CN103074531A - 一种耐热稀土镁合金及其制备方法 - Google Patents

一种耐热稀土镁合金及其制备方法 Download PDF

Info

Publication number
CN103074531A
CN103074531A CN2013100113147A CN201310011314A CN103074531A CN 103074531 A CN103074531 A CN 103074531A CN 2013100113147 A CN2013100113147 A CN 2013100113147A CN 201310011314 A CN201310011314 A CN 201310011314A CN 103074531 A CN103074531 A CN 103074531A
Authority
CN
China
Prior art keywords
alloy
rare earth
magnesium
heat resisting
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100113147A
Other languages
English (en)
Other versions
CN103074531B (zh
Inventor
李全安
付三玲
张清
陈君
刘文健
陈志�
宋晓杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201310011314.7A priority Critical patent/CN103074531B/zh
Publication of CN103074531A publication Critical patent/CN103074531A/zh
Application granted granted Critical
Publication of CN103074531B publication Critical patent/CN103074531B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Forging (AREA)

Abstract

本发明公开了一种耐热稀土镁合金及其制备方法,该镁合金由以下质量百分比的组分组成:6%~15%Gd,0.4%~1.5%Sm,0.3%~1%Zr,杂质元素Si、Fe、Cu和Ni总量小于0.02%,余量为Mg。同时还公开了该耐热稀土镁合金的制备方法。本发明的耐热稀土镁合金,在保持高温抗拉伸强度的同时,具有较低的成本;在室温到250℃范围内,合金的抗拉伸强度具有反常温度效应,即随着温度的升高,抗拉强度也随之提高,到达一定温度后,抗拉强度才会相对下降;在航空航天、汽车工业、武器装备等领域具有广阔的应用前景。

