s H G 0 - s H G c H G 0 0 0 1 to a non-rotating earth-centered coordinate system EoTo the rotating earth's center coordinate system EgThe transformation matrix of (2);
<math> <mrow> <msub> <mi>A</mi> <mi>ov</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <mi>&Omega;</mi> </msub> </mtd> <mtd> <msub> <mi>s</mi> <mi>&Omega;</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <mi>&Omega;</mi> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mi>&Omega;</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>c</mi> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>s</mi> <mi>i</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mi>i</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <mi>&omega;</mi> </msub> </mtd> <mtd> <msub> <mi>s</mi> <mi>&omega;</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <mi>&omega;</mi> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mi>&omega;</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math> as a plane coordinate system of the track EvTo the non-rotating geocentric coordinate system EoThe transformation matrix of (2);
<math> <mrow> <msub> <mi>A</mi> <mi>vr</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>-</mo> <mi>&gamma;</mi> <mo>)</mo> </mrow> </msub> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>c</mi> </mrow> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>-</mo> <mi>&gamma;</mi> <mo>)</mo> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>-</mo> <mi>&gamma;</mi> <mo>)</mo> </mrow> </msub> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>-</mo> <mi>&gamma;</mi> <mo>)</mo> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math> for the satellite platform coordinate system ErTo the orbital plane coordinate system EvThe transformation matrix of (2);
<math> <mrow> <msub> <mi>A</mi> <mi>re</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math> as satellite star coordinate system EeTo satellite platform coordinate system ErThe transformation matrix of (2);
<math> <mrow> <msub> <mi>A</mi> <mi>ea</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mtd> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mtd> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math> as an antenna coordinate system EaSatellite-to-satellite star coordinate system EeThe transformation matrix of (2);
the inverse transformation can be achieved by matrix inversion.
The invention realizes the sliding bunching mode through satellite attitude control, and the method flow is shown in figure 1 and specifically comprises the following steps.
The method comprises the following steps: computing the satellite in a rotating earth-centered coordinate system EgCoordinate of (x)s,ys,zs);
At the time of transmitting the M-th pulse, the average proximal angle M is:
<math> <mrow> <mi>M</mi> <mo>=</mo> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>sat</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>+</mo> <mfrac> <mi>m</mi> <msub> <mi>f</mi> <mi>PRF</mi> </msub> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>A</mi> <mi>num</mi> </msub> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>PRF</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
and then calculating the eccentric angle E as:
<math> <mrow> <mi>E</mi> <mo>=</mo> <mi>M</mi> <mo>+</mo> <mi>e</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mi>e</mi> <mn>2</mn> </msup> <mn>8</mn> </mfrac> <mo>+</mo> <mfrac> <msup> <mi>e</mi> <mn>4</mn> </msup> <mn>192</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>M</mi> <mo>+</mo> <msup> <mi>e</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mi>e</mi> <mn>2</mn> </msup> <mn>6</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>M</mi> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </math> ( 2 )
<math> <mrow> <msup> <mi>e</mi> <mn>3</mn> </msup> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mn>3</mn> <mn>8</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mn>27</mn> <mi>e</mi> </mrow> <mn>2</mn> </msup> <mn>128</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mn>3</mn> <mi>M</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <msup> <mi>e</mi> <mn>4</mn> </msup> <mo>&CenterDot;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mn>4</mn> <mi>M</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>125</mn> <mn>384</mn> </mfrac> <msup> <mi>e</mi> <mn>5</mn> </msup> <mo>&CenterDot;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mn>5</mn> <mi>M</mi> <mo>)</mo> </mrow> </mrow> </math>
calculating the true paraxial angle θ as:
<math> <mrow> <mi>&theta;</mi> <mo>=</mo> <mn>2</mn> <mo>&CenterDot;</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>e</mi> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mi>e</mi> </mrow> </mfrac> </msqrt> <mo>&CenterDot;</mo> <mi>tan</mi> <mfrac> <mi>E</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
the calculated radius r is:
<math> <mrow> <mi>r</mi> <mo>=</mo> <mfrac> <mi>P</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>e</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&theta;</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
