CN102969170A - 一种高工作电压的内串联型超级电容器 - Google Patents

一种高工作电压的内串联型超级电容器 Download PDF

Info

Publication number
CN102969170A
CN102969170A CN2012105101207A CN201210510120A CN102969170A CN 102969170 A CN102969170 A CN 102969170A CN 2012105101207 A CN2012105101207 A CN 2012105101207A CN 201210510120 A CN201210510120 A CN 201210510120A CN 102969170 A CN102969170 A CN 102969170A
Authority
CN
China
Prior art keywords
ultracapacitor
super capacitor
capacitor
working voltage
high working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012105101207A
Other languages
English (en)
Inventor
阎景旺
郝立星
薛荣
衣宝廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN2012105101207A priority Critical patent/CN102969170A/zh
Publication of CN102969170A publication Critical patent/CN102969170A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一种高工作电压的内串联型超级电容器,该超级电容器由上端盖板(1),绝缘环片(2),电极片(3),隔膜(4),壳体(5)组成;绝缘环片(2),电极片(3),隔膜(4)位于壳体(5)的内部,且按照绝缘环片(2)、电极片(3)、隔膜(4)顺序反复循环串联;绝缘环片内环尺寸与电极片尺寸相同,绝缘环片外环尺寸略大于隔膜尺寸。本发明通过内串联的方式将多层电极片组装在一个柱状电容器中,可将超级电容器的工作电压从传统超级电容器的2.5V提高到几十伏至数百伏。与外串联型电容器模组相比,本发明的超级电容器可以有效地降低***的重量和体积,从而能够进一步的提高超级电容器***的功率密度和能量密度。本发明的超级电容器在空间受限的高电压应用场合具有特殊的优势。

