CN103023409A - 一种通过调整电压辅助调节电网频率的方法 - Google Patents

一种通过调整电压辅助调节电网频率的方法 Download PDF

Info

Publication number
CN103023409A
CN103023409A CN2012104154917A CN201210415491A CN103023409A CN 103023409 A CN103023409 A CN 103023409A CN 2012104154917 A CN2012104154917 A CN 2012104154917A CN 201210415491 A CN201210415491 A CN 201210415491A CN 103023409 A CN103023409 A CN 103023409A
Authority
CN
China
Prior art keywords
voltage
frequency
adjusting
auxiliary
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104154917A
Other languages
English (en)
Other versions
CN103023409B (zh
Inventor
魏强
郭为民
刘占辉
张文涛
张小科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Henan Electric Power Co Ltd
Henan Jiuyu Enpai Power Technology Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Henan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Henan Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201210415491.7A priority Critical patent/CN103023409B/zh
Priority to PCT/CN2012/086551 priority patent/WO2014063413A1/zh
Publication of CN103023409A publication Critical patent/CN103023409A/zh
Application granted granted Critical
Publication of CN103023409B publication Critical patent/CN103023409B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/42Arrangements for controlling electric generators for the purpose of obtaining a desired output to obtain desired frequency without varying speed of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/34Arrangements for transfer of electric power between networks of substantially different frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种通过调整电压辅助调节电网频率的方法,在发电机励磁控制器中增加调压辅助调频环节,频率偏差信号不仅通过励磁控制器中的PSS环节输入到加法器,所述的频率偏差信号还同时输入到调压辅助调频环节中,调压辅助调频环节的输出电压信号也输入到加法器,所述的加法器的输出信号影响发电机的励磁电压,从而调节电网频率。本发明在减少旋转备用的同时,将***频率尽快恢复到较高的水平,并且还具有响应迅速的优点。