from the above-obtained satellite in the orbital plane coordinate system EvCoordinate of (x)vs,yvs,zvs) Comprises the following steps:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>vs</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>vs</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mi>vs</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>r</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
through coordinate system conversion, the coordinate system is converted into a rotating earth center coordinate system EgObtaining the coordinate system E of the satellite in the rotating geocentricgCoordinate of (x)s,ys,zs) Comprises the following steps:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mi>s</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>A</mi> <mi>go</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>ov</mi> </msub> <mo>&CenterDot;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>vs</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>vs</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mi>vs</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
get T out of0Time of day satellite in rotating earth center coordinate system EgHas the coordinates of
Step two: calculating T0Time antenna coordinate system EaThe unit vector (0,1,0) in the rotating earth center coordinate system EgCoordinate of (x)1,y1,z1);
Through coordinate system conversion, the coordinate system is converted into a satellite star coordinate system EeTo the satellite platform coordinate system ErConversion to orbital plane coordinate system EvTo a non-rotating earth-centered orbital coordinate system EoThen converted into a rotating earth center coordinate system EgObtaining an antenna coordinate system EaThe unit vector (0,1,0) in the rotating earth center coordinate system EgCoordinate of (x)1,y1,z1) Comprises the following steps:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>A</mi> <mi>go</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>ov</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>vr</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>re</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>ea</mi> </msub> <mo>&CenterDot;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
note that: at this time, at A, attitude adjustment control is not taken into considerationreThe mid-attitude angles are all zero. In a satellite-satellite coordinate system EeConversion to satellite platform coordinate system ErIn the process, yaw control is considered. By yaw control, the satellite yaw angle thetay_cComprises the following steps:
<math> <mrow> <msub> <mi>&theta;</mi> <mrow> <mi>y</mi> <mo>_</mo> <mi>c</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>+</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>+</mo> <mi>&omega;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>sin</mi> <mi>i</mi> </mrow> <mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>sat</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>earth</mi> </msub> <mo>-</mo> <mi>cos</mi> <mi>i</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
step three: calculating T0Time antenna coordinate system EaDistance R from unit vector (0,1,0) to ground0
r 1 = b 2 x 1 2 + b 2 y 1 2 + a 2 z 1 2 - - - ( 9 )
r 2 = 2 ( b 2 x 1 x s 0 + b 2 y 1 y s 0 + a 2 z 1 z s 0 ) - - - ( 10 )
r 3 = b 2 x s 0 2 + b 2 y s 0 2 + a 2 z s 0 2 - a 2 b 2 - - - ( 11 )
Wherein r is1,r2,r3Respectively, intermediate variables.
Antenna coordinate system EaDistance R from unit vector (0,1,0) to ground0
R 0 = - r 2 2 - 4 r 1 r 3 - r 2 2 r 1 - - - ( 12 )
Step four: calculating T0Slope distance delta R from moment rotating point C to ground pointing point0
The rotating point C is a point of the antenna which fixedly points to the ground of the earth under a sliding beam-focusing mode, namely an antenna beam center focusing point. Calculating formula by sliding bunching azimuth resolutionObtaining:
<math> <mrow> <msub> <mi>&Delta;R</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mrow> <mn>2</mn> <mi>&rho;</mi> </mrow> <mi>a</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>K</mi> <mi>a</mi> </msub> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>&rho;</mi> <mi>a</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
step five: calculating the coordinate system E of the rotation point C in the rotation geocentricgCoordinates of (5)
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <msub> <mi>c</mi> <mn>0</mn> </msub> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;R</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <msub> <mi>s</mi> <mn>0</mn> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <msub> <mi>c</mi> <mn>0</mn> </msub> </msub> <mo>=</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;R</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>y</mi> <msub> <mi>s</mi> <mn>0</mn> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <msub> <mi>c</mi> <mn>0</mn> </msub> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;R</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>z</mi> <msub> <mi>s</mi> <mn>0</mn> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
