CN103050734B - 一种纯化电解液的方法 - Google Patents

一种纯化电解液的方法 Download PDF

Info

Publication number
CN103050734B
CN103050734B CN201210557681.2A CN201210557681A CN103050734B CN 103050734 B CN103050734 B CN 103050734B CN 201210557681 A CN201210557681 A CN 201210557681A CN 103050734 B CN103050734 B CN 103050734B
Authority
CN
China
Prior art keywords
electrolyte
calcium chloride
purifying
anhydrous calcium
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210557681.2A
Other languages
English (en)
Other versions
CN103050734A (zh
Inventor
韩昌隆
王小梅
付成华
任建勋
赵丰刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningde Amperex Technology Ltd
Original Assignee
Ningde Amperex Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningde Amperex Technology Ltd filed Critical Ningde Amperex Technology Ltd
Priority to CN201210557681.2A priority Critical patent/CN103050734B/zh
Publication of CN103050734A publication Critical patent/CN103050734A/zh
Application granted granted Critical
Publication of CN103050734B publication Critical patent/CN103050734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明属于锂离子电池技术领域,尤其涉及一种电解液的纯化方法,将无水氯化钙加入电解液中,使无水氯化钙与电解液中的杂质反应10分钟以上,过滤后得到纯化后的电解液,所述杂质为电解液的线性伏安扫描曲线中3-5.5V电位区间内的氧化峰所表示的物质,所述无水氯化钙的质量与所述电解液的质量比为(5-20):100。相对于现有技术,本发明的方法简单、实用,效果良好,能够明显地提高电解液的纯度,降低杂质含量,使电解液的氧化稳定性提高,同时纯度提高了的电解液无疑有助于高电压电池的使用,使得电池即使在高电压下使用时也具有良好的性能,从而使得电池的能量密度得以提高。