Description

一种耐热稀土镁合金及其制备方法
技术领域
本发明属于金属材料技术领域,具体涉及一种耐热稀土镁合金及其制备方法。
背景技术
镁是最轻的金属结构材料,在汽车上应用日益增多。汽车每减重100Kg,每百公里节油0.5L,同时减少尾气排放,因此进行镁合金的研究开发对于节约能源、抑制环境污染有着重要意义。但是,镁合金的强度和耐热性不佳严重阻碍其在航空航天、军工、汽车及其它行业中的应用,因此提高镁合金的强度和耐热性是发展镁合金材料的重要课题。
现有的耐热镁合金主要从限制位错运动和强化晶界入手,通过适当的合金化,通过引入热稳定性高的第二相、降低元素在镁基体中的扩散速率或者改善晶界结构状态和组织形态等手段来实现提高镁合金高温强度和高温蠕变抗力的目的。目前,在所有合金元素中,稀土(RE)是提高镁合金耐热性能最有效的合金元素,稀土元素在镁合金中除了具有除气、除杂、提高铸造流动性、耐蚀性能的功能以外,大部分稀土元素在镁中具有较大的固溶度极限;并且随温度下降,固溶度急剧减少,可以得到较大的过饱和度,从而在随后的时效过程中析出弥散的、高熔点的稀土化合物相;稀土元素还可以细化晶粒、提高室温强度,而且分布在晶内和晶界(主要是晶界)的弥散的、高熔点稀土化合物,在高温时仍能钉扎晶内位错和晶界滑移,从而提高了镁合金的高温强度,同时稀土(RE)元素在镁基体中的扩散速率较慢,这使得Mg-RE合金适于在较高温度环境下长期工作。Mg-RE(如Mg-Gd系)合金是重要的耐热合金系,具有较高的高温强度和优良的蠕变性能。目前于200~250℃条件下长期工作的镁合金零部件均为Mg-RE系合金,由于其特殊的价电子结构及在镁合金中的显著的强化效果,使Mg-RE系成为发展高强度耐热镁合金的一个重要合金系。
现有技术中,专利CN101532106B公开了一种耐热铸造稀土镁合金,组分及其重量百分比为:7~14%Gd、2~5%Y、0.3~5%Sm、0.2~0.6%Zr,杂质元素Si、Fe、Cu和Ni的总量小于0.02%,余量为Mg,该镁合金具有反常温度效应,在较高温度具有很高的拉伸强度,满足航空航天器件在200~250℃抗拉强度均高于250MPa的要求,但是其所用稀土元素种类多、含量高,存在成本相对较高的问题,不能达到高温抗拉伸强度与成本两者兼顾。
发明内容
本发明的目的是提供一种耐热稀土镁合金,在保持高温抗拉伸强度的同时,具有较低的成本。
本发明的另一个目的是提供一种耐热稀土镁合金的制备方法。
为了实现以上目的,本发明所采用的技术方案是:一种耐热稀土镁合金,由以下质量百分比的组分组成:6%~15%Gd,0.4%~1.5%Sm,0.3%~1%Zr,杂质元素Si、Fe、Cu和Ni总量小于0.02%,余量为Mg。
所述Gd和Sm的质量百分比之和为7.5%~16.5%。
该耐热稀土镁合金是由镁和中间合金Mg-Gd、Mg-Sm、Mg-Zr为原料熔炼而成。
一种耐热稀土镁合金的制备方法,包括下列步骤:
1)将镁、中间合金Mg-Gd、Mg-Sm和Mg-Zr预热;
2)将镁在CO2+SF6混合气体保护下熔化,于720~740℃加入中间合金Mg-Gd、Mg-Sm,将温度升至750~780℃加入中间合金Mg-Zr;
3)当中间合金Mg-Zr熔化后,去除表面浮渣,将温度升至770~780℃后保持10min得混合液;
4)待步骤3)所得混合液的温度降至690~730℃后进行浇铸,得铸态合金;
5)将步骤4)所得铸态合金进行热处理,即得所述耐热稀土镁合金。
步骤1)中所述预热温度为150~220℃。
步骤4)中浇铸时将浇铸模具预热至180~250℃。
步骤5)中所述热处理是对铸态合金依次进行固溶处理和时效处理。
所述固溶处理的处理温度为490~540℃,处理时间为5~20小时。
所述时效处理的处理温度为180~250℃,处理时间为8~20小时。
本发明的耐热稀土镁合金组分为Mg-Gd-Sm-Zr。本发明采用Gd为第一组分,Gd在Mg固溶体中的最大固溶度为20.3wt%,200℃时在Mg固溶体中的固溶度为3.8wt%,为保证合金得到良好的时效析出强化和固溶强化效果,Gd的加入量不低于6wt%,而又为了避免合金密度增加太多,以及合金过分脆化,因此本发明的Gd加入量不高于15wt%。本发明采用Sm为第二组分,Sm可以降低Gd在Mg中的固溶度,从而增加Gd的时效析出强化效应;Sm在镁中的固溶度变化为:540℃,5.7wt%;200℃,0.4wt%,为了使固溶强化效果更明显且最大限度的节约成本,本发明的Sm加入量范围为0.4wt%~1.5wt%。本发明采用Zr作为晶粒细化剂,以提高合金的韧性和改善合金的工艺性能。
本发明的耐热稀土镁合金,组分为Mg-Gd-Sm-Zr,相对于现有技术,省去了稀土元素Y,并且稀土元素Sm使用较低的含量范围,在保持高温抗拉伸强度和反常温度效应的同时,稀土元素种类少,含量低,具有较低的成本;本发明的耐热稀土镁合金在室温到250℃范围内,其抗拉强度具有反常温度效应,即随着拉伸温度的提高,抗拉强度也随之提高,到达一定温度后,一般为300℃抗拉强度会下降;本发明的耐热稀土镁合金,在航空航天、汽车工业、武器装备等方面有着广阔的应用前景。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
本发明实施例中涉及到的原料镁Mg和中间合金Mg-Gd、Mg-Sm、Mg-Zr均为市售产品。所述原料的纯度为99.9%的Mg,99.5%的Mg-30.00%Gd、99.5%的Mg-25.11%Sm、99.5%的Mg-25.00%Zr。
实施例1
本实施例的耐热稀土镁合金,由以下质量百分比的组分组成:15%Gd,1.5%Sm,0.5%Zr,杂质元素Si、Fe、Cu和Ni总量小于0.02%,余量为Mg。所述Gd和Sm的质量百分比之和为16.5%。