Description

一种通过调整电压辅助调节电网频率的方法
技术领域
本发明涉及一种电网***中调节电网频率的方法,尤其涉及一种通过调整电压辅助调节电网频率的方法。
背景技术
目前, 随着建设坚强智能电网的不断深入,我国电网逐步进入了特高压投入运行、新能源广泛接入的新时代。特高压可以避免远距离运送燃煤、充分利用南方水电,在全国范围内实现资源互补。所以特高压在未来一段时间内可能得到迅速和长足的发展。不过,尽管具有显著的优点,特高压的运行也带来一些问题,有待解决。
由于特高压功率巨大,可能占到省网容量的10%以上。在发生事故特高压失去的情况下,造成的功率缺额同样十分巨大。如果按照传统的N-1法则,就需要和特高压容量相同甚至更多的火电机组作为旋转备用,这很不经济。但是如果没有足够的旋转备用,特高压线路一旦故障,***就必须大量低频减载以维持频率合格,这会影响数量众多的最终用户,造成混乱。此外,还应看到,即使在配备了足够旋转备用的情况下,特高压发生故障也仍然可能导致低频减载。这是因为旋转备用机组存在爬坡速率限制,弥补特高压造成的功率缺额需要一段时间,故障后可能需要几分钟才能让频率恢复正常水平,在此期间,***可能仍由于频率过低而需要低频减载。
在解决功率缺额引起电网频率波动的问题方面,国内外已经进行过多方面的研究。特别是近年来,风电注入比例逐步增高,为了应对风电出力波动引起的功率波动进行了多方面的研究。例如可以增加储能装置(包括超导储能、压缩空气储能、电池储能等),可以给双馈风力发电机增加调差特性等等。但是这些方法都无法应对特高压突然故障时引起的大量功率缺额,此时的应对手段还是传统的低频减载;再方面,尽管也有一些根据负荷灵敏度进行低频减载的研究,通过选择灵敏度高的负荷减载,力图在减少切除负荷总量的同时获得更好的效果,但是这种方法所能取得的效果也仍然是有限的。
至于调整电压减少负荷有功消耗的方法,按照目前掌握的资料来看,国内外的调度单位都偶有使用,例如国内调度单位有时会有意的降低电压来减少负荷的有功消耗,加拿大安大略省也允许在备用不足时将电压降低2.5%-5%,但是这些做法都是偶然使用的辅助措施,并没有对之进行过详尽和深入的研究。这可能是因为长期以来,人们一直认为有功和频率相关,无功和电压相关,在稳态运行时,电压和有功的联系还很少被利用。
不过,在暂态稳定研究中,电压和功率的关系还被广泛应用的。例如,在事故后的暂态过程中,维持机端电压可以改善稳定性就是因为机端电压更高意味着送出功率更多,所以可以减少加速面积。PSS(电力***稳定器)也是通过调整机端电压来改变发电机送出的功率,以此来提供阻尼。这都表明有功和电压间的关系可以被利用来维持***稳定。其实,这种关系也完全可以在稳态时加以利用。
发明内容
本发明的目的是提供一种调整电压辅助调节电网频率的方法,能够在减少旋转备用的同时,将***频率尽快恢复到较高的水平。
本发明采用下述技术方案:一种通过调整电压辅助调节电网频率的方法,在发电机励磁控制器中增加调压辅助调频环节,频率偏差信号不仅通过励磁控制器中的PSS环节输入到加法器,所述的频率偏差信号还同时输入到调压辅助调频环节中,调压辅助调频环节的输出电压信号也输入到加法器,所述的加法器的输出信号影响发电机的励磁电压,从而调节电网频率。
所述的调压辅助调频环节为惯性环节。
本发明为了解决上述问题,提出了一种通过调整电压辅助调节电网频率的方法,此方法可以与一次调频和AGC(自动发电量控制AGC(Automatic Generation Control),是能量管理***EMS中的一项重要功能,它控制着调频机组的出力,以满足不断变化的用户电力需求,并使***处于经济的运行状态)共同作用,在减少旋转备用的同时,将***频率尽快恢复到较高的水平;除此之外,本发明所述的调压辅助调频方法还具有响应迅速的优点。
附图说明
图1为包含PSS的励磁***结构图;
图2为增加调压辅助调频环节的励磁***结构图;
图3为本方法与其他方法比较的仿真图。
具体实施方式
如图2所示,本发明一种通过调整电压辅助调节电网频率的方法,在发电机励磁控制器中增加调压辅助调频环节(FRVC),频率偏差信号                                               
Figure DEST_PATH_IMAGE002
除了通过PSS环节输入到加法器影响励磁电压外,所述的频率偏差信号还同时输入到调压辅助调频环节中,调压辅助调频环节的输出信号也输入到加法器,所述的加法器的输出信号输出最终的调节后的电压信号,输出的电压信号通过AGC调节电网频率。其中所述的调压辅助调频环节为惯性环节,所述的惯性环节可以通过电路或程序实现。
对比图2和图1可以看出,新增加的调压辅助调频环节和PSS一样,都以频率偏差
Figure 109020DEST_PATH_IMAGE002
为输入变量。区别在于,现在的PSS实现路径中包括高通滤波环节,所以恒定的频率偏差不会影响机端电压。新增加的调压辅助调频环节则会根据恒定的频率偏差调整机端电压。也可以理解为,0.1-2Hz的
Figure 26161DEST_PATH_IMAGE002
变化会通过PSS路径影响机端电压,而小于0.1Hz的延续时间较长的
Figure 805898DEST_PATH_IMAGE002
变化则通过调压辅助调频(FRVC)路径影响机端电压。
假如发生大的功率缺额,导致***频率降低,
Figure 637326DEST_PATH_IMAGE002
将为一个恒定的负值,此时调压辅助调频环节(FRVC环节)会将发电机机端电压随之降低,从而间接的影响负荷电压和负荷的有功功率消耗,并以此达到提高频率的目的。如图3所示,是对某算例***进行仿真计算的结果,事故前***总发电为21.679(标么制),事故中失去了大小为4.369的一台发电机。从图3中可以看出,当***出现大小为全网容量20.15%的功率缺额时,事故后10s,使用调压辅助调频和不使用相比,频率可提高0.465Hz,对应至少两轮低频减载,而且,调压辅助调频在提高事故后频率的同时,还把一次调频动作后各电厂的出力之和从21.35减少到19.87,节省的发电容量还可在一次调频结束后进一步提高电网频率。
不仅如此,调压辅助调频还存在一个优点,就是响应迅速。在特高压失去这样的大功率缺额发生时,即使有足够的旋转备用,而且一次调频能够依靠蓄热按照期望的调差特性增发大量功率,这种响应也不可能持久。随后机组功率可能回落,然后是漫长的爬坡过程,至少要几分钟后频率才能在AGC的作用下恢复正常,这个过程中频率仍然偏低,也不可避免的要大量甩负荷。而调压辅助调频可以在减少一次调频调整量的同时,将恢复到较高频率(0.9946)的调整过程缩短到十几秒,这在事故时对***有重要意义。
本发明通过调整励磁电压可以影响电网频率,主要依据是:负荷消耗的有功功率和电压是相关的,因此降低电压可以减少负荷需要的有功功率,所以在出现大量频率缺额、频率下降时,就有必要降低电压,来弥补旋转备用不足的功率缺额。全网的电压低5%,就可以省大约5%的旋转备用(按照恒阻抗30%,恒电流40%,恒功率30%计算),避免全网容量5%的低频减载。对大多数的负载节点来说,电压低到0.9也是可行的,那样可以弥补的功率缺额就更多。
负荷本身有频率特性和电压特性,频率和电压降低时吸收有功都会减少。但是实际上,只能主动的利用电压降低有功减少的规律,而不能利用频率降低有功减少的规律。这是因为,电压是个局部值,可以区分敏感负荷和不敏感负荷,分门别类的去降压(农电电压甚至降低到0.8也问题不大)。但是频率是个全网的参数,如果降低频率,所有负荷发电都会受到影响,而汽轮机的叶片,发电厂的泵和风机、纺织企业等用户是不能承受过大的频率变化的。
当然,这种方法并不是会频繁使用的一种方法,它应该和低频减载一样,只在危急的时候使用,但是这种小概率事件总还是存在的。在危急时,短暂的降低电压,同时让旋转备用增加出力,让处于冷态的火电机组尽快开起来,再转入正常态,这样做尽管可能短暂的牺牲了电压合格率,但是可以减少切除负荷的数量,两者相比较,还是得大于失。还可以通过直接指定励磁***Vref,调节变压器分接头,投切电容器和静止无功补偿器等手段实现FRVC,这些手段已经在AVC***中被广泛应用,在实现FRVC时,只需要将对应指令传递给AVC***即可。