Description

一种纯化电解液的方法
技术领域
本发明属于锂离子电池技术领域,尤其涉及一种电解液的纯化方法。
背景技术
锂离子电池相对于铅酸电池、镍氢电池和镍镉电池等具有能量密度高、自放电小和循环寿命长等优点,当前已广泛应用于消费电子领域,并已逐渐开始应用于动力电池和储能电站等领域。
锂离子电池从结构上看,主要部件为正极、负极、隔膜和电解液。其中,电解液起到在电池内部为锂离子在正负极之间的穿梭传递提供载体的作用。当前人们对电池的能量密度的要求越来越高。为了提高电池的能量密度,其中一个方法是提高电池的工作电压,当电池的工作电压提高后,对电解液的纯度要求也变得更高。若电解液中含有一些杂质,则电池在高电压应用时容易发生副反应,从而造成电池性能的恶化。
因此鉴于实际需要,有必要提供一种纯化电解液的方法。
发明内容
本发明的目的在于:针对现有技术的不足,而提供一种纯化电解液的方法,采用该方法可以较好的纯化电解液,明显地提高电解液的纯度,降低杂质含量,使电解液的氧化稳定性提高。
为了达到上述目的,本发明采用如下技术方案:一种纯化电解液的方法,将无水氯化钙加入电解液中,使无水氯化钙与电解液中的杂质反应10分钟以上,过滤后得到纯化后的电解液,所述杂质为电解液的线性伏安扫描曲线中3-5.5V电位区间内的氧化峰所表示的物质,所述无水氯化钙的质量与所述电解液的质量比为(5-20):100。
发明人在研究高电压电池用电解液时发现电解液中总含有少量的杂质,这些杂质可能来自于配制电解液的原料或配制过程。发明人对高电压电池用电解液进行线性伏安测试发现:在电解液的线性伏安测试曲线的3~5.5Vvs.Li+/Li的范围内有明显的氧化峰存在,这表明电解液发生了氧化反应,而且实践表明:随着温度的增加,反应电流逐渐变大。这些氧化峰的存在即是电解液中存在杂质的反映。当将这类电解液应用于4.2V的电池中时,由于电位较低,对电池影响很小;但是当将这类电解液应用于高电压电池(如4.3V、4.4V的电池)时,由于电位较高,电解液中存在的杂质反应会对电池性能产生不好的影响。
因此,本发明的发明人经过长期的研究意外地发现:在电解液中加入无水氯化钙,可以较大程度地去除该杂质,这是因为无水氯化钙与电解液的线性伏安扫描曲线中3-5.5V电位区间内的氧化峰所表示的物质(即杂质)发生了反应。因此,将无水氯化钙加入到电解液中即可以起到纯化电解液的作用。当将纯化后的电解液应用于高电压的电池时,仍然能够保证电池具有较好的性能,从而使电池的能量密度得以有效地提高。
当然,无水氯化钙的添加量不能太大,否则不仅会造成无水氯化钙的浪费,而且过多的氯的添加也会对电解液的性能造成不良的影响;无水氯化钙的添加量也不能太少,否则不能起到很好的纯化作用。
作为本发明纯化电解液的方法的一种改进,所述无水氯化钙的质量与所述电解液的质量比为(8-16):100,这是较优的范围。
作为本发明纯化电解液的方法的一种改进,所述无水氯化钙的质量与所述电解液的质量比为12:100,这是较佳的选择。
作为本发明纯化电解液的方法的一种改进,使用所述无水氯化钙前,先将无水氯化钙置于干燥装置中,在100℃以上的温度下干燥处理,干燥持续时间为5~20小时,干燥可以除去存在于无水氯化钙中的少量水分,以避免其中存在的少量水分对电解液造成的不良影响。
作为本发明纯化电解液的方法的一种改进,所述干燥装置为马弗炉或真空干燥箱。
作为本发明纯化电解液的方法的一种改进,将所述无水氯化钙加入所述电解液中后,搅拌10~30分钟。
作为本发明纯化电解液的方法的一种改进,将搅拌后的电解液静置1.5小时以上,然后过滤得到纯化后的电解液。静置有利于无水氯化钙的下沉,便于后续过滤,以提高过滤效率。
作为本发明纯化电解液的方法的一种改进,所述无水氯化钙的纯度大于99.9%,即无水氯化钙为分析纯,这种无水氯化钙具有较高的纯度,以避免向电解液中引入额外的杂质,造成对电解液性能的不良影响。
相对于现有技术,本发明的方法简单、实用,效果良好,能够明显地提高电解液的纯度,降低杂质含量,使电解液的氧化稳定性提高,同时纯度提高了的电解液无疑有助于高电压电池的使用,使得电池即使在高电压下使用时也具有良好的性能,从而使得电池的能量密度得以提高。
附图说明
图1为纯化前的电解液在25℃、45℃和60℃下的线性伏安扫描曲线图(以Pt作为电极)。
图2为纯化前的电解液和采用实施例1的方法纯化后的电解液的线性伏安扫描曲线图(以Pt作为电极)。
图3为纯化前的电解液和采用实施例2的方法纯化后的电解液的线性伏安扫描曲线图(以Pt作为电极)。
图4为纯化前的电解液和采用实施例3的方法纯化后的电解液的线性伏安扫描曲线图(以Pt作为电极)。
具体实施方式
下面结合实施例对本发明及其有益效果作进一步详细的描述,但本发明的实施方式不限于此。
以1M的LiPF6/(碳酸乙烯酯(EC):碳酸丙烯酯(PC):碳酸二乙酯(DEC)=1:1:1(体积比))的电解液为例,先分别在25℃、45℃和60℃下对高电压电池用电解液进行线性伏安扫描,其中的电极采用Pt电极,所得结果示于图1。
从图1可以看出,在不同的温度下,电解液在3~5.5Vvs.Li+/Li的范围内均有明显的氧化峰的存在,这表明电解液发生了氧化反应,而且随着温度的增加,反应电流逐渐变大。这些氧化峰的存在即是电解液中存在杂质的反映。此电解液应用于4.2V的电池中时,由于电位较低,对电池影响很小;当将该电解液应用于高电压电池时,如4.3V、4.4V的电池,由于电位较高,此杂质反应会对电池性能产生不好的影响。