本实施例的耐热稀土镁合金的制备方法,包括下列步骤:
1)将镁、中间合金Mg-Gd、Mg-Sm和Mg-Zr预热到150℃;
2)将镁放入预热到500℃的刚玉坩埚中,在CO2+SF6混合气体保护下,大功率快速加热熔化,待镁锭熔化后,于720℃加入中间合金Mg-Gd、Mg-Sm,将温度升至750℃加入中间合金Mg-Zr;
3)当中间合金Mg-Zr熔化后,去除表面浮渣,将温度升至780℃后保持10min得混合液;
4)将浇铸用钢制模具预先加热至250℃,待步骤3)所得混合液温度降至690℃后进行浇铸,得铸态合金;
5)将步骤4)所得铸态合金进行热处理:535℃固溶处理6h,230℃等温时效处理10h,即得所述耐热稀土镁合金。
实施例2
本实施例的耐热稀土镁合金,由以下质量百分比的组分组成:6%Gd,1.5%Sm,1.0%Zr,杂质元素Si、Fe、Cu和Ni总量小于0.02%,余量为Mg。所述Gd和Sm的质量百分比之和为7.5%。
本实施例的耐热稀土镁合金的制备方法,包括下列步骤:
1)将镁、中间合金Mg-Gd、Mg-Sm和Mg-Zr预热到170℃;
2)将镁放入预热到500℃的刚玉坩埚中,在CO2+SF6混合气体保护下,大功率快速加热熔化,待镁锭熔化后,于740℃加入中间合金Mg-Gd、Mg-Sm,将温度升至770℃加入中间合金Mg-Zr;
3)当中间合金Mg-Zr熔化后,去除表面浮渣,将温度升至775℃后保持10min得混合液;
4)将浇铸用钢制模具预先加热至240℃,待步骤3)所得混合液温度降至710℃后进行浇铸,得铸态合金;
5)将步骤4)所得铸态合金进行热处理:540℃固溶处理15h,250℃等温时效处理8h,即得所述耐热稀土镁合金。
实施例3
本实施例的耐热稀土镁合金,由以下质量百分比的组分组成:12%Gd,0.4%Sm,1.0%Zr,杂质元素Si、Fe、Cu和Ni总量小于0.02%,余量为Mg。所述Gd和Sm的质量百分比之和为12.4%。
本实施例的耐热稀土镁合金的制备方法,包括下列步骤:
1)将镁、中间合金Mg-Gd、Mg-Sm和Mg-Zr预热到190℃;
2)将镁放入预热到500℃的刚玉坩埚中,在CO2+SF6混合气体保护下,大功率快速加热熔化,待镁锭熔化后,于730℃加入中间合金Mg-Gd、Mg-Sm,将温度升至780℃加入中间合金Mg-Zr;
3)当中间合金Mg-Zr熔化后,去除表面浮渣,将温度升至780℃后保持10min得混合液;
4)将浇铸用钢制模具预先加热至220℃,待步骤3)所得混合液温度降至730℃后进行浇铸,得铸态合金;
5)将步骤4)所得铸态合金进行热处理:520℃固溶处理5h,200℃等温时效处理20h,即得所述耐热稀土镁合金。
实施例4
本实施例的耐热稀土镁合金,由以下质量百分比的组分组成:10%Gd,1.0%Sm,0.3%Zr,杂质元素Si、Fe、Cu和Ni总量小于0.02%,余量为Mg。所述Gd和Sm的质量百分比之和为11.0%。
本实施例的耐热稀土镁合金的制备方法,包括下列步骤:
1)将镁、中间合金Mg-Gd、Mg-Sm和Mg-Zr预热到200℃;
2)将镁放入预热到500℃的刚玉坩埚中,在CO2+SF6混合气体保护下,大功率快速加热熔化,待镁锭熔化后,于735℃加入中间合金Mg-Gd、Mg-Sm,将温度升至760℃加入中间合金Mg-Zr;
3)当中间合金Mg-Zr熔化后,去除表面浮渣,将温度升至770℃后保持10min得混合液;
4)将浇铸用钢制模具预先加热至200℃,待步骤3)所得混合液温度降至700℃后进行浇铸,得铸态合金;
5)将步骤4)所得铸态合金进行热处理:500℃固溶处理20h,180℃等温时效处理15h,即得所述耐热稀土镁合金。
实施例5
本实施例的耐热稀土镁合金,由以下质量百分比的组分组成:15%Gd,1.5%Sm,0.8%Zr,杂质元素Si、Fe、Cu和Ni总量小于0.02%,余量为Mg。所述Gd和Sm的质量百分比之和为16.5%。
本实施例的耐热稀土镁合金的制备方法,包括下列步骤:
1)将镁、中间合金Mg-Gd、Mg-Sm和Mg-Zr预热到220℃;
2)将镁放入预热到500℃的刚玉坩埚中,在CO2+SF6混合气体保护下,大功率快速加热熔化,待镁锭熔化后,于725℃加入中间合金Mg-Gd、Mg-Sm,将温度升至765℃加入中间合金Mg-Zr;
3)当中间合金Mg-Zr熔化后,去除表面浮渣,将温度升至770℃后保持10min得混合液;
4)将浇铸用钢制模具预先加热至180℃,待步骤3)所得混合液温度降至720℃后进行浇铸,得铸态合金;
5)将步骤4)所得铸态合金进行热处理:490℃固溶处理10h,240℃等温时效处理18h,即得所述耐热稀土镁合金。
实验例
本实验例对实施例1~5所得耐热稀土镁合金进行拉伸强度实验,实验方法为:将所得耐热稀土镁合金的试样,按照国家标准GB6397-86《金属拉伸实验试样》加工成5倍标准拉伸试样,在高温下的拉伸试样需要在试样两端加工螺纹以满足高温拉伸试样的夹持装置的要求。电子拉伸在日本岛津AG-I250kN精密万能实验机上进行,拉伸速度为1mm/min;高温拉伸时,在相应温度下对拉伸试样保温15min,温度波动±1℃,然后进行拉伸。实验结果如表1所示:
表1实施例1~5所得耐热稀土镁合金的拉伸强度实验结果
Figure BDA00002725964600061
从上表1可以看出,实施例1~5的耐热稀土镁合金,组分为Mg-Gd-Sm-Zr,相对于对比例1~3,省去了稀土元素Y,并且稀土元素Sm使用较低的含量范围,在保持高温抗拉伸强度和反常温度效应的同时,稀土元素种类少,含量低,具有较低的成本。