Since the position of the rotation point C is not changed in the sliding bunching mode, the time T can be selected0Now, the attitude angles of the satellites are all zero.
Step six: calculating the coordinate system E of the satellite and the rotation point C at the rotation earth center in the full sliding convergence processgRelative vector (R) in (1)x,Ry,Rz);
R x = x s - x c 0 R y = y s - y c 0 R z = z s - z c 0 - - - ( 15 )
Step seven: calculating the coordinate system E of the antenna pointing at the rotating geocentric during the full sliding convergence processgCoordinate of (x'1,y′1,z′1);
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>x</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <msub> <mi>c</mi> <mn>0</mn> </msub> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> <msqrt> <msubsup> <mi>R</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mi>z</mi> <mn>2</mn> </msubsup> </msqrt> </mfrac> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>y</mi> <msub> <mi>c</mi> <mn>0</mn> </msub> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>s</mi> </msub> </mrow> <msqrt> <msubsup> <mi>R</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mi>z</mi> <mn>2</mn> </msubsup> </msqrt> </mfrac> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>z</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>z</mi> <msub> <mi>c</mi> <mn>0</mn> </msub> </msub> <mo>-</mo> <msub> <mi>z</mi> <mi>s</mi> </msub> </mrow> <msqrt> <msubsup> <mi>R</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mi>z</mi> <mn>2</mn> </msubsup> </msqrt> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
Step eight: calculating the antenna orientation in the antenna coordinate system E in the process of full sliding convergenceaCoordinate of (x ″)1,y″1,z″1);
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msubsup> <mi>x</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>z</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>A</mi> <mi>ae</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>er</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>rv</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>vo</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>og</mi> </msub> <mo>&CenterDot;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msubsup> <mi>x</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>z</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
Step nine: calculating the antenna coordinate System EaLower unit vector (0,1,0), coordinate (x) after attitude controlZT,yZT,zZT);
Theoretically, sliding bunching attitude control can be completed by changing attitude angles of any two dimensions or all three dimensions, and the pitch angle theta is changedpAnd yaw angle thetayFor example, the pitch angle is controlled first and then the yaw angle is controlled to obtain the coordinate (x) after the attitude controlZT,yZT,zZT) Comprises the following steps:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>ZT</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>ZT</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mi>ZT</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>A</mi> <mi>ae</mi> </msub> <mo>&CenterDot;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mi>ea</mi> </msub> <mo>&CenterDot;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
simplifying to obtain:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>ZT</mi> </msub> <mo>=</mo> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>-</mo> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>ZT</mi> </msub> <mo>=</mo> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <msubsup> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <mo>+</mo> <msubsup> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mn>2</mn> </msubsup> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mi>ZT</mi> </msub> <mo>=</mo> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <mo>-</mo> <msubsup> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mn>2</mn> </msubsup> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <mo>-</mo> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
step ten: calculating a satellite attitude control angle in the full sliding and gathering process: pitch angle thetapAnd yaw angle thetay
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>x</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>x</mi> <mi>ZT</mi> </msub> <mo>=</mo> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>-</mo> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>y</mi> <mi>ZT</mi> </msub> <mo>=</mo> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <msubsup> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <mo>+</mo> <msubsup> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mn>2</mn> </msubsup> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>z</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>z</mi> <mi>ZT</mi> </msub> <mo>=</mo> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <mo>-</mo> <msubsup> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mn>2</mn> </msubsup> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <mo>-</mo> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