需要说明的是,通过气相色谱等仪器不能检测到这些杂质,其原因在于这些杂质在电解液中的含量很少,低于气相色谱等仪器的检测限,所以检测不到。因此,本发明中使用线性伏安扫描来表征这些杂质,这些杂质的氧化峰出现的范围为3~5.5Vvs.Li+/Li,而本实验中采用的EC、PC和DEC配制成1M的LiPF6溶液,其氧化电位在6.0Vvs.Li+/Li以上,二者的出峰位置恰好错开。因此,能够使用线性伏安扫描中3~5.5Vvs.Li+/Li范围内出现的氧化峰来表征这些杂质。
实施例1
取5.768克纯度大于99.9%的无水CaCl2置于130℃的真空干燥箱中,持续干燥20小时,然后将干燥好的无水氯化钙从真空干燥箱中取出,并在干燥房中冷却到常温,再将其加入到电解液中,电解液的质量为86克,搅拌10分钟,静置1.5小时,然后过滤得到纯化后的电解液。其中,电解液的配方为:LiPF6为溶质,且溶质在电解液中的浓度为1M,溶剂为碳酸乙烯酯、碳酸丙烯酯和碳酸二乙酯的混合溶剂,三者的体积比分别为1:1:1。
然后分别取纯化前和纯化后的电解液,分别在Pt电极(Pt电极直径为200μm)上做线性伏安扫描,扫描速率为1mV/s,扫描方向为正电位方向,其结果如图2所示(测试用的是同一根Pt电极,以保证测试结果的可比性)。图2中的曲线21为纯化处理前的电解液的线性伏安扫描曲线,图2中的曲线22为采用本实施例的方法纯化后的电解液的线性伏安扫描曲线。从图2可以看出,纯化后的电解液的氧化电流明显地降低了,这表明采用本发明的纯化方法降低了电解液中杂质的含量。
实施例2
取13.212克纯度大于99.9%的无水CaCl2置于160℃的马弗炉中,持续烘烤8小时,然后将干燥好的无水氯化钙从马弗炉中取出,并在干燥房中冷却到常温,再将其加入到电解液中,电解液的质量为70克,搅拌15分钟,静置5小时,然后过滤得到纯化后的电解液。其中,电解液的配方为:LiPF6为溶质,且溶质在电解液中的浓度为1M,溶剂为碳酸乙烯酯、碳酸丙烯酯和碳酸二乙酯的混合溶剂,三者的体积比分别为1:1:1。
然后分别取纯化前和纯化后的电解液,分别在Pt电极(Pt电极直径为200μm)上做线性伏安扫描,扫描速率为1mV/s,扫描方向为正电位方向,其结果如图3所示(测试用的是同一根Pt电极,以保证测试结果的可比性)。图3中的曲线31为纯化处理前的电解液的线性伏安扫描曲线,图3中的曲线32为采用本实施例的方法纯化后的电解液的线性伏安扫描曲线。从图3可以看出,纯化后的电解液的氧化电流明显地降低了,而且原先出现在4.6V位置的氧化峰也消失了,这表明采用本发明的纯化方法极大地降低了电解液中杂质的含量,这将有助于高电压电池的性能提升。
实施例3
取5.196克纯度大于99.9%的无水CaCl2置于110℃的真空干燥箱中,持续干燥16小时,然后将干燥好的无水氯化钙从真空干燥箱中取出,并在干燥房中冷却到常温,再将其加入到电解液中,电解液的质量为82克,搅拌20分钟,静置8小时,然后过滤得到纯化后的电解液。其中,电解液的配方为:LiPF6为溶质,且溶质在电解液中的浓度为1M,溶剂为碳酸乙烯酯、碳酸丙烯酯和碳酸二乙酯的混合溶剂,三者的体积比分别为1:1:1。
然后分别取纯化前和纯化后的电解液,分别在Pt电极(Pt电极直径为200μm)上做线性伏安扫描,扫描速率为1mV/s,扫描方向为正电位方向,其结果如图4所示(测试用的是同一根Pt电极,以保证测试结果的可比性)。图4中的曲线41为纯化处理前的电解液的线性伏安扫描曲线,图4中的曲线42为采用本实施例的方法纯化后的电解液的线性伏安扫描曲线。从图4可以看出,纯化后的电解液的氧化电流明显地降低了,而且氧化起始电位也从原先的4.2V增加到了4.5V,在3.5~4.2V的电位区间内其电流值也有明显地降低,这表明采用本发明的纯化方法极大地降低了电解液中杂质的含量,这将有助于高电压电池的性能提升。
实施例4
取4克纯度大于99.9%的无水CaCl2置于180℃的真空干燥箱中,持续干燥5小时,然后将干燥好的无水氯化钙从真空干燥箱中取出,并在干燥房中冷却到常温,再将其加入到电解液中,电解液的质量为80克,搅拌25分钟,静置3小时,然后过滤得到纯化后的电解液。其中,电解液的配方为:LiPF6为溶质,且溶质在电解液中的浓度为1M,溶剂为碳酸乙烯酯、碳酸丙烯酯和碳酸二甲酯的混合溶剂,三者的体积比分别为1:3:1。
然后分别取纯化前和纯化后的电解液,分别在Pt电极(Pt电极直径为200μm)上做线性伏安扫描,扫描速率为1mV/s,扫描方向为正电位方向,测试用的是同一根Pt电极,以保证测试结果的可比性。结果表明,纯化后的电解液的氧化电流明显地降低了,这表明采用本发明的纯化方法降低了电解液中杂质的含量,这将有助于高电压电池的性能提升。
实施例5
取20克纯度大于99.9%的无水CaCl2置于180℃的马弗炉中,持续干燥20小时,然后将干燥好的无水氯化钙从马弗炉中取出,并在干燥房中冷却到常温,再将其加入到电解液中,电解液的质量为100克,搅拌30分钟,静置10小时,然后过滤得到纯化后的电解液。其中,电解液的配方为:LiPF6为溶质,且溶质在电解液中的浓度为1M,溶剂为碳酸二乙烯酯、碳酸丙烯酯和碳酸二甲酯的混合溶剂,三者的体积比分别为1:2:1。
然后分别取纯化前和纯化后的电解液,分别在Pt电极(Pt电极直径为200μm)上做线性伏安扫描,扫描速率为1mV/s,扫描方向为正电位方向,测试用的是同一根Pt电极,以保证测试结果的可比性。结果表明,纯化后的电解液的氧化电流明显地降低了,这表明采用本发明的纯化方法降低了电解液中杂质的含量,这将有助于高电压电池的性能提升。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (8)