Claims (9)

1.一种耐热稀土镁合金,其特征在于:由以下质量百分比的组分组成:6%~15%Gd,0.4%~1.5%Sm,0.3%~1%Zr,杂质元素Si、Fe、Cu和Ni总量小于0.02%,余量为Mg。
2.根据权利要求1所述的耐热稀土镁合金,其特征在于:所述Gd和Sm的质量百分比之和为7.5%~16.5%。
3.根据权利要求1所述的耐热稀土镁合金,其特征在于:该耐热稀土镁合金是由镁和中间合金Mg-Gd、Mg-Sm、Mg-Zr为原料熔炼而成。
4.一种如权利要求1所述的耐热稀土镁合金的制备方法,其特征在于:包括下列步骤:
1)将镁、中间合金Mg-Gd、Mg-Sm和Mg-Zr预热;
2)将镁在CO2+SF6混合气体保护下熔化,于720~740℃加入中间合金Mg-Gd、Mg-Sm,将温度升至750~780℃加入中间合金Mg-Zr;
3)当中间合金Mg-Zr熔化后,去除表面浮渣,将温度升至770~780℃后保持10min得混合液;
4)待步骤3)所得混合液的温度降至690~730℃后进行浇铸,得铸态合金;
5)将步骤4)所得铸态合金进行热处理,即得所述耐热稀土镁合金。
5.根据权利要求4所述的耐热稀土镁合金的制备方法,其特征在于:步骤1)中所述预热温度为150~220℃。
6.根据权利要求4所述的耐热稀土镁合金的制备方法,其特征在于:步骤4)中浇铸时将浇铸模具预热至180~250℃。
7.根据权利要求4所述的耐热稀土镁合金的制备方法,其特征在于:步骤5)中所述热处理是对铸态合金依次进行固溶处理和时效处理。
8.根据权利要求7所述的耐热稀土镁合金的制备方法,其特征在于:所述固溶处理的处理温度为490~540℃,处理时间为5~20小时。
9.根据权利要求7所述的耐热稀土镁合金的制备方法,其特征在于:所述时效处理的处理温度为180~250℃,处理时间为8~20小时。
CN201310011314.7A 2013-01-11 2013-01-11 一种耐热稀土镁合金及其制备方法 Expired - Fee Related CN103074531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310011314.7A CN103074531B (zh) 2013-01-11 2013-01-11 一种耐热稀土镁合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310011314.7A CN103074531B (zh) 2013-01-11 2013-01-11 一种耐热稀土镁合金及其制备方法

Publications (2)

Publication Number Publication Date
CN103074531A true CN103074531A (zh) 2013-05-01
CN103074531B CN103074531B (zh) 2014-12-31

Family

ID=48151224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310011314.7A Expired - Fee Related CN103074531B (zh) 2013-01-11 2013-01-11 一种耐热稀土镁合金及其制备方法

Country Status (1)

Country Link
CN (1) CN103074531B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421999A (zh) * 2013-07-15 2013-12-04 中南大学 一种含稀土耐热镁合金及其制备方法
CN109321795A (zh) * 2018-11-01 2019-02-12 贵州航天风华精密设备有限公司 一种具有电磁屏蔽性能的镁合金
CN109468513A (zh) * 2018-12-18 2019-03-15 上海交通大学 一种高强耐热铸造镁稀土合金及其制备方法
CN110423928A (zh) * 2018-02-09 2019-11-08 河南科技大学 一种高强度阻燃镁合金

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008060A (zh) * 2006-11-30 2007-08-01 中国科学院长春应用化学研究所 一种耐热镁基稀土合金及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008060A (zh) * 2006-11-30 2007-08-01 中国科学院长春应用化学研究所 一种耐热镁基稀土合金及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421999A (zh) * 2013-07-15 2013-12-04 中南大学 一种含稀土耐热镁合金及其制备方法
CN103421999B (zh) * 2013-07-15 2016-01-20 中南大学 一种含稀土耐热镁合金及其制备方法
CN110423928A (zh) * 2018-02-09 2019-11-08 河南科技大学 一种高强度阻燃镁合金
CN109321795A (zh) * 2018-11-01 2019-02-12 贵州航天风华精密设备有限公司 一种具有电磁屏蔽性能的镁合金
CN109468513A (zh) * 2018-12-18 2019-03-15 上海交通大学 一种高强耐热铸造镁稀土合金及其制备方法

Also Published As

Publication number Publication date
CN103074531B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
CN101532106B (zh) 一种耐热铸造稀土镁合金
CN101532107B (zh) 一种耐热稀土镁合金
CN103146973B (zh) 一种耐高温稀土镁合金
CN103131925B (zh) 一种高强耐热复合稀土镁合金
CN101403080A (zh) 含铒的铝-镁-锰变形铝合金的热处理工艺
CN103146972B (zh) 一种多元稀土镁合金及其制备方法
CN101532105A (zh) 稀土镁合金及其制备方法
CN102865354A (zh) 一种汽车减速箱壳体及其制备工艺
CN104388786A (zh) 一种高强度高塑性Mg-Zn-Al-Sn镁合金
CN104032195A (zh) 一种可高效挤压低成本高性能导热镁合金及其制备方法
CN103498065A (zh) 一种TiAl合金晶粒细化方法
CN102181763B (zh) 一种高温强度稳定的稀土镁合金
CN105018813A (zh) 一种抗蠕变稀土镁合金及其制备方法
CN103074531B (zh) 一种耐热稀土镁合金及其制备方法
CN111254333B (zh) 一种多元高强耐蚀变形镁合金及其制备方法
CN104451484A (zh) 镁合金板材的形变热处理强化工艺
CN103469039B (zh) 一种含钙和稀土钐的镁-铝-锌变形镁合金
CN104928549A (zh) 一种高强度高弹性模量的铸造镁稀土合金及其制备方法
CN105154736A (zh) 一种耐热铸造镁合金及其制备方法
CN102277521B (zh) 室温高韧性单相固溶体镁稀土基合金及制备方法
CN108034874B (zh) 一种含钼铼稀土镁合金及其制备方法
CN112095038A (zh) 一种提高铝合金中弥散相数量的方法
CN103774019A (zh) 一种高温强度稳定的耐热镁合金
CN104561717A (zh) 高性能耐热铸造镁合金及其制备方法
CN109182858A (zh) 一种含Ho耐热镁合金及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141231

Termination date: 20160111

CF01 Termination of patent right due to non-payment of annual fee