Description

一种高工作电压的内串联型超级电容器
技术领域
本发明属于超级电容器领域,具体涉及一种高工作电压的具有内串联结构的超级电容器。
背景技术
超级电容器是一种介于传统静电电容器和二次电池之间的新型储能器件,具有功率密度高、充放电速度快、循环寿命长等优点。在通讯、电动汽车、航空航天、军工、备用电源等领域都有着广泛的应用前景。其中,超级电容器在高电压大功率电源方面的应用是其应用热点之一。通过电容器串联的方式提高整体电压,同时利用超级电容器本身的高功率密度是制备高压大功率电源的理想解决方案之一。
超级电容器根据所采用电解质的不同,分为水系和有机系两类。采用目前的组装方式,水系超级电容器的工作电压为1-2V(一般为1V),有机系超级电容器的工作电压在2-3V(一般为2.5-2.7V)之间。由于上述超级电容器单体的电压过低,需要对其进行串联,即采用外串联的方式将若干个超级电容器单体连接到一起,组成具有高工作电压的超级电容器模组,以满足不同的市场需求。例如:丰田汽车在旗下的8款40多万辆混合动力车上应用了1000余万个超级电容器,采用7个2.1V,68F超级电容器单体串联,之后3组并联组成14.7V,29.1F***;斯堪尼亚集团在其125V乙醇混合动力车中采用了由Maxwell公司制造的4个125V超级电容器模组,总容量为400Wh;空中客车A380的应急舱门动力***采用了美国Maxwell超级电容器模组,其峰值电流为60A,总功率11kW,待机时间为8小时,使用寿命可达25年;采用混合动力的某型号重型战术卡车将电能存储在超级电容器模块中,该模块可提供100kW的输出功率,同时使卡车的燃油消耗率降低了20%。但是,采用外串联方式构建超级电容器模组以提高超级电容器工作电压的技术方案存在如下问题:在通过外串联方式构建的超级电容器模组(或超级电容器包)中,存在诸如连接件、封装壳体以及模组均衡***等一系列额外的辅助部件。这无疑会增加超级电容器模组整体的体积和重量,导致***能量密度和功率密度的降低。Shiue等在其申请的美国专利(US6579327B1)中提出了一种高电压柱状电容器的制作方法:将电容器正极、负极以及双层电极通过隔膜进行隔开并卷绕成一体。采用该方法制备的以Fe3O4/C为活性物质的电容器可以在0-5V的电位区间内进行充放电。Amatucci在专利(US2002136946A1)中提出一种叠片式软包装超级电容器及其制备方法。但是,柱状卷绕式结构只能够对叠片层数(即相互串联的电容器单体个数)有严格的限制,电容器的电压提升空间很小;叠片式软包装的结构由于软包装生产工艺的制约同样对叠片层数有着严格的限制。此外,采用上述专利中所提出的结构,注液后会出现隔膜与隔膜之间的接触,从而导致电容器内短路现象的发生。当电容器在高电压窗口下工作时,这种内短路会引起电解液的分解,造成电容器胀裂或发生***。
为了解决上述问题,本发明提出了一种具有内串联结构的柱状叠片式超级电容器,即通过在一个壳体内将电极片、隔膜以及绝缘环依次循环串联,组成具有高工作电压的柱状超级电容器。绝缘环能够防止隔膜与隔膜之间的接触,进而有效地避免电容器内短路情况的发生。通过内串联的方式将多层电极片与隔膜组装在一个柱状电容器中,构成多个相互串联的单电容,可以使电容器的工作电压可从由双层电极构成的单体的工作电压1V(水系)或2.5V(有机系)提高到几十伏至数百伏。与外串联型电容器模组相比,采用本发明的结构构建高工作电压的超级电容器可以有效地降低***的重量和体积,从而进一步提高超级电容器***的能量密度和功率密度。本发明对于空间和重量受到严格限制的应用场合显得尤为重要。采用本发明的结构有望将超级电容器的应用拓展到空间受限高压应用领域。
发明内容
本发明的目的是提供一种高工作电压的内串联型超级电容器,该超级电容器通过内串联的方式将多层电极片组装在一个柱状电容器中,可将超级电容器的工作电压从传统超级电容器的2.5V提高到几十伏至数百伏。
本发明提供了一种高工作电压的内串联型超级电容器,该超级电容器由上端盖板(1),绝缘环片(2),电极片(3),隔膜(4),壳体(5)组成;
绝缘环片(2),电极片(3),隔膜(4)位于壳体(5)的内部,且按照绝缘环片(2)、电极片(3)、隔膜(4)顺序反复循环串联;
其中临近的电极片和隔膜构成单电容,这些单电容相互串联,从而提高整个电容器的工作电压。
绝缘环片内环尺寸与电极片尺寸相同,绝缘环片外环尺寸略大于隔膜尺寸。
本发明提供的高工作电压的内串联型超级电容器,所述超级电容器通过壳体(5)与上端盖板(1)进行封装制成圆柱型超级电容器。
本发明提供的高工作电压的内串联型超级电容器,:所述超级电容器通过内串联的方式将多层电极片组装在一个柱状电容器中,超级电容器的工作电压从传统超级电容器的1V(水系)或2.5V(有机系)提高到几十伏至数百伏。
本发明提供的高工作电压的内串联型超级电容器,所述绝缘环片(2)能够防止隔膜与隔膜之间的接触,从而有效地避免电容器内短路情况的发生。
本发明提供的高工作电压的内串联型超级电容器中使用液体、胶状或固体电解质。
本发明所提供的具有高工作电压的内串联超级电容器具有以下优点:
1.通过内串联的方式将多个超级电容器单体封装在一个圆柱型的外壳中,可以使超级电容器的工作电压从传统超级电容器的2.5V提高到几十伏至上百伏。
2.与外串联型电容器模组相比,采用内串联结构构建高工作电压的超级电容器,可以有效地降低***的重量和体积,进一步提高电容器***的能量密度和功率密度。
3.本发明所提提供的内串联高工作电压超级电容器适用于传统超级电容器无法满足其需求的空间受限的高工作电压场合。
附图说明
图1高工作电压内串联超级电容器组结构示意图;其中,1为上端盖板;2为绝缘环片;3为电极片;4为隔膜;5为壳体;
图2三层电极(双单电容)内串联超级电容器放电电压与时间的曲线;
图3三层电极(双单电容)内串联超级电容器充放电特性曲线;
图4三层电极(双单电容)内串联超级电容器的1000次充放电循环稳定性测试结果。
具体实施方式
下面的实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1:
三层电极内串联电容器的组装:用冲孔设备从双面涂布有活性炭电极的铝箔极片上打出三片直径9mm圆形极片,极片厚度200um;用冲孔设备从聚丙烯薄膜上打出三片内径为9mm,外径为16m的环片,聚丙烯薄膜的厚度为200um;用冲孔设备打出两片直径为14mm超级电容器专用隔膜。
取2032型纽扣电池底壳,将第一层绝缘环片放入壳内,然后将第一层电极放入第一层环片的内圆孔中,接着在其上放置第一层隔膜,用滴管滴加1M TEABF4-PC电解液6mg;然后在第一层隔膜上放置第二层绝缘环,随后将第二层电极片放入第二层环片的内孔中,接下来将第二层隔膜放在上面并滴加1M TEABF4-PC电解液6mg;然后放入第三层绝缘环和第三层电极片并滴加1M TEABF4-PC电解液6mg;最后在上面放置一片用于增加接触的不锈钢片和弹簧片,盖上纽扣电池顶壳并用纽扣电池封口机进行封口。整个操作过程均在充满氩气的手套箱中进行。封装完毕的纽扣电池放置24小时后从手套箱中取出,用于电化学性能测试。
图1为高工作电压内串联超级电容器的结构示意图。
三层电极片内串联超级电容器的放电电压与时间关系的测试:将封装好的纽扣电池,放置24小时待电极含浸充分后,采用新威尔充放电测试***,在恒电流1A/g(相对于单层电极)条件下对其进行充电和放电,充电截止电压分别设定为2.5V,3V,3.5V,3.7V,4V,4.5V,4.7V和5V,用计算机记录放电过程中电容器端电压与时间的关系。
图2为三层电极片内串联超级电容器的放电过程的电压与时间曲线。从图2的结果可以看出,随着截止电压的升高,超级电容器的放电曲线一直保持良好的线性规律,由0-5V的放电时间计算得到其电容为64.3mF,而由两层具有相同质量的电极片构成的对称形超级电容器的电容(0-2.5V)为150mF(为内串联电容器的2.3倍)。此结果验证了采用本发明结构的由三层电极片构成内串联超级电容器具有两个对称性超级电容器相串联的效果。
实施例2:
三层电极片内串联电容器的组装:同实施例1。
三层电极片内串联超级电容器放电电压与时间关系测试:对封装并充分含浸的纽扣型内串联超级电容器用新威尔充放电测试***在恒电流1A/g(相对于单层电极)条件下,在0-5V之间进行充放电性能测试。用计算机记录放电过程中电容器端电压与时间的关系。
图3为三层电极片内串联超级电容器的充放电特性曲线。从图3的结果可以看出,组装的三层电极片内串联超级电容器在0-5V的充放电区间内均表现出典型的双电层电容行为。同时,在0-5V的充放电过程中所组装的纽扣型内串联超级电容器没有出现胀裂现象,这说明绝缘环可以起到分离隔膜的作用,从而有效地避免电容器内短路的发生。
实施例3:
三层电极片内串联电容器的组装:同实施例1。
三层电极片内串联超级电容器1000次充放电循环稳定性测试:对封装并含浸充分的纽扣型内串联超级电容器用新威充放电测试***,在恒电流1A/g(相对于单层电极)条件下,在0-5V之间进行充放电循环稳定性测试。1000个循环,用计算机记录放电过程中放电时间与循环次数之间的关系。
图4为三层电极片内串联超级电容器的1000次充放电循环稳定性曲线。从图4的结果可以看出:在1000个充放电循环中,三层电极片内串联超级电容器在0-5V的充放电区间内保持了良好的稳定性。这一结果进一步证实了采用绝缘环片隔离隔膜可以避免电容器内短路现象的发生。
以上实施例说明,采用本发明的结构能够制备高工作电压的内串联型超级电容器。与外串联型超级电容器模组相比,采用内串联型超级电容器可以有效地降低***的重量和体积,提高电容器的能量密度和功率密度。此外,本发明所提供的内串联型超级电容器具有可靠的循环稳定性。