1.一种纯化锂离子电池电解液的方法,其特征在于:将无水氯化钙加入锂离子电池电解液中,使无水氯化钙与电解液中的杂质反应10分钟以上,过滤后得到纯化后的电解液,所述杂质为电解液的线性伏安扫描曲线中3-5.5V电位区间内的氧化峰所表示的物质,所述无水氯化钙的质量与所述电解液的质量比为(5-20):100。
2.根据权利要求1所述的纯化锂离子电池电解液的方法,其特征在于:所述无水氯化钙的质量与所述电解液的质量比为(8-16):100。
3.根据权利要求2所述的纯化锂离子电池电解液的方法,其特征在于:所述无水氯化钙的质量与所述电解液的质量比为12:100。
4.根据权利要求1所述的纯化锂离子电池电解液的方法,其特征在于:使用所述无水氯化钙前,先将无水氯化钙置于干燥装置中,在100℃以上的温度下干燥处理,干燥持续时间为5~20小时。
5.根据权利要求4所述的纯化锂离子电池电解液的方法,其特征在于:所述干燥装置为马弗炉或真空干燥箱。
6.根据权利要求4所述的纯化锂离子电池电解液的方法,其特征在于:将所述无水氯化钙加入所述电解液中后,搅拌10~30分钟。
7.根据权利要求6所述的纯化锂离子电池电解液的方法,其特征在于:将搅拌后的电解液静置1.5小时以上,然后过滤得到纯化后的电解液。
8.根据权利要求1所述的纯化锂离子电池电解液的方法,其特征在于:所述无水氯化钙的纯度大于99.9%。
CN201210557681.2A 2012-12-20 2012-12-20 一种纯化电解液的方法 Active CN103050734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210557681.2A CN103050734B (zh) 2012-12-20 2012-12-20 一种纯化电解液的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210557681.2A CN103050734B (zh) 2012-12-20 2012-12-20 一种纯化电解液的方法