Solving equation (20) yields:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <mi>A</mi> <mo>&CenterDot;</mo> <mi>B</mi> <mo>-</mo> <msqrt> <mn>1</mn> <mo>-</mo> <msup> <mi>A</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>B</mi> <mn>2</mn> </msup> </msqrt> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>B</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <mo>=</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>&CenterDot;</mo> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>x</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mrow> <mrow> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> <mo>=</mo> <mfrac> <msubsup> <mi>z</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <mo>&CenterDot;</mo> <msubsup> <mi>x</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> </mrow> <mrow> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, <math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>A</mi> <mo>=</mo> <mfrac> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mrow> <msubsup> <mi>y</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mi>B</mi> <mo>=</mo> <mfrac> <msubsup> <mi>x</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <msubsup> <mi>y</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mn>1</mn> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
step eleven: calculating a satellite attitude control rule and an angular speed control curve of each axis in the full sliding convergence process;
because different control results can be caused by different control sequences even if the control quantity is fixed, the change of the control angle needs to be expressed by using an Euler four-element formula, and the change rule of the attitude Euler angle is solved.
To be provided withRespectively representing sequential pivot vectors 1 ^ = 1 0 0 T , 2 ^ = 0 1 0 T , 3 ^ = 0 0 1 T , Then there are:
<math> <mrow> <msub> <mi>&omega;</mi> <mn>32</mn> </msub> <mo>=</mo> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>&CenterDot;</mo> <mover> <mn>2</mn> <mo>^</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>&CenterDot;</mo> <mover> <mn>3</mn> <mo>^</mo> </mover> <mo>]</mo> </mrow> </math>
<math> <mrow> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='[' close=']' separators=' '> <mtable> <mtr> <mtd> <msub> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mi>y</mi> </msub> </mtd> </mtr> </mtable> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>s</mi> </mrow> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>p</mi> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msub> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mi>p</mi> </msub> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mi>p</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mi>p</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
therefore, the attitude control rule, the rotation angular velocity omega of the three axes x, y and z can be obtainedxyzRespectively as follows:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>s</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mi>p</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mi>p</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
through the eleven steps, the calculation of the posture control rule of the sliding bunching mode is completed.
Example (b):
the method provided by the invention is verified by a simulation experiment. The simulation verification is divided into two parts, and the first part calculates the attitude control rule provided by the invention through C + + language programming; the second part controls the satellite attitude according to the attitude control rule calculated by the first part through C + + language programming, generates echo data through simulation, images and evaluates the echo data, and verifies the correctness and superiority of the invention through comparison with simulation echo data in a phased array antenna mode.
A first part: calculating the attitude control rule provided by the invention;
parameters given in the simulation experiment: the method comprises the following steps of (1) 6378140.0m of the earth major semi-axis, 6356755.0m of the earth minor semi-axis, 6371140.0m of the average earth radius, 0.000073reg/s of the earth rotation angular velocity, 7003819.0m of the orbit semi-major axis, 97.889 of the orbit inclination angle, 90.0 of the argument of the perigee, 121.0 of right ascension at the ascending intersection point, 0.0011 of eccentricity, 0.03m of working wavelength, 20.0deg of the antenna central visual angle, 3.3m of antenna length, 350MHz of signal sampling rate, 300MHz of signal bandwidth, 5000Hz of pulse repetition frequency, 0.5m of azimuth resolution and 1.2 of beam spreading factor, wherein a point target is arranged at the center of a scene, and the specific calculation steps are:
1.1 computing the satellite in a rotating earth-centered coordinate system EgCoordinate of (x)s,ys,zs);
Obtaining a satellite in-orbit plane coordinate system E according to the formulas (1) to (4)vCoordinate of (x)vs,yvs,zvs) As shown in equation (5), the coordinate system is converted into a rotating earth center coordinate system EgObtaining the coordinate system E of the satellite in the rotating geocentricgCoordinate of (x)s,ys,zs) E.g. formula (6), and taking T therefrom0Time of day satellite in rotating earth center coordinate system EgHas the coordinates of
1.2 calculating T0Time antenna coordinate system EaThe unit vector (0,1,0) in the rotating earth center coordinate system EgCoordinate of (x)1,y1,z1);
Conversion to a rotating earth-centered coordinate system E by coordinate system conversion in view of yaw controlgAs shown in formula (7).
1.3 calculating T0Time antenna coordinate system EaDistance R from unit vector (0,1,0) to ground0
According to the formulas (9) to (11), the result is calculated as the formula (12).
1.4 calculating T0Slope distance delta R from moment rotating point C to ground pointing point0
Due to the fact that <math> <mrow> <mfrac> <mrow> <mi>&Delta;</mi> <msub> <mi>R</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;R</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>K</mi> <mi>a</mi> </msub> <mfrac> <msub> <mi>L</mi> <mi>s</mi> </msub> <mn>2</mn> </mfrac> <mo>=</mo> <msub> <mi>&rho;</mi> <mi>a</mi> </msub> <mo>,</mo> </mrow> </math> Can obtain the Delta R0As shown in formula (13).
1.5 calculating the rotation point C in the rotating geocentric coordinate system EgCoordinates of (5)
Since the position of the rotation point is not changed in the sliding bunching mode, the time T can be selected0At this time, the attitude angles of the satellites are all zero, and the calculation result is as shown in the formula (14).
1.6 calculating the coordinate system E of the satellite and the rotation point C at the rotating earth center in the full sliding and gathering processgRelative vector (R) in (1)x,Ry,Rz);
Rotating earth center coordinate system EgIn the process of full sliding aggregation, the position of the satellite changes, the rotation point C does not change, and a relative vector can be calculated as the formula (15).
1.7 calculation of antenna pointing in the course of full-slip focusing on the rotating geocentric coordinate System EgCoordinate of (x'1,y′1,z′1);
The calculation result is as shown in equation (16).
1.8 calculation of antenna pointing in antenna coordinate System E during full sliding aggregationaCoordinate of (x ″)1,y″1,z″1);
And (5) performing coordinate system conversion, as shown in formula (17).
1.9 calculating the antenna coordinate System EaLower unit vector (0,1,0), coordinate (x) after attitude controlZT,yZT,zZT);
And (4) obtaining a result as shown in the formula (19) through coordinate system conversion and attitude control as shown in the formula (18).
1.10 calculating the satellite attitude control angle in the full sliding and gathering process: pitch angle thetapAnd yaw angle thetay
According to equation (20), the equation can be solved to obtain the result as equation (21).
1.11 calculating a satellite attitude control rule and an angular speed control curve of each axis in the full sliding and gathering process;
according to the formula (22), the attitude control rule can be obtained, and the rotation angular velocity of the three axes x, y and z is as the formula (23).
In simulation, 65536 is taken as the number of azimuth sampling points, the maximum scanning angle is +/-2.808 degrees, different maximum scanning angles can be realized by changing the number of azimuth sampling points, in the example, for convenience of simulation program writing, 2 integral powers are taken as the number of azimuth sampling points, only-2.23 degrees to +223 degrees of scanning angle range is taken for actual processing, the length of the surveying and mapping belt is 10km, and the yaw angle theta is calculatedpAnd a pitch angle thetayThe variation law is shown in fig. 2 and fig. 3, respectively, and the three-axis rotation angular velocities obtained for controlling the satellite attitude to realize the sliding bunching mode are shown in fig. 2 and fig. 3, respectivelyShown in fig. 4, 5 and 6.
A second part: and generating echo data by simulation, and imaging and evaluating the echo data.
Given parameters in simulation experiments are unchanged, echo data under a phased array antenna mode and an attitude control mode of the invention are generated through simulation by C + + programming respectively, results obtained through imaging are displayed in a graph 7 and a graph 8 respectively, the imaging data are evaluated, the results are displayed in a graph 9 and a graph 10 respectively, and as can be seen from analysis results, the azimuth resolution of the implementation of sliding beam bunching by attitude control is improved compared with that of the phased array antenna.
The two simulation experiments show that the method provided by the invention is a very accurate method.

Claims (1)

1. A method for realizing a sliding spotlight mode based on SAR satellite attitude control is characterized by comprising the following steps:
the method comprises the following steps: computing the satellite in a rotating earth-centered coordinate system EgCoordinate of (x)s,ys,zs);
At the time of transmitting the M-th pulse, the average proximal angle M is:
and then calculating the eccentric angle E as:
calculating the true paraxial angle θ as:
calculating the vector r as:
from the above-obtained satellite in the orbital plane coordinate system EvCoordinate of (x)vs,yvs,zvs) Comprises the following steps:
through coordinate system conversion, the coordinate system is converted into a rotating earth center coordinate system EgObtaining the coordinate system E of the satellite in the rotating geocentricgCoordinate of (x)s,ys,zs) Comprises the following steps:
get T out of0Time of day satellite in rotating earth center coordinate system EgHas the coordinates of
Step two: calculating T0Time antenna coordinate system EaThe unit vector (0,1,0) in the rotating earth center coordinate system EgSeat inLabel (x)1,y1,z1);
Through coordinate system conversion, the coordinate system is converted into a satellite star coordinate system EeTo the satellite platform coordinate system ErConversion to orbital plane coordinate system EvTo a non-rotating earth-centered orbital coordinate system EoThen converted into a rotating earth center coordinate system EgObtaining an antenna coordinate system EaThe unit vector (0,1,0) in the rotating earth center coordinate system EgCoordinate of (x)1,y1,z1) Comprises the following steps:
step three: calculating T0Time antenna coordinate system EaDistance R from unit vector (0,1,0) to ground0
Wherein r is1,r2,r3Respectively intermediate variables;
antenna coordinate system EaDistance R from unit vector (0,1,0) to ground0
Step four: calculating T0Inclination from the moment of rotation C to the ground pointing pointDistance Δ R0
Calculating formula by sliding bunching azimuth resolutionObtaining:
step five: calculating the coordinate system E of the rotation point C in the rotation geocentricgCoordinates of (5)
Step six: calculating the coordinate system E of the satellite and the rotation point C at the rotation earth center in the full sliding convergence processgRelative vector (R) in (1)x,Ry,Rz);
Step seven: calculating the coordinate system E of the antenna pointing at the rotating geocentric during the full sliding convergence processgCoordinate of (x)1′,y1′,z1′);
Step eight: calculating the antenna orientation in the antenna coordinate system E in the process of full sliding convergenceaCoordinate of (x)1",y1",z1");
Step nine: calculating the antenna coordinate System EaLower unit vector (0,1,0), coordinate (x) after attitude controlZT,yZT,zZT);
Firstly controlling the pitch angle and then the yaw angle to obtain the coordinate (x) after the attitude controlZT,yZT,zZT) Comprises the following steps:
simplifying to obtain:
step ten: calculating a satellite attitude control angle in the full sliding and gathering process: pitch angle thetapAnd yaw angle thetay
Solving equation (20) yields:
and according toTo obtainAs follows below, the following description will be given,
wherein,
step eleven: calculating a satellite attitude control rule and an angular speed control curve of each axis in the full sliding convergence process;
to be provided withRespectively representing sequential pivot vectors Then there are:
the attitude control law, namely the rotation angular velocity omega of the three axes x, y and z is obtainedxyzRespectively as follows:
through the eleven steps, the calculation of the attitude control law of the sliding bunching mode is completed;
in the above steps, the letter parameters are defined as follows:
T0the moment when the center of the wave beam points to the center of the observation target area is observed from the front side view of the satellite; a. thenumIn order to meet the requirement of the length of the observation belt in the azimuth direction, the pulse number is transmitted; f. ofPRFIs the pulse repetition frequency PRF; thetaLIs the radar antenna view angle; rhoaThe azimuth resolution is; kaIs an azimuth beam broadening factor; l issIs the equivalent antenna length;the satellite on-orbit motion average angular velocity is obtained;the earth mean rotation angular velocity; a is the length of the earth's major semi-axis; b is the length of the short half shaft of the earth; m is the mean angle of approach; e is an eccentric angle; theta is the true proximal angle; e is the eccentricity; r is the radius; p is a half positive focal length; hGGreenwich mean hour angle at spring break; omega is the right ascension of the orbit intersection point; i is the track inclination angle; omega is the amplitude angle of the orbit in the near place; gamma is the track angle of the satellite; thetarIs the roll angle of the satellite about the x-axis; thetayIs the yaw angle of the satellite about the y-axis; thetapIs the pitch angle of the satellite around the z-axis; thetay_cThe satellite yaw angle after yaw control; omega32Is an equivalent angular velocity vector of rotation; r2A rotation matrix when the satellite yaws; r3A rotation matrix during satellite pitching; cosine cos is denoted by c and sine sin is denoted by s;
to a non-rotating earth-centered coordinate system EoTo the rotating earth's center coordinate system EgThe transformation matrix of (2);
as a plane coordinate system of the track EvTo the non-rotating geocentric coordinate system EoThe transformation matrix of (2);
for the satellite platform coordinate system ErTo the orbital plane coordinate system EvIs rotatedChanging the matrix;
as satellite star coordinate system EeTo satellite platform coordinate system ErThe transformation matrix of (2);
as an antenna coordinate system EaSatellite-to-satellite star coordinate system EeThe transformation matrix of (2);
the inverse transformation is achieved by matrix inversion.
CN201310001124.7A 2013-01-04 2013-01-04 Method for realizing sliding spotlight mode based on SAR (Synthetic Aperture Radar) satellite attitude control Expired - Fee Related CN103076607B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310001124.7A CN103076607B (en) 2013-01-04 2013-01-04 Method for realizing sliding spotlight mode based on SAR (Synthetic Aperture Radar) satellite attitude control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310001124.7A CN103076607B (en) 2013-01-04 2013-01-04 Method for realizing sliding spotlight mode based on SAR (Synthetic Aperture Radar) satellite attitude control

Publications (2)

Publication Number Publication Date
CN103076607A CN103076607A (en) 2013-05-01
CN103076607B true CN103076607B (en) 2014-07-30

Family

ID=48153194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310001124.7A Expired - Fee Related CN103076607B (en) 2013-01-04 2013-01-04 Method for realizing sliding spotlight mode based on SAR (Synthetic Aperture Radar) satellite attitude control

Country Status (1)

Country Link
CN (1) CN103076607B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596704A (en) * 2019-08-19 2019-12-20 西安空间无线电技术研究所 Satellite platform attitude maneuver method for satellite-borne SAR multi-azimuth repeated observation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107300700B (en) * 2016-04-15 2020-05-22 北京空间飞行器总体设计部 Agile synthetic aperture radar satellite bunching mode attitude maneuver demand calculation method
CN107300699B (en) * 2016-04-15 2020-12-25 北京空间飞行器总体设计部 Method for realizing mosaic mode based on agile synthetic aperture radar satellite attitude maneuver
CN106226768B (en) * 2016-08-09 2018-08-21 北京空间飞行器总体设计部 Ultrahigh resolution agility SAR satellites slide beam bunching mode System Parameter Design method
CN106291557B (en) * 2016-08-30 2018-09-18 西安空间无线电技术研究所 A kind of satellite platform attitude maneuver method for realizing satellite-borne SAR ultrahigh resolution sliding beam bunching mode
CN106950566A (en) * 2017-02-20 2017-07-14 中国科学院电子学研究所 A kind of synthetic aperture radar image-forming method and device
CN110456312B (en) * 2019-08-22 2021-06-04 上海无线电设备研究所 Beam broadening method based on arc equiphase surface
CN113701709B (en) * 2021-09-10 2023-04-11 中国电子科技集团公司第三十八研究所 Airborne SAR (synthetic aperture radar) one-axis platform beam-bunching mode antenna array plane pitching pointing algorithm and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414003B (en) * 2008-11-28 2011-05-04 北京航空航天大学 Star-loaded SAR image geocoding method based on star ground coordinate transformation
CN102565797B (en) * 2011-12-21 2014-03-12 北京航空航天大学 Geometric correction method for spotlight-mode satellite SAR (synthetic aperture radar) image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596704A (en) * 2019-08-19 2019-12-20 西安空间无线电技术研究所 Satellite platform attitude maneuver method for satellite-borne SAR multi-azimuth repeated observation

Also Published As

Publication number Publication date
CN103076607A (en) 2013-05-01

Similar Documents

Publication Publication Date Title
CN103076607B (en) Method for realizing sliding spotlight mode based on SAR (Synthetic Aperture Radar) satellite attitude control
CN107607947B (en) On-line estimation method for imaging parameters of satellite-borne radar based on Kalman filtering
CN107132537B (en) A kind of SAR satellite on-orbit performance method for improving based on electromechanical combination scanning
CN102508243B (en) Beam position design method of inclined geosynchronous orbit synthetic aperture radar
CN103675760B (en) A kind of spaceborne geostationary orbit synthetic-aperture radar attitude guidance method
CN107300700B (en) Agile synthetic aperture radar satellite bunching mode attitude maneuver demand calculation method
EP1772742B1 (en) Correction of the distance between phase centres of two directional antenneas of a navigational satellite
CN102621994B (en) Control method of geosynchronous earth orbit (GEO) synthetic aperture radar (SAR) for covering all over China
CN102169173B (en) Method for analyzing ambiguity of inclined geo-synchronization orbit synthetic aperture radar
CN101513939B (en) Two dimentional attitude control system of synthetic aperture radar satellite
CN103364782B (en) Geosynchronous orbit synthetic aperture radar velocity spatial variability compensating method
CN101915920A (en) High-resolution imaging method for earth synchronous orbit synthetic aperture radar satellite
CN104730506B (en) A kind of complete zero Doppler attitude guidance method of Synthetic Aperture Radar satellite
CN112255606A (en) Method for calculating front side-view imaging attitude angle of Geo-SAR (synthetic aperture radar) satellite based on single reflector antenna
CN103344958B (en) Based on the satellite-borne SAR high-order Doppler parameter evaluation method of almanac data
CN111856423A (en) Satellite-borne SAR echo simulation processing method, device and equipment
CN108613655B (en) Attitude adjustment method for imaging along inclined strip in agile satellite machine
CN103792536B (en) A kind of satellite-borne synthetic aperture radar slip beam bunching mode orientation is to parameter acquiring method
CN115792907A (en) Method for designing azimuth imaging parameters of spaceborne SAR squint sliding bunching mode
Chen et al. A two-dimensional beam-steering method to simultaneously consider Doppler centroid and ground observation in GEOSAR
CN103777201A (en) Airborne SAR motion compensation method based on GPS data
CN107323689B (en) The orbit maneuver method that satellite in orbit is reconnoitred over the ground
CN115373423A (en) Formation capture method for commercial satellite
Zhang et al. An innovative superpolyhedron (SP) formation for multistatic SAR (M-SAR) interferometry
CN115128603A (en) Satellite-borne SAR non-tracking multi-target imaging satellite-ground configuration joint design and optimization method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140730

Termination date: 20200104