Claims (2)

1.一种通过调整电压辅助调节电网频率的方法,其特征在于:在发电机励磁控制器中增加调压辅助调频环节,频率偏差信号不仅通过励磁控制器中的PSS环节输入到加法器,所述的频率偏差信号还同时输入到调压辅助调频环节中,调压辅助调频环节的输出电压信号也输入到加法器,所述的加法器的输出信号影响发电机的励磁电压,从而调节电网频率。
2.根据权利要求1所述的通过调整电压辅助调节电网频率的方法,其特征在于:所述的调压辅助调频环节为惯性环节。
CN201210415491.7A 2012-10-26 2012-10-26 一种通过调整电压辅助调节电网频率的方法 Active CN103023409B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210415491.7A CN103023409B (zh) 2012-10-26 2012-10-26 一种通过调整电压辅助调节电网频率的方法
PCT/CN2012/086551 WO2014063413A1 (zh) 2012-10-26 2012-12-13 一种通过调整电压辅助调节电网频率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210415491.7A CN103023409B (zh) 2012-10-26 2012-10-26 一种通过调整电压辅助调节电网频率的方法

Publications (2)

Publication Number Publication Date
CN103023409A true CN103023409A (zh) 2013-04-03
CN103023409B CN103023409B (zh) 2015-08-05

Family

ID=47971610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210415491.7A Active CN103023409B (zh) 2012-10-26 2012-10-26 一种通过调整电压辅助调节电网频率的方法

Country Status (2)

Country Link
CN (1) CN103023409B (zh)
WO (1) WO2014063413A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485676A (zh) * 2014-12-31 2015-04-01 广东电网有限责任公司电力科学研究院 发电机组一次调频非线性调速侧电力***稳定器控制方法
CN104617589A (zh) * 2015-02-06 2015-05-13 广东电网有限责任公司电力科学研究院 提高发电机组一次调频控制稳定性能的控制方法与***
CN104767197B (zh) * 2014-01-06 2017-05-03 北京源深节能技术有限责任公司 协调响应一次调频的方法及装置
CN108599253A (zh) * 2018-05-25 2018-09-28 国家电网公司西北分部 一种风电机组场级一次调频与阻尼控制的联合控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528351A (zh) * 2017-10-10 2017-12-29 赫普科技发展(北京)有限公司 一种用于火电厂的基于电压缩热泵的电网调频***
CN107612001B (zh) * 2017-10-10 2023-12-29 赫普能源环境科技股份有限公司 一种用于火电厂的电压缩机与蓄电设施联合的电网调频***
CN107528330B (zh) * 2017-10-10 2023-11-07 赫普能源环境科技股份有限公司 一种用于火电厂的基于电压缩制冷机组的电网调频***
CN109873455B (zh) * 2017-12-05 2023-11-14 中国电力科学研究院有限公司 一种储能辅助火电机组agc调频方法及***
CN111224394B (zh) * 2019-10-14 2022-10-04 中国电力科学研究院有限公司 一种用于确定电力***功率波动后频率偏差的方法及***
CN112398143A (zh) * 2020-10-28 2021-02-23 许继集团有限公司 一种含储能的新能源电站调频控制方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1945919A (zh) * 2006-09-04 2007-04-11 天津大学 复合型电力***稳定器的实现方法
CN101119095A (zh) * 2007-07-19 2008-02-06 清华大学 基于非线性鲁棒电力***稳定器的大扰动实时仿真***
CN101350526A (zh) * 2008-08-28 2009-01-21 华东电力试验研究院有限公司 基于单机无穷大***的全网pss协调整定方法
CN101447679A (zh) * 2008-09-17 2009-06-03 中国电力科学研究院 一种并行电力***稳定器的实现方法
CN102146812A (zh) * 2010-02-09 2011-08-10 浙江省电力公司 电力***原动机及其调速器实测建模方法
CN102570486A (zh) * 2012-02-10 2012-07-11 东南大学 一种抑制多模式低频振荡的pss参数优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1945919A (zh) * 2006-09-04 2007-04-11 天津大学 复合型电力***稳定器的实现方法
CN101119095A (zh) * 2007-07-19 2008-02-06 清华大学 基于非线性鲁棒电力***稳定器的大扰动实时仿真***
CN101350526A (zh) * 2008-08-28 2009-01-21 华东电力试验研究院有限公司 基于单机无穷大***的全网pss协调整定方法
CN101447679A (zh) * 2008-09-17 2009-06-03 中国电力科学研究院 一种并行电力***稳定器的实现方法
CN102146812A (zh) * 2010-02-09 2011-08-10 浙江省电力公司 电力***原动机及其调速器实测建模方法
CN102570486A (zh) * 2012-02-10 2012-07-11 东南大学 一种抑制多模式低频振荡的pss参数优化方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767197B (zh) * 2014-01-06 2017-05-03 北京源深节能技术有限责任公司 协调响应一次调频的方法及装置
CN104485676A (zh) * 2014-12-31 2015-04-01 广东电网有限责任公司电力科学研究院 发电机组一次调频非线性调速侧电力***稳定器控制方法
CN104617589A (zh) * 2015-02-06 2015-05-13 广东电网有限责任公司电力科学研究院 提高发电机组一次调频控制稳定性能的控制方法与***
CN108599253A (zh) * 2018-05-25 2018-09-28 国家电网公司西北分部 一种风电机组场级一次调频与阻尼控制的联合控制方法

Also Published As

Publication number Publication date
WO2014063413A1 (zh) 2014-05-01
CN103023409B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
CN103023409B (zh) 一种通过调整电压辅助调节电网频率的方法
Akram et al. A review on rapid responsive energy storage technologies for frequency regulation in modern power systems
Nasiri et al. A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines
CN103986190B (zh) 基于发电功率曲线的风光储联合发电***平滑控制方法
JP5100132B2 (ja) 周波数調整システムおよび周波数調整方法
JP7348905B2 (ja) エネルギー生成システムの動作方法及びエネルギー生成システム用のインバータ
CN106786490A (zh) 分布式直流微电网能量控制方法
CN108487994B (zh) 一种微能源网复合储能***
CN110336304B (zh) 一种基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频方法
CN104882905A (zh) 一种考虑暂态安全约束的新能源接纳能力评估方法
CN202495774U (zh) 防逆流***
Wang et al. Energy management of stand-alone hybrid PV system
CN106471696A (zh) 运行除电网发电机和至少一个负载外也连接到有限交流电网的性能波动的电站的方法和装置
CN111064196B (zh) 一种高渗透风机模糊自适应运行的微网电压控制方法
JP2014200120A (ja) 複合型自立発電システム
CN115842376B (zh) 电力***等效惯量趋势与安全状态评估方法、设备和介质
Zhou et al. The overview of energy storage technology
US10916944B2 (en) Solar and/or wind inverter
CN104953600A (zh) 一种基于风电接入的无功功率补偿控制方法
CN107196319B (zh) 一种基于功率扰动值响应的风机调频控制方法
CN116937546A (zh) 一种考虑风储并网的电网低频振荡抑制方法及***
CN108173276B (zh) 一种应对大规模风机脱网后低频的控制方法
Sun et al. Research on multi-energy cooperative participation of grid frequency inertia response control strategy for energy storage type doubly-fed wind turbine considering wind speed disturbance
Soni et al. Influence of energy storage system in nanogrid under dynamic conditions with frequency‐based current controller for battery storage
Nguyen et al. A comparative analysis among power dispatching control strategies for hybrid wind and energy storage system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Wei Qiang

Inventor after: Guo Weimin

Inventor after: Tang Yaohua

Inventor before: Wei Qiang

Inventor before: Guo Weimin

Inventor before: Liu Zhanhui

Inventor before: Zhang Wentao

Inventor before: Zhang Xiaoke

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: WEI QIANG GUO WEIMIN LIU ZHANHUI ZHANG WENTAO ZHANG XIAOKE TO: WEI QIANG GUO WEIMIN TANG YAOHUA

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 450052 Songshan, Zhengzhou, Henan District No. 27 South Road, No. 85

Patentee after: STATE GRID HENAN ELECTRIC POWER CORPORATION ELECTRIC POWER SCIENCE Research Institute

Patentee after: State Grid Corporation of China

Address before: 450052 Songshan South Road, Henan, No. 85, No.

Patentee before: Henan Electric Power Corporation Electric Power Science Research Institute

Patentee before: State Grid Corporation of China

TR01 Transfer of patent right

Effective date of registration: 20161213

Address after: 450052 Songshan, Zhengzhou, Henan District No. 27 South Road, No. 85

Patentee after: STATE GRID HENAN ELECTRIC POWER CORPORATION ELECTRIC POWER SCIENCE Research Institute

Patentee after: HENAN ENPAI HIGH-TECH GROUP Co.,Ltd.

Patentee after: State Grid Corporation of China

Address before: 450052 Songshan, Zhengzhou, Henan District No. 27 South Road, No. 85

Patentee before: STATE GRID HENAN ELECTRIC POWER CORPORATION ELECTRIC POWER SCIENCE Research Institute

Patentee before: State Grid Corporation of China

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 450052 No. 85 South Songshan Road, 27 District, Henan, Zhengzhou

Co-patentee after: Henan jiuyu enpai Power Technology Co.,Ltd.

Patentee after: STATE GRID HENAN ELECTRIC POWER CORPORATION ELECTRIC POWER SCIENCE Research Institute

Co-patentee after: State Grid Corporation of China

Address before: 450052 No. 85 South Songshan Road, 27 District, Henan, Zhengzhou

Co-patentee before: HENAN ENPAI HIGH-TECH GROUP Co.,Ltd.

Patentee before: STATE GRID HENAN ELECTRIC POWER CORPORATION ELECTRIC POWER SCIENCE Research Institute

Co-patentee before: State Grid Corporation of China