Claims (4)

1.一种高工作电压的内串联型超级电容器,其特征在于:该超级电容器由上端盖板(1),绝缘环片(2),电极片(3),隔膜(4),壳体(5)组成;
绝缘环片(2),电极片(3),隔膜(4)位于壳体(5)的内部,且按照绝缘环片(2)、电极片(3)、隔膜(4)顺序反复循环串联;
绝缘环片内环尺寸与电极片尺寸相同,绝缘环片外环尺寸略大于隔膜尺寸。
2.按照权利要求1所述的高工作电压的内串联型超级电容器,其特征在于:所述超级电容器通过壳体(5)与上端盖板(1)进行封装制成圆柱型超级电容器。
3.按照权利要求1所述的高工作电压的内串联型超级电容器,其特征在于:所述超级电容器通过内串联的方式将多层电极片组装在一个柱状电容器中,超级电容器的工作电压从传统水系超级电容器的1V或有机系超级电容器的2.5V提高到几十伏至数百伏。
4.按照权利要求1所述的高工作电压的内串联型超级电容器,其特征在于:所述绝缘环片(2)能够防止隔膜与隔膜之间的接触,从而有效地避免电容器内短路情况的发生。
CN2012105101207A 2012-12-03 2012-12-03 一种高工作电压的内串联型超级电容器 Pending CN102969170A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012105101207A CN102969170A (zh) 2012-12-03 2012-12-03 一种高工作电压的内串联型超级电容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012105101207A CN102969170A (zh) 2012-12-03 2012-12-03 一种高工作电压的内串联型超级电容器

Publications (1)

Publication Number Publication Date
CN102969170A true CN102969170A (zh) 2013-03-13

Family

ID=47799246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012105101207A Pending CN102969170A (zh) 2012-12-03 2012-12-03 一种高工作电压的内串联型超级电容器

Country Status (1)

Country Link
CN (1) CN102969170A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742384A (zh) * 2018-02-22 2020-10-02 阿维科斯公司 具有高电压和低等效串联电阻的封装的超级电容器模块
US11721494B2 (en) 2017-02-20 2023-08-08 The Research Foundation For The State University Of New York Multi-cell multi-layer high voltage supercapacitor apparatus including graphene electrodes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616290A (en) * 1983-04-19 1986-10-07 Murata Manufacturing Co., Ltd. Electric double layer capacitor
US20030095372A1 (en) * 2001-11-01 2003-05-22 Nec Tokin Corporation Electric double-layer capacitor, and process for producing the same
JP2003217985A (ja) * 2002-01-23 2003-07-31 Meidensha Corp 積層型電気二重層キャパシタ
KR20090118325A (ko) * 2008-05-13 2009-11-18 비나텍주식회사 모듈형 전기이중층 커패시터 및 그 제조방법
CN101802947A (zh) * 2007-09-14 2010-08-11 株式会社明电舍 双极分层型双电层电容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616290A (en) * 1983-04-19 1986-10-07 Murata Manufacturing Co., Ltd. Electric double layer capacitor
US20030095372A1 (en) * 2001-11-01 2003-05-22 Nec Tokin Corporation Electric double-layer capacitor, and process for producing the same
JP2003217985A (ja) * 2002-01-23 2003-07-31 Meidensha Corp 積層型電気二重層キャパシタ
CN101802947A (zh) * 2007-09-14 2010-08-11 株式会社明电舍 双极分层型双电层电容器
KR20090118325A (ko) * 2008-05-13 2009-11-18 비나텍주식회사 모듈형 전기이중층 커패시터 및 그 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11721494B2 (en) 2017-02-20 2023-08-08 The Research Foundation For The State University Of New York Multi-cell multi-layer high voltage supercapacitor apparatus including graphene electrodes
CN111742384A (zh) * 2018-02-22 2020-10-02 阿维科斯公司 具有高电压和低等效串联电阻的封装的超级电容器模块
US11875942B2 (en) 2018-02-22 2024-01-16 KYOCERA AVX Components Corporation Encapsulated supercapacitor module having a high voltage and low equivalent series resistance

Similar Documents

Publication Publication Date Title
US6510043B1 (en) Cylindrical high voltage supercapacitor having two separators
CN104715934A (zh) 一种混合超级电容器及其制备方法
CN101141010A (zh) 高电压动力型锂离子可充电电池
CN102074362A (zh) 一种高能比超级电容器
CN103427111B (zh) 一种锂离子储能电池及其制造方法
KR20130093697A (ko) 대용량 슈퍼 커패시터용 모듈
CN102969170A (zh) 一种高工作电压的内串联型超级电容器
TWI780392B (zh) 能量儲存系統
CN201966072U (zh) 一种高能比超级电容器
Bhajekar et al. Comparative Analysis of Symmetrical, Asymmetrical and Hybrid Supercapacitors as a Pulse Current Device
CN201518281U (zh) 软包装双电层电容器
CN204045667U (zh) 一种复合极片制造的电容电池
JP2015516650A (ja) 電極板及び電極アセンブリ、蓄電池、並びに電極板を備えるキャパシタ
US10319536B1 (en) High-capacity electrical energy storage device
CN201886904U (zh) 一种叠片式高电压混合电化学电容器
CN203552950U (zh) 一种软包装电化学电容器
CN201749788U (zh) 一种车用双电层电容器
CN202996930U (zh) 一种高可靠性电化学储能器件防振结构
CN202957143U (zh) 一种大功率储能电源
CN202034248U (zh) 高压储能电容器
CN201174324Y (zh) 超级电容器电动车电池
CN202307542U (zh) 一种电动汽车用的超级电容器组
CN201117440Y (zh) 电动自行车辅助动力用超级电容器
CN201465813U (zh) 一种圆柱型软包装超级电容器
CN201017770Y (zh) 一种方形超级电容器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130313