Publications (2)

Publication Number Publication Date
CN103050734A CN103050734A (zh) 2013-04-17
CN103050734B true CN103050734B (zh) 2016-04-13

Family

ID=48063296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210557681.2A Active CN103050734B (zh) 2012-12-20 2012-12-20 一种纯化电解液的方法

Country Status (1)

Country Link
CN (1) CN103050734B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1339845A (zh) * 2001-09-25 2002-03-13 天津化工研究设计院 锂离子二次电池电解液的精制方法
CN1700499A (zh) * 2005-05-23 2005-11-23 华南师范大学 一种锂离子电池负极成膜功能电解液及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001325A (en) * 1996-11-26 1999-12-14 Fmc Corporation Process for removing acids from lithium salt solutions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1339845A (zh) * 2001-09-25 2002-03-13 天津化工研究设计院 锂离子二次电池电解液的精制方法
CN1700499A (zh) * 2005-05-23 2005-11-23 华南师范大学 一种锂离子电池负极成膜功能电解液及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
锂离子电池电解液杂质的影响及去除技术;庄全超等;《电池工业》;20060228;第11卷(第1期);48-50页 *

Also Published As

Publication number Publication date
CN103050734A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
Cericola et al. Characterization of bi-material electrodes for electrochemical hybrid energy storage devices
CN106058316A (zh) 一种高镍三元锂离子动力电池电解液及高镍三元锂离子动力电池
CN103730688B (zh) 锂离子电池及其电解液
CN103078138B (zh) 高压锂离子电池及其电解液
CN107293733A (zh) 一种双离子电池
CN100365863C (zh) 一种锂离子电池负极成膜功能电解液及其制备方法
JP6789215B2 (ja) リチウムベースの蓄エネルギー器用の電解質
CN104282939B (zh) 一种锂离子电池高压电解液
CN102760906B (zh) 一种电解液添加剂、含有该添加剂的电解液及锂离子电池
CN108172901A (zh) 一种高压锂离子电池电解液的添加剂
CN102340029A (zh) 一种用于锂离子电池非水电解液的功能性添加剂
CN103050732B (zh) 一种钛酸锂基化学电源
CN103165939A (zh) 一种锂离子电池高压电解液
CN103928707A (zh) 一种高电压锂离子电池功能电解液及制备方法与应用
CN103682420A (zh) 一种高电压锂离子电池功能电解液及制备方法与应用
CN102231441A (zh) 用于锂离子电池的含硫成膜功能电解液及制备方法与应用
CN108666620A (zh) 一种高电压锂离子电池的非水电解液
CN105006593A (zh) 锂离子二次电池及其电解液
CN103515651A (zh) 一种锂离子电池高电压碳酸酯基电解液及制备方法与应用
CN103219508B (zh) 提高5V LiNi0.5Mn1.5O4正极材料循环稳定性和低温性能的电解液改性方法
CN104409771B (zh) 一种含有腈乙基氢氟醚的电解液及一种锂二次电池
CN109950623A (zh) 镍锰酸锂正极用高电压锂离子电池电解液
CN105390747A (zh) 一种含硼酸三甲酯添加剂的电解液及其制备方法与应用
CN103996873B (zh) 匹配btr918石墨负极的锂离子电池用非水电解液
CN103107364B (zh) 一种低温型锂离子电池电解液及锂离子电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant