CN102917661A - 基于多变量残差的用于人体健康监视的健康指数 - Google Patents

基于多变量残差的用于人体健康监视的健康指数 Download PDF

Info

Publication number
CN102917661A
CN102917661A CN2011800137865A CN201180013786A CN102917661A CN 102917661 A CN102917661 A CN 102917661A CN 2011800137865 A CN2011800137865 A CN 2011800137865A CN 201180013786 A CN201180013786 A CN 201180013786A CN 102917661 A CN102917661 A CN 102917661A
Authority
CN
China
Prior art keywords
physiological
kernel
residual error
feature
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800137865A
Other languages
English (en)
Other versions
CN102917661B (zh
Inventor
S·W·维格里奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisker Inc
Original Assignee
Venture Gain LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Venture Gain LLC filed Critical Venture Gain LLC
Publication of CN102917661A publication Critical patent/CN102917661A/zh
Application granted granted Critical
Publication of CN102917661B publication Critical patent/CN102917661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/412Detecting or monitoring sepsis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6898Portable consumer electronic devices, e.g. music players, telephones, tablet computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0809Detecting, measuring or recording devices for evaluating the respiratory organs by impedance pneumography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/091Measuring volume of inspired or expired gases, e.g. to determine lung capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Pulmonology (AREA)
  • Immunology (AREA)
  • Vascular Medicine (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本发明提供了具有早期警告和优先级区分的对病人的不卧床或医院内监视,从而实现积极主动的干预和对医疗保健的费用和风险两者的改善。通过经验模型估计多变量生理参数以移除正常变化。使用多变量概率密度函数来测试残差以提供用于区分医疗努力的优先级的多变量健康指数。

Description

基于多变量残差的用于人体健康监视的健康指数
相关申请的交叉引用
本申请依据35U.S.C.§119(e)要求2010年1月14日提交的美国临时专利申请S/N.61/295,072的优先权权益,该申请出于所有目的通过引用完全纳入于此。
关于联邦赞助的研究或研发的声明
本发明是在美国国家科学基金会授予的授予号IIP-0810751下通过政府支持完成的。政府享有本发明的某些权利。
发明背景
发明领域
本发明一般涉及人体健康监视领域,尤其涉及使用多变量模型来分析生物参数的测量以提供对人体健康指标的基于残差的评估。
对相关技术的简要描述
数百年来,医学已被实践为反应性的、危机驱动的过程。令人遗憾地,迄今为止,医学仍大多如此。慢性疾病表现出不成比例地分摊极大的医疗保健经济费用,而其中的大部分可通过对恶化的早期警告来避免。目前的医疗保健实践是偶尔发生的而且是反应性的,很少关注诊所或医院的受控环境之外的病人健康。然而,医学技术现在才刚开始探索从可穿戴式设备进行门诊遥测,并且实际上不知道谁将查看所有这些数据,或者将如何分析这些数据以提供虚警率较低的早期警告。另外,由于不卧床的运动伪像以及当病人是镇静的并且仰卧在医院病床上时不经常应对的日常活动过程中的正常生理变化,门诊遥测会带来相当多的挑战。
其他行业(原子能、航空、精炼、计算机***)近年来已采用了用于状况监视的高级智能算法,这些算法适应在从目标***采集到的传感器数据中所呈现的正常变化和动态特性,并且将其与精细的对恶化的早期警告征兆区别开来。一种机器学习技术(基于相似性建模(“SBM”)技术)已在包括以上所提及的许多应用场合中证明是成功的。SBM是非参数数据驱动的建模技术,该技术从来自复杂***的多变量数据学习正常行为,并且将该正常行为与受监视***中的不利行为的发作区别开来。
将SBM用于健康问题的可见性在于多变量数据的可用性上的偶发性。来自具有多个传感器的可穿戴式感测设备的连续遥测可提供此类数据。然而,现有设备数据贫乏(在大多数情形中是单变量的)并且主要针对非常狭窄的健康相关问题,例如,对糖尿病患者的葡萄糖监视、或者对高血压的血压监视。这些设备通常不旨在用于连续监视,并且所执行的任何分析是通过使用大量人口统计进行的,即,不是针对个人的。另外,目前的商用远程医疗设备不易于穿戴,并且不能利用最新的移动技术。
需要获得可供分析使用的多变量连续数据(无论是来自门诊基础上的可穿戴式设备还是来自医院里的床边装备),以使得诸如先前提及的SBM之类的机器学习技术能够被用于自动地早期检测指示病人的健康潜在地遭受恶化的初期变化。因为医务人员往往工作过度并且没有很多时间用来深入地研究每个病人的分析结果,这特别是在可能涉及大量在家病人的情况下尤甚,所以重要的问题在于如何以简单的度量来总结此类机器学习技术的结果以便采取行动。
发明概述
公开了一种端对端人体健康监视解决方案,包括可穿戴式无线感测设备,该可穿戴式无线感测设备连续地采集生命体征传感器数据并且(实时地或周期性阵发地)将该数据传送给基站计算机(或蜂窝电话/PDA)以供预处理。经预处理的数据随后在网络上发送给服务器以使用为人体监视定制的诸如SBM之类的基于内核的机器学习分析方法来进行分析。SBM技术被训练成因每个个人的正常生命体征特性而异。由于人与人之间生命体征的变化,这种能力对于任何有效的人体监视***而言是关键的。
服务器可远离病人。在服务器处用SBM或其他相关的基于内核的方法执行的分析通过生成对已从传感器数据确定的生命体征(即,生理数据)的估计的方式工作。这些估计表示经训练的SBM模型可确定什么作为对应于受监视数据的最接近的可允许的正常生理数据。区分对生理数据作出的估计与实际的受监视的生理数据以生成残差,这些残差表示根据经训练模型的期望值与已由可穿戴式感测设备测量的值之间的差异。这些残差形成提供对健康问题的精细警告的早期检测的进一步分析的基础,而使用将生命体征与人体统计学上可接受的范围(例如,基于人口的血压标准)作比较的常规医学方法可能会错过该早期检测。
正常生理机能的残差(由先前建模的生理学)不同于正开始偏离常态且可在统计学上区分的生理机能的残差。对残差的进一步的计算机化分析包括以下步骤中的一个或多个:基于“混合高斯”密度估计来确定为受监视数据的任何给定的多变量输入观察推导的残差表示正常生理机能的残差特性模式的似然性;基于该似然性生成多变量健康指数作为该似然性的倒数的对数;对由此生成的指数应用阈值以作出所输入的生命体征是否表征正常生理行为的决定;以及组合一系列此类决定以提供对偏离病人的正常生理健康的早期指示。多变量健康指数有利地将残差分析从多个变量总结成单个指数以便管理已区分优先级的病人列表。
该健康监视解决方案还可应用于在医院中从床边监视器获得的多变量生理参数。典型人体生理学的SBM模型可用于为医院里的病人作出估计和残差,特别是为正处于发展诸如败血症或肺炎之类的并发症的危险中的那些病人,以及特别是为服用镇静剂的和/或使用呼吸机的并且不能够表达初期疾病的不适或感觉的那些病人作出估计和残差。顺从健康监视解决方案的床边数据供给包括心电图描记器、脉搏氧饱和度仪、呼吸机数据、以及通过非侵入手段或通过导管测量的动脉和静脉压力等。此类数据可被流送给医院病房的服务器或者异地服务器以监视多个医院设施,并且决定支持可通过将SBM应用于这些数据流来呈现并且向医疗保健人员显示以区分病人治疗的优先级。
本发明的分析可在由软件专门配置的通用计算平台上执行。从传感器在病人身上采集的数据可无线地例如经由蓝牙或其他及其本地的无线电协议传送给不卧床设备或便携式设备。便携式设备可以是由病人携带的蜂窝电话、“个人数字助理”PDA等、或者与医院病床中的病人一起移动的便携式计算设备。该设备可接收原始传感器信号并且执行先前提及的预处理以从传感器信号提取生命体征“特征”(生理数据),例如,来自EKG/ECG信号的心率;或者可接收由传感器微处理设施从原始传感器信号提取的已预处理的特征。结果得到的生理“特征”数据可用SBM在设备(蜂窝电话或PDA)上或者在此类生理数据被传递到的计算机/服务器上分析。计算机可以是与病人共处一地的家用计算机、或者可以是分析数据中心处的远程服务器。来自设备的数据传递可通过电缆卸载或通过无线重传进行。
附图简述
本发明相信具有新颖的特征在所附权利要求中具体陈述。然而,发明本身以及优选使用方式、其它目的及其优点,在结合附图参照以下对实施例的详细描述而得到最好的理解,其中:
图1是示出根据一个实施例的一般配置的框图。
图2示出传感器放置在人体上的示例;
图3示出原始生理波形或信号的示例图;
图4示出用于确定与SpO2(血氧饱和度)有关的特征的光电容积脉搏波分量的信号振幅图,该特征可被理解成表示由堆叠相加的光电传感器获得的光分量;
图5是多图示例标绘,其在顶部的四个标绘中示出原始的与生理机能有关的信号并且在底部的五个标绘中示出从这些信号推导的有关的特征数据;
图6是示例性生理特征时间序列的标绘,其示出在准确性和稳健性运算中使用的时间序列的扰动;
图7A是多变量健康指数的一对相关标绘中的一个,并且仅是为示出未受扰动数据和受扰动数据的指数的原始特征数据推导出来的;
图7B是为残差数据推导的多变量健康指数标绘,该残差数据是从示出未受扰动数据和受扰动数据的指数的特征数据的基于内核的模型生成的;以及
图8是示出替换实施例的框图。
优选实施例的详细描述
存在病人可能患上的大量慢性疾病,然而对于这些慢性疾病而言,病人不能无限期地待在医院里。病人可能具有心力衰竭、慢性阻塞性肺病、肾衰竭、糖尿病、早期痴呆和其他状况,这些状况可能从稳定的受管理的状态转移到警告不明显的紧急健康危险。希望早期检测这种转移,因为早期的医疗干预能够防止紧急情况、避免费用、防止疾病进展、并且改善后果。
即使医院里受医务人员护理的病人也可能产生最佳早期检测到的并发症。使用呼吸机的病人发展成肺炎的比例很高。由于医院里获得的交叉污染感染或者手术后的并发症,可能会出现感染和败血症。常规的床边监视通常对生命体征采用阈值以向医务人员警报病人恶化,但是这些常规的警报方法是粗略的,要么遭受高虚警问题且快速地消失成被忽略的背景噪声,要么比期望更晚地捕获恶化。
与如今在医疗保健行业中使用的大多数监视方法不同,SBM是利用生命体征信号(例如,心率(HR)、血氧饱和度(SpO2)、呼吸率、血压)之间的相互关系的多变量方法。此类方法对于在存在正常变化(即,因响应于新陈代谢需要、活动、环境、昼夜循环等的生理机能正常变化所造成的生理数据变化)的情况下分析生理机能是关键的。在一天的过程中,典型的人体会呈现宽范围的心率、呼吸率、血压、血氧水平等。与医院环境中镇静的病人相反,不卧床情况尤其受到此类变化的困扰,并且作为结果,除了在极其受控的环境中之外,在家庭的正常生活中很少对人体进行传统的医疗监视。即使在医院里镇静的情况下,正常的病人生理机能仍呈现显著的变化。此类变化隐藏了证明健康的初期恶化的生理参数早期变化。在单个参数上设置的常规警报不能针对正常变化的背景看到此类变化,直至此类变化变得极端。例如,在心率上设置的阈值不能被设置成仅因为心率每分钟提高10下就触发警报,因为这可能在正常的生理学中易于出现。但是如果阈值被设置成160bpm,则病人的状况可能在超过阈值时实质上已经显著恶化了。
另外,如今正开发的大多数感测技术承担着提供感兴趣的生命体征的经精确校准的读数的必要性。相反,SBM仅需要感兴趣的生命体征的相对代理,由此避免了为测量健康而获得生理参数的绝对校准的问题。这是因为对初期健康问题的检测基于总体上所有生物信号之间的相对变化,而不是来自基于人口的生命体征范围的超标。
SBM通过在模型中实施正常变化(“学习”)来达成这些优点。该模型随后被用于在用习得的生理参数的多变量测量来呈现时生成对那些参数的多变量估计。这些估计将关于正常变化的生理机能的最接近可能的值集合表示成呈现(测得)值。求出这些估计与呈现值的差值以产生残差。分析被有利地从测试受正常变化困扰的原始生理值转移到测试表示仅仅超过正常变化的差异的残差。实际上,SBM通过从测得行为扣除估计行为来扣除正常变化,从而仅留下偏差。
如本文中所描述的,使用多变量密度估计技术来分析残差。根据该新颖方法,用于表示病人的正常生理机能的数据的多维残差向量分布(维度为n的向量,其中n是将其估计与实际测量值求差值的生理参数的数目)被用于形成多变量密度估计器。该密度估计器是高斯混合模型,并且被用于确定任何新的输入残差向量(即,来自新近受监视数据的输入残差向量)是相同分布的一部分的似然性。从多维密度估计器获得的该似然性有效地将每个生理参数的个体残差的行为合并成可被用于总结病人优先级的一个总体指数。该似然性可被用作多变量健康指数(MHI),并且可随后用数个持久性规则来测试以在对正被监视的多个生理参数的观察时间序列上评估病人优先级。
有利地,与对原始生理数据应用的常规医疗单变量阈值相比并且与对原始生理数据的多变量密度估计相比,该对模型生成的残差的MHI分析提供了对初期健康问题的较早期警告。
转向图1,可以领会总体方法。在步骤105中,从传感器在病人身上获得多个生物信号。恰适的生物信号的示例包括心电图描记器(ECG)、胸腔生物阻抗(bio-Z)、光电容积脉搏波(PPG)、温度差、收缩期或舒张期血压、加速计测得的运动、呼吸活动的压电信号、以及来自呼吸的即时气流测量,仅列举了一些示例。在步骤110中,这些生物信号被用于推导生理特征数据。可从此类生物信号推导各种生理特征,通常理解的示例是从ECG信号的界标确定的心率。类似地,胸腔生物阻抗可产生呼吸率和深度;PPG可产生脉搏波传导时间(当与ECG交叉参考时)和血氧饱和度,等等。各种生理特征在现有技术中是已知的,在后续步骤中对SBM的应用也考虑使用新特征,因为只要所使用的信号通过反馈环路相关并且控制人体生理机能的机制,则该方法对于这些信号而言是不可知的(只要模型是在相同类型的数据上训练的)。在可任选的步骤115中,用其他生理相关数据(即,影响受监视人体的生理行为或反应的数据)来补充推导出来的特征。示例为FiO2(吸入气中的氧浓度分数),其可在室内空气中通过使用补充氧气来增加。在步骤120中,诸如SBM之类的已在这些相同的生理特征的正常变化上训练的基于内核的模型生成对这些特征的输入观察的估计。通常,为由同时采样的生理参数的集合构成的输入向量中的所有元素作出估计。在步骤125中,在即时受监视观察中,在那些测得特征与对那些特征的相应估计之间生成残差。可任选地,在步骤130中,可按单变量方式或者按多变量方式匹配方式将阈值测试应用于这些残差。与该选项并行地,在步骤135中,由从“正常”残差开发的混合模型来处理残差,并且在步骤140中,为输入观察确定多变量健康指数。该MHI是来自输入观察的残差属于混合模型的多变量分布的似然性的指数。也可用阈值来测试MHI以确定该似然性是否不够从而输入观察证据偏差不能表征正常生理机能。在步骤145中,可对MHI确定的时间序列应用持久性规则以进一步逐个观察的按时测试阈值超标的持久性,从而提供病人健康正发生偏差而不仅是数据中的瞬时现象的较大置信度。在步骤150中,经由用户接口来为病人护理的优先级区分管理来自MHI的警报及其测试连同对个体残差或残差模式的任何先前测试。警报管理可便于用户发起的注释进入医疗记录***,该***与“不予考虑”、“提升”或“监视”的警报和其他动作有关。
步骤105的生物信号可从诸如床边监视器和呼吸机之类的典型的医院生命体征装备、从移动生命体征监视器、诸如具有仪表的可植入型心律转复除颤器和起搏器之类的植入型设备、以及从可穿戴式不卧床监视器获取。无论使用何种数据源设备,都必须采集能够同时地且若不连续则至少周期性地提供多个相关生理变量或特征的生物信号。在一种形式中,病人使用非侵入型不卧床感测设备或具有可植入型设备以在至少半连续的基础上遍及病人的正常日常活动获取生物信号。由感测设备获取的数据可在周期性的基础上从设备存储器卸载并随后在计算机上处理,或者可连续地由蜂窝网络或WiPi传送以由接收计算机或服务器连续地或按批处理模式处理。生理特征甚至可用基于残差的方法在由病人携带的智能手机或PDA上分析,因为对分析过程的计算要求良好地落在现代移动设备的能力范围之内。随后,结果得到的关于健康状态状况的警报可本地地在移动设备上报告,并且也可上传至中央服务器以与医疗从业者共享。
可与本发明联用的一种非侵入型可穿戴式感测设备被设计成获取来自4种类型信号的数据:ECG、红色和红外线(IR)光电容积脉搏波(PPG)、生物阻抗、和3轴加速计。这些传感器提供可从中提取生理特征的丰富的波形集合。这些提取出的特征(与原始波形数据不同)是最终推导基于SBM的人体健康监视方法的要素。设备可被设计成记录相关的生物信号以供例如板载micro SD卡上的本地存储;或者以供经由内建的蓝牙无线电传输至由病人携带的蜂窝电话或PDA。设备可被设计成具有USB迷你-B连接器,该连接器可被用于在对设备的电池充电时向设备提供功率,并且如果原始实时传感器数据存储在设备的micro-SD卡上,则提供与PC高速通信的机制以周期性地卸载数据。设备可使用从公知的德州仪器MSP430型号中选择的微处理器,该微处理器理想地具有低功耗特性、内建的ADC、DAC、定时器和多个串行***接口(SPI/UART/I2C)。蓝牙接口可经由具有最小外部组件要求和2.4GHZ芯片天线的BlueCore 3Plug-n-Go IC(来自CSR公司的96针BGA模块)提供。
数个感测接口可被用于提供本发明的数据。心电图(ECG)可通过使用两级模拟高通滤波器(HPF)继以射频干扰(RFI)滤波器和微功率仪表放大器来实现。在不卧床模式中,在此高增益差分放大器前采用RFI滤波器是关键的。如果不采用RFI滤波器,则可能在差分放大器IC中出现被称为RF整流的现象。一旦RF信号在IC内变得经过整流,该RF信号就会在输出端导致DC偏移误差并且再多的低通滤波也不能移除该误差。由于RFI随时间变化,因而DC偏移也会变化,从而导致极易受伪像影响的ECG信号。两个拾取电极可用于例如在胸部的任一侧上获取信号。ECG通常由微处理器按12位和256Hz采样。
生物阻抗测量可通过使用专用的12位阻抗转换器网络分析仪IC(模拟器件公司AD5933)结合至电流级和可编程增益仪表放大器的电压进行。放置在左腋窝下的电极可用于向位于躯干相对侧上的接地电极注入50kHz的425μA的电流。用于拾取ECG信号的相同电极可被用于拾取通过5KHz HPF和RFI滤波器的50KHz信号。电压差通过关系式V=IR正比于人体的阻抗。AD5933IC能够测量信号的复阻抗。
PPG信号可通过经由限流H桥控制一对LED(红色和红外线)的方式获取以生成光。使用连接至用于初始增益的跨阻放大器的反向偏置的PID光电检测器来测量未被吸收的光。测得的信号随后连同在固件中从微处理器的DAC的输出生成的DC偏移值一起馈送给第二级差分放大器。DC偏移值旨在将信号保持在差分放大器的干线内,以使得信号增益能够最大化。在LED已改变状态后的488us的等待时段之后,第二级放大器的输出随后较佳地在16384Hz下(对于最终256Hz的采样速率)被8倍过采样。应用过采样以增加PPG信号的极易受噪声影响的信噪比。
加速计数据可由LIS302DL MEMS数字加速计在400Hz下生成(每轴8比特)。数字读数较佳地由微处理器在100Hz速率下读取。
所获取的数据可被置于两个缓冲器内:一个缓冲器被冲洗到文件***(micro-SD),而一个缓冲器被馈送到蓝牙IC用于传输。每个值前面有用于标识的单字节ID,并且周期性的“同步”块被***到蓝牙流中以辅助数据对齐。每个数据分组由ID字节继以包含采样值的两个字节构成。还通过利用两个分组来表示32位秒计数器的高字组和低字组来传送周期性的32位时间戳。
在一种形式中,主体被配备四个电极和一个脉冲血氧饱和度传感器。可以使用两种类型的电极,即碳-橡胶非粘合电极和碳-橡胶粘合电极,尽管可容易地构想在实施例中使用其他商业上可用的电极。电极可如图2中所示的那样放置在身体上:(A)对应于生物阻抗电流源电极,(C)是+ECG电极,(F)是-ECG电极,并且(H)是模拟接地电极(AGND)。ECG引线也被用于同时拾取生物阻抗响应信号。设备可通过放置在可拉伸胸带中的方式穿戴,该胸带具有经由尼龙搭扣附连至该胸带的非粘合性电极,或者设备放置在围绕颈部穿戴的袋子中,其中引线通向粘合性电极。PPG信号经由固定到前额并且连接至设备的一次性Nellcor反射脉冲血氧饱和度传感器来获取。图3中示出了由以上所描述的可穿戴式感测设备从人体捕获的信号的典型示例。这些信号是:(A)ECG、(B)x轴加速计、(C)红外线光电容积脉搏波(PPG)、(D)生物阻抗的实分量、以及(E)生物阻抗的虚分量。没有示出y和z轴加速计信号以及所有被捕获的红色PPG信号。
现在转向生理特征生成,并不直接用SBM来分析从可穿戴式设备采集的原始数据。取而代之的是,从原始波形数据推导生理特征集合。这些推导出来的特征提供了对人体心肺控制***的状态并且进而对个体的总体健康的了解。根据一个示例,可以使用来自两个类别的若干特征,即从心脏推导的和从呼吸推导的特征。从心脏推导的特征是心率(HR)、脉搏波传导时间(PTT)、以及红色吸收与IR吸收的PPG比率(或即Q)。在一个示例中,HR特征可直接通过测量ECG信号中相继QRS峰值之间的间隔来获得。使用多步骤规程来检测这些峰值。首先,将数字HPF应用于ECG信号。随后,经滤波的信号被分割成10秒数据窗,这些数据窗被去趋势化以移除对数据的直线拟合。接下来,在每个窗内,计算第98个百分位数并且找到所有高于第98个百分位数的采样的位置。找到的所有采样驻留在10秒窗内的局部峰值集合上。最后一个步骤是寻找窗内的每个局部峰值的最大值的采样位置。这些位置是ECG波形中的各个QRS峰值。随后,HR速率就是每次心跳之间的时间间隔的倒数。
FIT是QRS峰值与PPG脉冲峰值之间的延迟时间。该特征已知反比于血压。为了计算该特征,在第一原则下利用ECG QRS峰值检测算法的稳健性。由于已知超过250ms的传导时间在人体中是不可能的,因此从每次心跳的QRS峰值位置开始的250ms窗可被用于搜索相应的PPG峰值。窗内的最大值就是PPG峰值。这可以针对红色和IR PPG信号两者进行。因为在峰值被定位之前PPG信号往往是天然嘈杂的,因此首先使用中值滤波器(移除尖峰)继以分别具有0.5Hz和5Hz的上和下截止频率的带通滤波器对PPG信号进行数字滤波。
Q特征是对红光的血液吸收与对红外线光的血液吸收的比值。Q已知反比于SpO2(血氧饱和度)。计算Q较为复杂,因为要在获取原始PPG数据之前进行模拟和数字信号处理。参照图4,如下计算Q。Q的基本方程由下式给出:
这里,红色AC(IRAC)是由血液吸收的红色(红外线)光的数量,并且红色DC(IRDC)是由周围组织吸收的红色(红外线)光的数量。PPG实现包括LED驱动级、具有跨阻放大器的PID光电二极管、以及扣除DC偏置(图4中的红色输出偏移)和添加附加增益的第二增益级。一定程度的背景光由传感器检测到,并且也需要从测得信号中扣除(关信号+关输出偏移)。红色DC轨迹参数是实际获取的信号的较小包络。随后,Q可通过下式给出(仅为红色示出)。
红色AC=α红色′AC    (2)
红色AC=α(红色DC轨迹)+β(红色输出偏移)(3)
-β(关输出偏移)-α(关信号)
这里,红色′AC是实际获取的PPG信号的峰峰值,而α和β是作为模数转换器的功能的定标因子。
有两个可在实施例中使用的从呼吸推导的特征,即呼吸率(RR)和呼吸量(TV)(或呼吸深度)。这两者均可从生物阻抗信号计算。设备分别获取生物阻抗的实部和虚部。这些实部和虚部被组合以形成用于提取RR和TV的幅度。生物阻抗极易受运动伪像的影响。肌肉运动和器官运动会改变人体的阻抗,从而导致所获取信号的不期望的变化。同时,信号是嘈杂的并且相对于呼吸而言本质上是有点非周期性的。由于这些因素,一种获得合理结果以提取RR和TV的方法是基于频谱的办法。首先用具有0.133Hz和1Hz(对应于每分钟8到60次呼吸的RR范围)的下和上截止频率的窄带数字滤波器对生物阻抗信号进行带通滤波。接下来,对经滤波的具有重叠的数据应用滑动窗口离散傅立叶变换(DFT)以每20秒产生特征值。RR速率特征对应于在每个窗中出现DFT的最大幅度值的频率。为了减少边缘效应,在计算DFT之前,用将端点抑制到0的窗函数乘以每个数据窗。TV被定义为RR频率下的DFT的幅度值,并且在数量上与实际的呼吸量有关但是不是对呼吸量的经直接校准的测量。
在一种形式中,进行最后两个步骤以完成特征生成过程。首先,在同时移除尖峰和平滑特征数据的噪声滤波步骤中,应用具有50%窗叠加的移动窗口修剪均值滤波器。默认窗大小为40秒并且具有50%的叠加,结果得到的经滤波的特征以每20秒1个采样的速率出现。第二步骤为在时间上对齐所有特征数据,以使得能够用SBM来分析这些特征数据。这是通过在相同时间点处使用保形分段三次内插器来内插所有经滤波特征的方式达成的。图5中示出经滤波特征的示例连同一些原始信号:(A)ECG、(B)y轴加速计、(C)红色PPG、(D)生物阻抗幅度、(E)呼吸率、(F)呼吸量、(G)心率、(H)脉搏波传导时间、以及(I)红色与红外线的比值。在主体屏住呼吸时出现的数据区域505通过呼吸量(F)去往0而显而易见。在相同时段期间,红色与红外线PPR比值(I)开始增加,从而指示氧气饱和度正在下降。区域510发生在主体步履轻快地行走时。在进入行走约45秒之后,他的呼吸率、呼吸量和心率增加(分别为(E)、(F)和(G))。脉搏传导时间下降(H),指示血压升高,而PPG率(I)开始再次缓慢上升,指示较低的氧气饱和度。最后,区域515表示主体在楼梯上下奔跑三次并且在其间短暂休息。如所预期的,见到与区域510的行为类似的行为。
不变的传感器噪声、因传感器运动造成的伪像以及其他意外的干扰会损害所获得的传感器数据的随机时间段。在SBM模型中包括被污染的数据可能潜在地使模型性能降级。SBM是纯数据驱动的并且从训练数据学习常态。如果训练数据被与健康无关的伪像污染,则模型对常态的表示将会不希望地扩大。这一般而言会影响其预测异常行为的发作的灵敏性。
为了应对传感器噪声,数种数字滤波技术可被用于原始数据或者计算出的特征本身。这些技术包括中值滤波、有限脉冲响应(IIR)滤波器和无限脉冲响应(FIR)滤波器的技术。
根据一个办法,用于检测原始传感器数据中的伪像的策略基于数个组件。首先,在加速计数据的每个轴的一阶差值的绝对值超过预定义阈值时监视该差值。这些时间指示何时出现了突然的运动。一般而言,这些突然的运动导致传感器数据中、最显著地在PPG数据和生物阻抗数据中的瞬态行为。随后,从突然运动的第一指示忽略来自所有传感器的数据,直至差异信号再次落到阈值以下之后的10秒。该办法良好地用于检测瞬时现象但是不检测传感器问题。第二组件将启发式规则与第一原理规则组合以检测传感器和/或特征生成误差。以下概述规则集合:
1.如果TV<Ttv(阈值常数),则RR是不可靠的且不被使用。计算RR是基于提取窄带内的生物阻抗信号的最大频谱分量进行的,并且如果TV小于Ttv,则人不在呼吸或者呼吸较浅,从而最大分量是没意义的;该最大分量仅是在此状态期间频带中的最大噪声分量。
2.如果HR>200或Q(PPG红色与IR之比)>TQ(阈值常数),则忽略计算出的特征值。高于200的HR值远高于人体的正常HR,所以高于200的任何值都有可能是误差。类似地,作为SpO2的代表的Q仅在一定范围内是现实的;然而,不同于HR,该范围因传感器放置和皮肤的物理特性而因人而异。所以,较佳地为每个个体计算唯一性的TQ
3.如果FIT变量大于HR变量达到超过阈值常数T变量,则忽略特征数据。这意味着PPG信号的脉动峰值未被正确标识,从而指示PPG传感器物理上不在适当的位置或者正被噪声压制。
现在转向用于估计诸观察以能够获得残差的过程,可以使用数种不同的基于内核的多变量估计器方法。术语“基于内核”一般是指多变量估计器,该多变量估计器使用用于比较的内核函数以示例性观察库(习得数据)来操作输入观察。内核函数一般而言产生关于输入观察与来自库的示例性观察的比较的标量值(“相似性”)。标量相似性可随后在生成估计作为至少一些样本的加权和时使用。例如,使用Nadaraya-Watson内核回归,内核函数被用于根据下式生成估计:
Figure BDA00002134262300131
(推理形式)(4)
(自联想形式)(5)
其中X是生理特征的输入多变量观察,Xi是生理特征的示例性多变量观察,X估计是估计的多变量观察,而K是内核函数。在推理情形中,样本包括包含一些生理特征的部分Xi以及包含其余特征的部分Yi,X仅具有Xi中的特征,并且Y估计是对那些Yi特征的推理估计。在自联想情形中,所有特征均一起包括在X、Xi中以及X估计中——所有估计也在输入中。
内核函数通过一种办法提供关于两个相同尺寸的观察的比较的相似性标量结果,该结果为:
1.位于标量范围内,该范围在每一端处为界;
2.如果两个向量是相同的,则具有边界端之一的值;
3.在该标量范围上单调地变化;以及
4.具有随两个向量接近相等而增加的绝对值。在一个示例中,内核函数可从以下形式中选择:
K h ( x a , x b ) = e - | | x a - x b | | 2 h - - - ( 6 )
K h ( x a , x b ) = ( 1 + | | x a - x b | | &lambda; h ) - 1 - - - ( 7 )
K h ( x a , x b ) = 1 - | | x a - x b | | &lambda; h - - - ( 8 )
其中,Xa和Xb是输入观察(向量)。使用两个向量的向量差或“范数”;一般而言,这是2范,但是也可以是1范或p范。参数h一般而言是往往被称为内核的“带宽”的常数,并且影响每个样本在其上返回显著性结果的“场(field)”的大小。幂λ也可被使用,但是可被设置成等于1。为每个样本Xi采用不同的h和λ是可能的。较佳地,在使用采用向量差或范数的内核时,测得数据应当首先被归一化至0到1的范围(或其他选定范围),例如,通过向所有传感器值添加或者从所有传感器值扣除该传感器数据集合的最小读数的值并且随后将所有结果除以该传感器的范围来归一化;或者通过将数据转换成以0为中心的平均值数据来归一化,其中标准偏差集合设为1(或某个其他常数)。另外,根据本发明的内核函数也可按观察的元素来定义,即,在向量的每一维度中确定相似性,并且按某种方式组合那些个体的元素相似性以提供总向量相似性。通常,这可以如对元素相似性取平均以对任何两个向量x和y进行内核比较那样简单:
K ( x , y ) = 1 L &Sigma; m = 1 L K ( x m , y m ) - - - ( 9 )
那么,可根据本发明使用的元素的内核函数包括但不限于:
K h ( x m , x m ) = e - | | x m - x m | | 2 h - - - ( 10 )
K h ( x m , x m ) = ( 1 + | | x m - x m | | &lambda; h ) - 1 - - - ( 1 )
K h ( x m , x m ) = 1 - | | x m - x m | | &lambda; h - - - ( 12 )
带宽h可在诸如以上所示的那样元素内核的情形中选择,该带宽h是某种类型的对观察向量的第m个参数的期望范围的测量。这可例如通过跨所有样本寻找参数的最大值与最小值之差来确定。替换地,可使用与样本或参考向量中存在的数据无关的域知识来设置带宽h,例如,通过在合理生理预期的基础上将心率参数的期望范围设置为每秒40到180跳,并且由此对于模型中的作为心率的第m个参数而言,h等于“140”。
根据一个办法,基于相似性的建模被用作基于内核的多变量估计器。三种类型的SBM模型可被用于人体数据分析任务:1)固定的SBM模型,2)使用边界约束来局部化的局部化SBM模型,以及3)使用最近邻元办法来局部化的局部化SBM。固定的SBM建模办法使用下式来生成估计。
Figure BDA00002134262300151
这里,D是数据的静态m乘n矩阵,该矩阵由具有在训练阶段期间从正常数据预先选择的m个生理特征的n个训练数据向量构成。内核函数K表现为内核操作符
Figure BDA00002134262300152
由此使用以上所描述的内核函数之一将来自第一操作数(其可以是诸如D之类的矩阵)的每个列向量与第二操作数(其也可以是矩阵)的每个行向量作比较。受监视的输入观察在这里被示为x输入(t),并且自联想估计被示为相反,局部化的SBM(LSBM)由下式给出:
Figure BDA00002134262300154
D(t)={H|F(H,x输入(t))}(14)
尽管与固定的SBM模型形式类似,但是这里的D矩阵是使用局部化函数F()基于当前输入向量x输入(t)和正常数据参考矩阵H在时间上的每个步骤处重新定义的。因此,矩阵H包含较大的正常数据观察的样本集合,并且函数F使用每个输入观察来选择较小的集合D。作为示例,F可利用“最近邻元”办法来标识样本集合以构成用于当前观察的D,这是因为那些样本落在m维空间中的输入观察的邻域内,其中m是特征的数目。作为另一示例,函数F可使用基于内核的比较来将输入观察与相似性的样本作比较,并且选择最相似样本中预先选择的一部分以构成D。本发明可构想其他局部化方法,包括在少于所有生理特征的基础上进行选择,以及在不在这些特征中的、但是与每个样本相关联的不同参数(诸如周围条件测量)的基础上进行选择。
与通过确定性方程使参数相关的第一原理模型不同,本发明中用于估计的模型较佳地是从数据确定的经验模型。因此,取代推导模型,该模型必须用经验数据来训练。训练生理机能的模型包括收集待建模的生理参数或特征的示例性观察以及建立样本的参考库。这些特征可被距离归一化,或者可按测量的固有单位结合元素的内核函数(诸如式10-12中示出的内核函数)使用,该内核函数使用正比于以测量的固有单位计的期望范围的带宽。在个性化建模中,在病人被视为医学正常或医学稳定的情况期间从将被监视的病人获得对所讨论的特征的观察。病人不需要原来是健康的,因为本发明的方法寻求相对变化。正常数据较佳地包括来自待建模的所有活动方式的表示,并且不需要限定于高度固定的、镇静的或“稳态”状况,除非将被建模的情况仅仅是那些情况。样本通常仅是为包括在来自较大的可用正常观察集合的参考库中而选择的观察;在替换方案中,样本也可被确定为群集的正常数据的计算“中心”。
一旦通过构造模型的参考库并且选择将充当用于估计生成的相似性操作的内核函数的方式训练了模型,该模型就可被用于响应于受监视的输入观察而生成估计。利用每个输入观察,根据上式4、5、13或14的实施例之一来生成对至少一些生理特征的估计。随后,求出估计的特征与即时观察中的那些特征的测得值之间的差值以创建每个此类特征的残差。在给定现实世界信号具有固有测量噪声和固有***噪声并且经验模型将具有一些固有不准确性的情况下,不仅对于来自恶化的生理机能的偏离数据而言,而且还对于来自正常生理机能的数据而言,都将会出现残差。然而,正常数据的残差的统计特性将表现得显著好于偏离数据。数种公知的用于测试原始数据的方法可应用于残差,包括阈值。阈值可被应用于残差,以使得较小的变化被容许,而较大的值会触发警报。关于个体生理参数的残差的一系列决定可以是与持久性偏离健康状况的真实存在有关的规则的基础,例如通过对观察窗中阈值超标的数目进行计数。可以跨不同生理特征的残差应用规则模式,但是仅在标识残差中的偏离模式时触发。一般而言,应用于残差的这些决定方法要比应用于原始数据的相同办法敏感并且较不易出现误差,因为在残差中已通过与来自模型的估计特征求差值而移除了正常变化。本质上,SBM移除实际数据的正常变化并且留下残差形式(如由训练数据定义的常态)的不正常数据。
模型的性能可使用基于非参数扰动的办法来测量,该办法特别良好地适于比较用于异常检测应用的建模技术。使用三种度量来评价模型的性能:1)稳健性,2)漏失(spillover)以及3)误差。稳健性度量是对模型将跟随(过拟合)引入数据的扰动的似然性的测量。参照图6,为了测量稳健性,基于包含正常数据的测试数据集来作出对所有变量的第一估计(图6中的)。接下来,如所示的那样在模型中一次一个地将扰动Δ添加到每个变量(图6中的xΔ)。最后,为每个受扰动变量生成估计(图6中的
Figure BDA00002134262300172
)。随后,由下式给出模型中的每个变量的稳健性度量:
这里,在稳健性等于0,即在不受扰动的估计和受扰动的估计相等时,达成完美的稳健性。较大的值指示较多的过拟合并且因此模型稳健性较小。
漏失度量测量当另一变量受扰动时模型中的变量偏离常态的相对数量。与稳健性不同,漏失测量在一个变量受扰动时关于所有其他变量的稳健性。使用由下式给出的类似计算来计算每个变量的漏失测量:
Figure BDA00002134262300174
其中
Figure BDA00002134262300175
是没有变量受扰动时对变量i的估计,
Figure BDA00002134262300176
是变量j受Δj扰动时对变量i的估计,而Δi是变量i本身受扰动时使用的扰动量。
最后,误差度量是实际值与其估计之差的均方根误差除以实际值的标准差,或者等效地,是残差RMS除以实际值标准差:
Figure BDA00002134262300181
以上列出的等式定义模型中每个变量的度量。在每一种情形中,较小的值为较佳。通过对每一种情形中的每个变量的结果取平均来计算模型的总体性能度量。
转向一种形式的残差测试,多变量密度估计方法可应用于残差数据。数据的正常行为中的近似密度被用于确定新数据点是正常行为分布的一部分的似然性(以多变量健康指数(MHI)的形式)。使用具有高斯内核的非参数内核估计器来计算密度估计。在下式中示出该估计器。结果得到的密度函数本质上是各自以Xi为中心的N个多变量高斯函数的混合:
f ^ ( x ) = 1 N ( 2 &pi; ) d / 2 h d &Sigma; i = 1 N exp [ - 1 2 | | x - x i | | h 2 ] - - - ( 18 )
其中N是训练向量的数目,h是带宽参数,d是向量的维数,而是标量似然性。重要的是,这里的X和Xi不是生理特征的多变量观察,而是通过与估计求差值从原始观察推导出来的多变量残差观察。还重要的是,这里的密度“估计”不同于以上所描述的用于基于测得值来估计生理特征值的估计过程;这里的“估计”是使用正常的多变量残差样本来经验映射出残差的概率分布,作为高斯混合模型。该估计分布随后被用于计算来自生理特征的输入观察的新的多变量残差是否是该分布的成员的似然性。可使用被视为“正常”或代表期望的或稳定的生理行为的测试数据从由SBM生成的正常数据残差的区域中选择样本Xi。在作出密度估计之前,所有残差被定标以具有单位方差和零均值,或者至少被定标成具有单位方差。从已知的正常数据残差计算用于定标规程的均值和标准差。一种形式的多变量健康指数(MHI)是
Figure BDA00002134262300184
的函数并且由下式给出:
MHI ( x ) = log 10 ( 1 f ^ ( x ) ) - - - ( 19 )
当然,从式18确定的似然性不需要为了有用而如式19中那样转换,并且式19主要用于反转信号趋势(从而较高的MHI等于上升的健康危险)。测试可直接应用于式18的结果。
图7A-7B中突出了将多变量密度估计办法应用于残差的效率比较。图表(图7A)示出了除了应用于原始生理特征数据(心率的实际值、呼吸率等)之外与以上所描述的多变量密度估计类似的多变量密度估计;而图表710(图7B)示出了如以上所描述的应用于从基于内核的模型(SBM)生成的残差的多变量密度估计。为不受扰动(正常)的和具有人工诱导的扰动(不正常)的生理数据示出了MHI结果。扰动被引入作为从数据开始起在不卧床生理特征的子集中的缓慢漂移,其中最大漂移在数据结尾处达成。在图表705和710两者中,为“正常的”不受扰动的数据计算的MHI被示为实线,而为“不正常的”受扰动的数据计算的MHI被示为虚线。基于正常数据的测试集合的统计特性来为每种办法确定检测阈值(717,720),其中这些统计特性在图表705的情形中针对原始数据而在图表710的情形中针对残差。决定算法被进一步应用于MHI以确定持久性的可靠的阈值超标警报,在此情形中,x个接连的MHI阈值超标将产生警报决定。可锁定该决定,直至观察到一系列y个接连的MHI值低于阈值,在此情形中将移出警报。替换地,当在m个观察的窗中已有x个阈值超标时可以锁定警报,并且当b个观察的窗中已有y个低于阈值的观察时移除警报。在每一种情形中,垂直线(730,735)指示作出数据不是来自正常的行为分布并且因此指示不正常状况的决定的点。如可见的,对于残差驱动的MHI而言,检测发生在从模拟扰动开始起约三分之一处,而使用结合多变量密度估计的原始数据的检测直至数据中晚得多的地方才出现。这是由于移除正常变化的常态模型与应用于残差的常态似然性的多变量密度估计的组合所导致。此基于残差的MHI方法具有提供对健康的初期偏差模式的显著较早的检测以及提供病人偏差的单个指数以概述正被监视的多个生理特征的个体残差的新颖优点。
根据一种办法,本文中所描述的***可用于在不卧床的、在家环境中提供对病人健康的预测性监视,尤其是为具有可能无法预测地恶化的慢性疾病的病人提供预测性监视。从一个或多个生物信号和从可穿戴式或植入型设备(或这两者)捕获的参数推导多个生理特征,并且将该多个生理特征传送至分析数据中心,其中一台或多台服务器被配置成使用基于内核的经验模型来处理生理特征。这些模型较佳地被个性化成来自病人的、在病人被认为处于正常的或可接受地稳定的健康状况的时段期间捕获的数据,以提供病人的正常生理机能的模型。使用该个性化的模型来估计受监视数据,并且求出受监视值与生理参数的估计值之间的差值以产生残差。随后,通过一种或多种分析方法来处理残差以产生关于病人的健康状态的警报。根据一种技术,可个体地用诸如阈值之类的规则来测试残差。可为持久性进一步测试这些阈值。残差测试的模式可被识别以产生甚至更多的特定健康状态信息。根据另一种技术,可使用经验多变量概率密度估计来为属于“正常”残差分布的似然性检查残差的多变量观察,并且这种似然性可随后被转换成多变量健康指数,通常作为该似然性的逆对数值。MHI提供病人健康状态的即时排名,并且可使用阈值以及持久性规则来测试MHI以产生关于病人健康状态的警报。所有此类分析可经由基于网络或基于客户机-服务器的用户接口呈现给医生,并且以此方式,可由医务人员以提高的效率监视大量病人。可以管理医疗保健机构或医疗保健执业群体的所有此类受监视病人以在家中早期警告恶化的健康,并且可基于健康状态为特定的随访而区分病人的优先级。可联系具有对健康恶化的早期指示的病人以验证遵从药物治疗、询问病人感觉如何、以及调查可能已使慢性疾病恶化的新近的病人行为。医务人员可利用高效率的干预来有利地避免病人的较昂贵的健康紧急情况,这些干预包括指令病人调整药物治疗、遵从药物治疗、或者去做检查以及预防性的干预。
取代完全个性化的模型,SBM也可跨主体建模使用。模型随后包括来自其他人体的数据。由于特征数据的因人而异的变化,因而对每个主体的数据进行定标是必要的。只要个体的特征数据被适当定标,通用的跨人口模型可被用作用于在没有历史数据可供个人使用时监视人体的临时手段。可在监视设备首次打开时基于在标准化的活动集期间计算的统计数据来完成定标。在标准活动(其可包括例如躺下、站立、行走和爬楼梯)期间获取的数据通常被定标到均值为0、标准差为1的范围。这种监视不如个性化模型那么灵敏,但是在等待获取合适的数据集以生成个性化模型时至少提供了最小程度的健康监视。
转向图8,另一种办法从表示已知疾病、不适或健康恶化的参考数据获得残差,以使得可为该健康恶化确定多变量概率密度估计器而不是为正常的或稳定的健康确定多变量概率密度估计器。因此,以此方式,可创建一个或多个概率密度估计器810(包括用于正常数据的一个概率密度估计器),并将其用于来自受监视数据830的多变量残差观察820。受监视残差观察属于这些分布中的每一个分布的似然性可在判决步骤840中并行地比较,并且不仅可偏离待检测的常态,而且可对健康恶化的本质进行归类。似然性可简单地显示给医务人员,或者可在840中将最可能的情景或具有充分高似然性的情景集合指示为病人的可能状态。在判决840的另一种办法中,使用从多个疾病中的每个疾病的已知示例生成的、通过模型估计和残差生成处理的测试统计数据来归一化该多个疾病中的每个疾病的似然性或MHI值,从而能够按照为拟合每个此类类别的残差向量所预期的典型方差来表达这些似然性或MHI值。随后,比较经归一化的值以确定哪个类别实际上最有可能由当前受监视数据来表示。每个疾病类别的一系列MHI或似然值也可例如用移动窗平均数或中位数来启发式地处理成排名类别。
根据另一种形式,使用常规的床边监视器、呼吸机和/或可穿戴式或植入型设备并且利用从传感器推导的多变量生理参数来监视医院里的病人。数据经由以太网或WiFi流送给中央站/护理站或医院中央数据中心,该医院中央数据中心耦合至用于医务人员实时监视的接口。数据还经由以太网或WiFi流送给分析服务器以使用如本文中所描述的基于内核的经验模型进行处理。对生理特征作出估计,并且生成残差;模型可以是通用的而不是个性化的,因为从病人处于可接受的生理健康时段起没有个人数据可供病人使用。在这种情形中,模型可包括在人处于可接收健康时在类似的医院条件下采集到的来自其他人的数据。此类模型可在对正常生理变化的主要贡献者(诸如体重、性别、年龄和医疗条件(例如,相似的心脏射血分数或相似的呼吸***表现))的基础上为受监视病人进一步定制。如以上所描述的那样处理残差以生成MHI和/或基于规则的决定。病床或医院或ICU中的所有受监视病人的病人健康状态可由现场医务人员或异地医务人员监视以提供对发展诸如感染、肺炎和败血症之类的健康问题的早期警告。
利用如由本发明提供的早期警告的优点,可积极主动地管理病人的健康警报,而不是必须立即响应的危机。用户接口提供若干等级的警报管理:警报可不予考虑(由医务人员作出的调查表明警报是反常的);警报可被确认和提升(由医务人员作出的调查表明存在需要干预的明确的健康问题);以及警报可被标记以供进一步的随访和观察(调查表明要保证密切监视但是不需要或建议立即干预)
提供了一种用于对健康问题提出预先警告的***,该***使用可穿戴式感测设备以从医院外的人体、在他们的家庭生活的日常起居中捕获充足的生理数据流,从而在医生办公室或医院病床之外提供对病人的生理状态的高度可视性。使用移除存在于不卧床数据中的正常变化的算法对该数据进行自动处理以提供对指示初期健康问题的异常的稳健的和早期的检测是新颖的且是创造性的。尤其对于患有慢性疾病的病人群体而言,设备加算法的这种组合使病人护理彻底变革的潜力是巨大的。该平台正是医生为改善病人预后、避免不必要的费用和极大地扩展医疗队伍的力量所需要的工具种类。
本领域技术人员应当领会,可在各个方面对上述优选实施例作出修改并且在所附权利要求书中阐述特殊性。可以认为,本发明的精神和范围涵盖了此类对优选实施例的修改和变更,如对于本领域技术人员和熟悉本申请的教导而言显而易见。

Claims (32)

1.一种用于监视人体健康的方法,包括:
从人体监视传感器数据;
用经编程的微处理器从所述传感器数据生成表征所述人体的生理健康的多个特征;
用经编程的微处理器使用多变量模型基于所生成的多个特征的值来估计表征正常人体生理机能的所述特征的值;
用经编程的微处理器求出所估计的值与所生成的值之间的差值以提供所述特征的残差;
用经编程的微处理器使用高斯混合模型基于正常残差参考模式集合来确定所述残差表示正常残差模式的似然性;以及
用经编程的微处理器对所述似然性应用测试以给出所生成的特征是否表征正常生理行为的决定以提供对所述人体的生理健康偏离正常的早期指示。
2.如权利要求1所述的方法,其特征在于,所述应用测试的步骤包括推导所述似然性的指数作为所述似然性的逆的对数,以及将所述指数与阈值作比较。
3.如权利要求1所述的方法,其特征在于,还包括用经编程的处理器为所述特征不表征正常生理行为的决定的持久性测试一系列所述给出的决定的步骤。
4.如权利要求1所述的方法,其特征在于,所述估计值的步骤还包括对特征向量与示例性向量的库中的至少一些进行基于内核的比较,以将所述估计生成为关于所述比较加权了的那些示例性向量的线性组合,其中所述特征向量包括所述特征信号的值并且所述示例性向量中的每一个包括表示已知健康状态下的所述特征信号。
5.如权利要求4所述的方法,其特征在于,将所述特征向量与包括所述库的所述示例性向量相比较以选择所述示例性向量的子集供在所述基于内核的比较中用于生成所述估计。
6.如权利要求4所述的方法,其特征在于,根据下式将所述估计生成为关于所述比较加权了的所述示例性向量的线性组合:
Figure FDA00002134262200021
其中X是所述特征向量,xi是所述示例性向量,X估计是所述估计,并且K是所述基于内核的比较。
7.如权利要求4所述的方法,其特征在于,根据下式将所述估计生成为关于所述比较加权了的所述示例性向量的线性组合:
Figure FDA00002134262200022
其中X是所述特征向量,D是所述示例性向量中的至少一些的矩阵,X估计是所述估计,并且
Figure FDA00002134262200023
是用于执行矩阵之间的所述基于内核的比较的运算符。
8.如权利要求4所述的方法,其特征在于,所述基于内核的比较采取以下形式:
K h ( x a , x b ) &Proportional; e - | | x a - x b | | p n h
其中Xa和Xb是被比较的向量,h是常数,p是范数的阶数,并且n是提升范数的幂,以及K是比较的标量结果。
9.如权利要求4所述的方法,其特征在于,所述基于内核的比较采取以下形式:
K h ( x a , x b ) &Proportional; ( 1 + | | x a - x b | | p n h ) - 1
其中Xa和Xb是被比较的向量,h是常数,p是范数的阶数,并且n是提升范数的幂,以及K是比较的标量结果。
10.如权利要求4所述的方法,其特征在于,所述基于内核的比较采取以下形式:
K h ( x a , x b ) &Proportional; 1 - | | x a - x b | | p n h
其中Xa和Xb是被比较的向量,h是常数,p是范数的阶数,并且n是提升范数的幂,以及K是比较的标量结果。
11.如权利要求4所述的方法,其特征在于,所述基于内核的比较采取以下形式:
K ( x , y ) &Proportional; 1 L &Sigma; m = 1 L e - | x m - y m | n h m
其中x和y是被比较的向量,hm是常数,m是特征的数目,并且n是常数幂,以及K是比较的标量结果。
12.如权利要求4所述的方法,其特征在于,所述基于内核的比较采取以下形式:
K ( x , y ) &Proportional; 1 L &Sigma; m = 1 L ( 1 + | x m - y m | n h m ) - 1
其中x和y是被比较的向量,hm是常数,m是特征的数目,并且n是常数幂,以及K是比较的标量结果。
13.如权利要求4所述的方法,其特征在于,所述基于内核的比较采取以下形式:
K ( x , y ) &Proportional; 1 L &Sigma; m = 1 L ( 1 - | x m - y m | n h m ) - 1
其中x和y是被比较的向量,hm是常数,m是特征的数目,并且n是常数幂,以及K是比较的标量结果。
14.如权利要求1所述的方法,其特征在于,还包括通过结合植入型心脏设备作出对嵌入在受监视人体内的传感器的测量来获得传感器数据。
15.如权利要求1所述的方法,其特征在于,所述接收传感器数据的步骤包括经由附连至受监视人体的传感器的测量的当地无线电协议来接收无线传输。
16.如权利要求1所述的方法,其特征在于,所述接收传感器数据的步骤包括从呼吸机接收数据。
17.一种用于监视人体健康的方法,包括:
从人体监视传感器数据;
用经编程的微处理器从所述传感器数据生成表征所述人体的生理健康的多个特征;
用经编程的微处理器使用多变量模型基于所生成的多个特征的值来估计表征正常人体生理机能的所述特征的值;
用经编程的微处理器求出所估计的值与所生成的值之间的差值以提供所述特征的残差;
用经编程的微处理器使用高斯混合模型基于已知的健康状态的残差参考模式集合来为多个已知的健康状态中的每一个确定所述残差表示表征该已知的健康状态的残差模式的似然性;以及
用经编程的微处理器对所述多个似然性应用测试以给出所生成的特征最可能表征所述多个已知的健康状态中的哪些健康状态的排名。
18.如权利要求17所述的方法,其特征在于,所述估计值的步骤还包括对特征向量与示例性向量的库中的至少一些进行基于内核的比较,以将所述估计生成为关于所述比较加权了的那些示例性向量的线性组合,其中所述特征向量包括所述特征信号的值并且所述示例性向量中的每一个包括表示已知健康状态下的所述特征信号。
19.如权利要求18所述的方法,其特征在于,将所述特征向量与包括所述库的所述示例性向量相比较以选择所述示例性向量的子集供在所述基于内核的比较中用于生成所述估计。
20.如权利要求18所述的方法,其特征在于,根据下式将所述估计生成为关于所述比较加权了的所述示例性向量的线性组合:
Figure FDA00002134262200051
其中X是所述特征向量,xi是所述示例性向量,X估计是所述估计,并且K是所述基于内核的比较。
21.如权利要求18所述的方法,其特征在于,根据下式将所述估计生成为关于所述比较加权了的所述示例性向量的线性组合:
Figure FDA00002134262200052
其中X是所述特征向量,D是所述示例性向量中的至少一些的矩阵,X估计是所述估计,并且
Figure FDA00002134262200053
是用于执行矩阵之间的所述基于内核的比较的运算符。
22.一种用于监视人体健康的***,包括:
设备,所述设备被部署成从多个传感器接收多个生理信号,所述多个传感器被布置成从受监视的人体捕获生理信号,所述设备具有被编程以从所述信号推导多个生理特征的微处理器硬件;
计算机,其被配置成从所述设备接收所述多个生理特征的受监视观察以使用实施正常健康状况下的所述多个生理特征的行为的模型来生成所述受监视观察中的所述特征的估计,以及通过对所述受监视观察与所述受监视观察的估计求差值来生成所述特征的残差;以及
计算机可存取的存储器,用于存储使用所述模型生成的表征已知的健康状态的所述多个生理特征的残差的示例性观察集合;
所述计算机被专门配置成使用高斯混合模型基于所述残差的示例性观察集合来确定所述残差表示所述已知的健康状态的残差模式的似然性。
23.如权利要求22所述的***,其特征在于,所述模型是内核回归估计器。
24.如权利要求23所述的***,其特征在于,所述特征的受监视观察被用于局部化所述模型。
25.如权利要求22所述的***,其特征在于,所述模型是基于相似性的模型。
26.如权利要求25所述的***,其特征在于,所述特征的受监视观察被用于局部化所述模型。
27.如权利要求22所述的***,其特征在于,所述计算机还被专门配置成测试所述似然性以作出所述多个特征的受监视观察是否表征所述已知的健康状态的决定。
28.如权利要求27所述的***,其特征在于,所述计算机还被专门配置成为关于所述特征是否表征所述已知的健康状态的相似决定的持久性而测试一系列所作出的决定。
29.如权利要求22所述的***,其特征在于,所述计算机还被专门配置成生成所述似然性的指数作为所述似然性的逆的对数,以及将所述指数与阈值作比较。
30.如权利要求22所述的***,其特征在于,所述设备是蜂窝电话。
31.如权利要求22所述的***,其特征在于,所述设备是医院床边的生命体征监视器。
32.如权利要求22所述的***,其特征在于,所述已知的健康状态是所述受监视的人体的正常健康状态。
CN201180013786.5A 2010-01-14 2011-01-04 基于多变量残差的用于人体健康监视的健康指数 Active CN102917661B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29507210P 2010-01-14 2010-01-14
US61/295,072 2010-01-14
PCT/US2011/020094 WO2011087927A1 (en) 2010-01-14 2011-01-04 Multivariate residual-based health index for human health monitoring

Publications (2)

Publication Number Publication Date
CN102917661A true CN102917661A (zh) 2013-02-06
CN102917661B CN102917661B (zh) 2015-09-23

Family

ID=44259034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180013786.5A Active CN102917661B (zh) 2010-01-14 2011-01-04 基于多变量残差的用于人体健康监视的健康指数

Country Status (7)

Country Link
US (3) US8620591B2 (zh)
EP (1) EP2523625B1 (zh)
JP (1) JP5859979B2 (zh)
CN (1) CN102917661B (zh)
AU (6) AU2011205557A1 (zh)
CA (2) CA2998940A1 (zh)
WO (1) WO2011087927A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105631186A (zh) * 2014-11-07 2016-06-01 ***通信集团公司 一种体征数据管理方法、装置和***
CN108366759A (zh) * 2015-09-29 2018-08-03 皇家飞利浦有限公司 用于提取生理信息的设备、***和方法
CN109223174A (zh) * 2017-07-11 2019-01-18 韦伯斯特生物官能(以色列)有限公司 实时地在ecg信号中嵌入视觉信息
CN109545326A (zh) * 2019-01-28 2019-03-29 吉林师范大学 一种基于运动监测分析的体育设施器材
CN110051336A (zh) * 2019-04-24 2019-07-26 京东方科技集团股份有限公司 处理生理数据的方法、装置和存储介质
CN110461215A (zh) * 2017-05-05 2019-11-15 三星电子株式会社 使用便携式设备确定健康标志
CN110916643A (zh) * 2019-11-25 2020-03-27 华中科技大学同济医学院附属协和医院 一种无线式心电监护仪及其监测方法
CN112085200A (zh) * 2016-08-29 2020-12-15 韩国水力原子力株式会社 包括确定设备重要度和警报有效性的处理程序的用于预检核电站设备异常迹象的方法及***
CN112971791A (zh) * 2020-03-23 2021-06-18 北京海思瑞格科技有限公司 一种个体化的生理状态监测分析方法和设备

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1954184B1 (en) * 2005-11-29 2017-10-11 PhysIQ Inc. Residual-based monitoring of human health
FI20105335A0 (fi) * 2010-03-31 2010-03-31 Polar Electro Oy Sydämen sykkeen havainnointi
US8571893B2 (en) * 2010-05-07 2013-10-29 Nihon Kohden America, Inc. Clinical data monitoring and alarming apparatus and methods
CA2797980C (en) 2010-05-12 2015-08-18 Irhythm Technologies, Inc. Device features and design elements for long-term adhesion
US20110301426A1 (en) * 2010-06-04 2011-12-08 Yongji Fu Method and device for conditioning display of physiological parameter estimates on conformance with expectations
GB2491564A (en) * 2011-05-24 2012-12-12 Isis Innovation Method of system monitoring
JP5832644B2 (ja) * 2011-06-03 2015-12-16 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 殊にガスタービンまたは風力タービンのような技術システムのデータドリブンモデルを計算機支援で形成する方法
US8660980B2 (en) * 2011-07-19 2014-02-25 Smartsignal Corporation Monitoring system using kernel regression modeling with pattern sequences
US8620853B2 (en) * 2011-07-19 2013-12-31 Smartsignal Corporation Monitoring method using kernel regression modeling with pattern sequences
US20140221782A1 (en) * 2011-08-26 2014-08-07 Aalborg Universitet Prediction of exacerbations for copd patients
WO2013030984A1 (ja) * 2011-08-31 2013-03-07 株式会社日立エンジニアリング・アンド・サービス 設備状態監視方法およびその装置
DE102011086021A1 (de) * 2011-11-09 2013-05-16 Deere & Company Anordnung und Verfahren zur automatischen Dokumentation von Situationen bei der Feldarbeit
FR2989240B1 (fr) * 2012-04-10 2017-08-11 Commissariat Energie Atomique Procede de synchronisation de donnees et systeme de transmission de donnees mettant en œuvre un tel procede.
WO2013173747A1 (en) * 2012-05-18 2013-11-21 Robert Matthew Pipke System and method for priority-based management of patient health for a patient population
US9060745B2 (en) 2012-08-22 2015-06-23 Covidien Lp System and method for detecting fluid responsiveness of a patient
US10881310B2 (en) 2012-08-25 2021-01-05 The Board Of Trustees Of The Leland Stanford Junior University Motion artifact mitigation methods and devices for pulse photoplethysmography
US8731649B2 (en) 2012-08-30 2014-05-20 Covidien Lp Systems and methods for analyzing changes in cardiac output
US9357937B2 (en) 2012-09-06 2016-06-07 Covidien Lp System and method for determining stroke volume of an individual
US9241646B2 (en) 2012-09-11 2016-01-26 Covidien Lp System and method for determining stroke volume of a patient
US20140081152A1 (en) 2012-09-14 2014-03-20 Nellcor Puritan Bennett Llc System and method for determining stability of cardiac output
JP6003470B2 (ja) * 2012-09-25 2016-10-05 オムロンヘルスケア株式会社 血圧測定装置、脈波検出方法
US10758189B2 (en) * 2012-12-13 2020-09-01 Koninklijke Philips N.V. Method and apparatus for use in monitoring and identifying abnormal values of a physiological characteristic of a subject
US8977348B2 (en) 2012-12-21 2015-03-10 Covidien Lp Systems and methods for determining cardiac output
JP6198849B2 (ja) 2013-01-24 2017-09-20 アイリズム・テクノロジーズ・インコーポレイテッドiRhythm Technologies,Inc. 生理学的信号をモニターする電子装置、及び該電子装置の部分を除去交換する方法
US9872634B2 (en) * 2013-02-08 2018-01-23 Vital Connect, Inc. Respiratory rate measurement using a combination of respiration signals
US11612352B1 (en) * 2013-02-22 2023-03-28 Cloud Dx, Inc. Systems and methods for monitoring medication effectiveness
US9946844B2 (en) * 2013-02-22 2018-04-17 Cloud Dx, Inc. Systems and methods for monitoring patient medication adherence
US11872053B1 (en) * 2013-02-22 2024-01-16 Cloud Dx, Inc. Systems and methods for monitoring medication effectiveness
CN105228573B (zh) * 2013-03-25 2019-04-23 株式会社汤山制作所 药剂分包装置、药剂分包纸余量判断方法和药剂分包纸卷筒
US9926853B2 (en) * 2013-03-26 2018-03-27 Siemens Aktiengesellschaft Method for the computerized control and/or regulation of a technical system
KR20150033197A (ko) * 2013-09-23 2015-04-01 삼성전자주식회사 수면 무호흡증 추정 방법, 상기 방법을 기록한 컴퓨터 판독 가능 저장매체 및 수면 무호흡증 추정 장치
US20150112700A1 (en) * 2013-10-17 2015-04-23 General Electric Company Systems and methods to provide a kpi dashboard and answer high value questions
US20150112157A1 (en) * 2013-10-23 2015-04-23 Quanttus, Inc. Arrhythmia detection
US9706945B2 (en) * 2014-03-25 2017-07-18 General Electric Company Respiration rate determination in impedance pneumography
CN104036142A (zh) * 2014-06-19 2014-09-10 韶关市光桦生物医药科技有限公司 宽光谱远程诊疗仪及其使用方法
JP6678645B2 (ja) * 2014-08-22 2020-04-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 医療モニタ警報設定の生成
EP3185752B1 (en) 2014-08-28 2020-12-30 Norton (Waterford) Limited Compliance monitoring module for an inhaler
WO2016049285A1 (en) * 2014-09-25 2016-03-31 Aedio, Inc. Systems and methods for digital predictive disease exacerbation and pre-emptive treatment
US9459201B2 (en) 2014-09-29 2016-10-04 Zyomed Corp. Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
AU2015338967A1 (en) 2014-10-31 2017-05-11 Irhythm Technologies, Inc. Wireless physiological monitoring device and systems
US20160128638A1 (en) * 2014-11-10 2016-05-12 Bloom Technologies NV System and method for detecting and quantifying deviations from physiological signals normality
WO2016075592A1 (en) * 2014-11-13 2016-05-19 Koninklijke Philips N.V. Method and apparatus for use in monitoring a physiological characteristic of a subject
WO2016087381A1 (en) * 2014-12-02 2016-06-09 Koninklijke Philips N.V. System and method for generating health data using measurements of wearable device
EP3033991B1 (en) * 2014-12-15 2018-02-28 Stichting IMEC Nederland System and method for blood pressure estimation
US10820864B2 (en) * 2015-03-02 2020-11-03 Valencia Technologies Corporation Methods and systems for predicting patient responsiveness to subcutaneous neuromodulation therapy as a treatment for hypertension
WO2016164199A1 (en) 2015-04-06 2016-10-13 Thomas Jefferson University Implantable vital sign sensor
US10335043B2 (en) 2015-04-06 2019-07-02 Thomas Jefferson University Implantable vital sign sensor
US11330987B2 (en) 2015-04-06 2022-05-17 Thomas Jefferson University Implantable vital sign sensor
US11000195B2 (en) 2015-04-06 2021-05-11 Thomas Jefferson University Implantable vital sign sensor
US10599844B2 (en) * 2015-05-12 2020-03-24 Webroot, Inc. Automatic threat detection of executable files based on static data analysis
CA3001628A1 (en) * 2015-10-13 2017-04-20 Salu Design Group Inc. Wearable health monitors and methods of monitoring health
US10397355B2 (en) * 2015-10-30 2019-08-27 American University Of Beirut System and method for multi-device continuum and seamless sensing platform for context aware analytics
KR102501837B1 (ko) 2015-11-09 2023-02-21 삼성전자주식회사 신호 특징 추출 방법 및 장치
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
US10751004B2 (en) 2016-07-08 2020-08-25 Edwards Lifesciences Corporation Predictive weighting of hypotension profiling parameters
US20180025290A1 (en) * 2016-07-22 2018-01-25 Edwards Lifesciences Corporation Predictive risk model optimization
US11076813B2 (en) 2016-07-22 2021-08-03 Edwards Lifesciences Corporation Mean arterial pressure (MAP) derived prediction of future hypotension
US11317820B2 (en) 2016-07-26 2022-05-03 Edwards Lifesciences Corporation Health monitoring unit with hypotension predictive graphical user interface (GUI)
US20180113987A1 (en) * 2016-10-20 2018-04-26 Jiping Zhu Method and system for quantitative classification of health conditions via wearable device and application thereof
KR101812587B1 (ko) * 2016-11-18 2018-01-30 주식회사 바이랩 피험자의 영상 모니터링 장치 및 그 방법과, 영상 모니터링 시스템
JP7057356B6 (ja) * 2016-11-29 2022-06-02 コーニンクレッカ フィリップス エヌ ヴェ 誤ったアラーム検出
EP3342332B1 (en) 2016-12-28 2024-03-13 Samsung Electronics Co., Ltd. Adaptive bio-signal feature combining apparatus and method
CN108401415B (zh) * 2017-03-14 2020-11-17 深圳力维智联技术有限公司 监测方法和监测装置
JP2018183550A (ja) * 2017-04-24 2018-11-22 出 牧野 予防管理支援装置及びシステム
CN110650681B (zh) 2017-05-15 2023-08-15 布鲁姆技术公司 用于监测胎儿健康的***和方法
US11266355B2 (en) * 2017-05-19 2022-03-08 Cerner Innovation, Inc. Early warning system and method for predicting patient deterioration
US10628047B2 (en) 2017-06-02 2020-04-21 Aetna Inc. System and method for minimizing computational resources when copying data for a well-being assessment and scoring
WO2019016759A1 (en) 2017-07-19 2019-01-24 Bloom Technologies NV MONITORING UTERINE ACTIVITY AND ASSESSING A RISK OF BIRTH BEFORE TERM
US20190053754A1 (en) 2017-08-18 2019-02-21 Fitbit, Inc. Automated detection of breathing disturbances
EP3729457A1 (en) * 2017-12-18 2020-10-28 Drägerwerk AG & Co. KGaA Monitoring of physiological data using a virtual communication bus bus
CN112004462A (zh) * 2018-02-21 2020-11-27 帕驰德公司 用于受试者监测的***和方法
CN112041934A (zh) * 2018-03-23 2020-12-04 柏奥赛私人有限公司 个性化药物治疗管理的***和方法
WO2019191703A1 (en) * 2018-03-30 2019-10-03 Northwestern University Wireless skin sensor with methods and uses
US10553046B2 (en) * 2018-04-05 2020-02-04 GM Global Technology Operations LLC Vehicle prognostics and remedial response
US11154249B2 (en) * 2018-05-02 2021-10-26 Medtronic, Inc. Sensing for health status management
US11487640B2 (en) * 2018-09-11 2022-11-01 Oracle International Corporation Replacing stair-stepped values in time-series sensor signals with inferential values to facilitate prognostic-surveillance operations
EP3622882A1 (en) * 2018-09-14 2020-03-18 Fundació Institut de Ciències Fotòniques System and computer-implemented method for detecting and categorizing pathologies through an analysis of pulsatile blood flow
EP3664101A1 (en) * 2018-12-06 2020-06-10 Koninklijke Philips N.V. A computer-implemented method and an apparatus for use in detecting malingering by a first subject in one or more physical and/or mental function tests
EP3671631A1 (en) * 2018-12-19 2020-06-24 Nokia Technologies Oy Movement indication
US11363997B1 (en) * 2019-03-26 2022-06-21 Halo Wearables, Llc Electrode pads for bioimpedance
JP7477884B2 (ja) * 2019-03-28 2024-05-02 国立大学法人山形大学 生体検知装置
WO2020202173A1 (en) * 2019-04-02 2020-10-08 Myelin Foundry Private Limited System and method for predicting wellness metrics
US11529105B2 (en) 2019-04-16 2022-12-20 Koninklijke Philips N.V. Digital twin updating
US11419995B2 (en) 2019-04-30 2022-08-23 Norton (Waterford) Limited Inhaler system
CN110186985B (zh) * 2019-06-20 2021-08-03 应急管理部四川消防研究所 宽浓度多组分危险气体检测仪及其实现方法
CN111227792B (zh) * 2020-01-10 2022-11-01 京东方科技集团股份有限公司 呼吸暂停的检测方法、***、电子设备及存储介质
AU2021218704B2 (en) 2020-02-12 2023-11-02 Irhythm Technologies, Inc. Non-invasive cardiac monitor and methods of using recorded cardiac data to infer a physiological characteristic of a patient
CN112998717B (zh) * 2020-03-23 2022-09-23 中国人民解放军总医院 一种量化人体生理状态的分析方法和设备
CN112971792B (zh) * 2020-03-23 2023-04-07 中国人民解放军总医院 一种基于连续生理数据的个体化状态监测分析方法和设备
US20210319387A1 (en) * 2020-04-02 2021-10-14 The Regents Of The University Of Michigan Artificial intelligence based approach for dynamic prediction of injured patient health-state
US20210383929A1 (en) * 2020-06-04 2021-12-09 Syntiant Systems and Methods for Generating Early Health-Based Alerts from Continuously Detected Data
WO2022011331A1 (en) * 2020-07-10 2022-01-13 Sapient Industries, Inc. Powered device electrical data modeling and intelligence
JP2023536981A (ja) 2020-08-06 2023-08-30 アイリズム・テクノロジーズ・インコーポレイテッド 接着剤式生理学的モニタリング装置
CA3188343A1 (en) 2020-08-06 2022-02-10 Jeff ABERCROMBIE Electrical components for physiological monitoring device
GB2598568A (en) * 2020-09-01 2022-03-09 Clini Hub Ltd Patient monitoring device
WO2022091115A1 (en) * 2020-10-29 2022-05-05 Cloudphysician Healthcare Pvt Ltd System and method for determining patient health indicators through machine learning model
CN113069108A (zh) * 2021-03-19 2021-07-06 北京京东拓先科技有限公司 用户状态监测方法、装置、电子设备及存储介质
WO2023004015A1 (en) * 2021-07-21 2023-01-26 The Truestees Of Columbia University In The City Of New York System, method, and computer-accessible medium for point processes for competing observations with recurrent networks
US20230060235A1 (en) * 2021-08-27 2023-03-02 Biocanic Inc. Multi-stage workflow processing and analysis platform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030163790A1 (en) * 2002-02-22 2003-08-28 Communications Research Laboratory, Independent Administrative Institution Solution data edit processing apparatus and method, and automatic summarization processing apparatus and method
US20070149862A1 (en) * 2005-11-29 2007-06-28 Pipke Robert M Residual-Based Monitoring of Human Health
US20090177443A1 (en) * 2007-04-23 2009-07-09 Nikovski Daniel N Method and system for detecting changes in sensor sample streams

Family Cites Families (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251285A (en) 1988-03-25 1993-10-05 Hitachi, Ltd. Method and system for process control with complex inference mechanism using qualitative and quantitative reasoning
JP2717665B2 (ja) 1988-05-31 1998-02-18 株式会社豊田中央研究所 内燃機関の燃焼予測判別装置
GB8813066D0 (en) 1988-06-02 1988-07-06 Pi Research Ltd Vehicle data recording system
US4937763A (en) 1988-09-06 1990-06-26 E I International, Inc. Method of system state analysis
US5195046A (en) 1989-01-10 1993-03-16 Gerardi Joseph J Method and apparatus for structural integrity monitoring
US5009833A (en) 1989-01-11 1991-04-23 Westinghouse Electric Corp. Expert system for surveillance, diagnosis and prognosis of plant operation
GB8902645D0 (en) 1989-02-07 1989-03-30 Smiths Industries Plc Monitoring
US5123017A (en) 1989-09-29 1992-06-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Remote maintenance monitoring system
US5063513A (en) 1990-06-15 1991-11-05 Nartron Corporation Vehicle preheater control
US5109700A (en) 1990-07-13 1992-05-05 Life Systems, Inc. Method and apparatus for analyzing rotating machines
KR920002268A (ko) 1990-07-17 1992-02-28 유끼노리 가까즈 인텔리젠트가공장치
GB2253933B (en) 1991-03-21 1995-04-26 Mars Inc Device for routing coins
US5255208A (en) 1991-08-08 1993-10-19 Aeg Westinghouse Transportation Systems, Inc. On-line processor based diagnostic system
US5257190A (en) 1991-08-12 1993-10-26 Crane Harold E Interactive dynamic realtime management system for powered vehicles
AU668370B2 (en) 1991-12-20 1996-05-02 Snap-On Technologies, Inc. Automotive service equipment expert system
US5559710A (en) 1993-02-05 1996-09-24 Siemens Corporate Research, Inc. Apparatus for control and evaluation of pending jobs in a factory
US5465321A (en) 1993-04-07 1995-11-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hidden markov models for fault detection in dynamic systems
JP3147586B2 (ja) 1993-05-21 2001-03-19 株式会社日立製作所 プラントの監視診断方法
US5421204A (en) 1993-06-08 1995-06-06 Svaty, Jr.; Karl J. Structural monitoring system
US5822212A (en) 1993-08-06 1998-10-13 Fanuc Ltd Machining load monitoring system
US6141647A (en) 1995-10-20 2000-10-31 The Dow Chemical Company System and method for integrating a business environment, a process control environment, and a laboratory environment
US5930776A (en) 1993-11-01 1999-07-27 The Golden 1 Credit Union Lender direct credit evaluation and loan processing system
US5808903A (en) 1995-09-12 1998-09-15 Entek Scientific Corporation Portable, self-contained data collection systems and methods
US5463769A (en) 1993-12-15 1995-10-31 International Business Machines Corporation Method and apparatus using dictionary of methods and states for high performance context switching between build and run modes in a computer application builder program
US6546363B1 (en) 1994-02-15 2003-04-08 Leroy G. Hagenbuch Apparatus for tracking and recording vital signs and task-related information of a vehicle to identify operating patterns
US5500940A (en) 1994-04-25 1996-03-19 Hewlett-Packard Company Method for evaluating failure in an electronic data storage system and preemptive notification thereof, and system with component failure evaluation
US5586066A (en) 1994-06-08 1996-12-17 Arch Development Corporation Surveillance of industrial processes with correlated parameters
FR2721123B1 (fr) 1994-06-08 1996-09-06 Digilog Procédé et système pour l'estimation optimale non linéaire des processus dynamique en temps réel.
US5502543A (en) 1994-06-28 1996-03-26 Xerox Corporation System for collecting statistical data on remotely monitored machines
US5561431A (en) 1994-10-24 1996-10-01 Martin Marietta Corporation Wavelet transform implemented classification of sensor data
US5710723A (en) 1995-04-05 1998-01-20 Dayton T. Brown Method and apparatus for performing pre-emptive maintenance on operating equipment
US5612886A (en) 1995-05-12 1997-03-18 Taiwan Semiconductor Manufacturing Company Ltd. Method and system for dynamic dispatching in semiconductor manufacturing plants
US5745382A (en) 1995-08-31 1998-04-28 Arch Development Corporation Neural network based system for equipment surveillance
US5663894A (en) 1995-09-06 1997-09-02 Ford Global Technologies, Inc. System and method for machining process characterization using mechanical signature analysis
US5761640A (en) 1995-12-18 1998-06-02 Nynex Science & Technology, Inc. Name and address processor
US5845230A (en) 1996-01-30 1998-12-01 Skf Condition Monitoring Apparatus and method for the remote monitoring of machine condition
JP2735064B2 (ja) 1996-01-31 1998-04-02 日本電気株式会社 波形解析装置
US6076088A (en) 1996-02-09 2000-06-13 Paik; Woojin Information extraction system and method using concept relation concept (CRC) triples
US5745654A (en) 1996-02-13 1998-04-28 Hnc Software, Inc. Fast explanations of scored observations
US5995916A (en) 1996-04-12 1999-11-30 Fisher-Rosemount Systems, Inc. Process control system for monitoring and displaying diagnostic information of multiple distributed devices
US5848396A (en) 1996-04-26 1998-12-08 Freedom Of Information, Inc. Method and apparatus for determining behavioral profile of a computer user
US5764509A (en) 1996-06-19 1998-06-09 The University Of Chicago Industrial process surveillance system
US6014598A (en) 1996-06-28 2000-01-11 Arcelik A.S. Model-based fault detection system for electric motors
US5956487A (en) 1996-10-25 1999-09-21 Hewlett-Packard Company Embedding web access mechanism in an appliance for user interface functions including a web server and web browser
JP3211689B2 (ja) 1996-11-29 2001-09-25 日本電気株式会社 生産制御装置
EP0851342B1 (en) 1996-12-27 2003-05-14 STMicroelectronics S.r.l. Coding and memorizing method for fuzzy logic rules and circuit architecture for processing such rules
US6551252B2 (en) 2000-04-17 2003-04-22 Vivometrics, Inc. Systems and methods for ambulatory monitoring of physiological signs
KR100225637B1 (ko) 1997-05-23 1999-10-15 윤종용 공기조화기의 온도제어장치
JPH10339630A (ja) 1997-06-10 1998-12-22 Mitsutoyo Corp 三次元測定システム
US6131076A (en) 1997-07-25 2000-10-10 Arch Development Corporation Self tuning system for industrial surveillance
EP1007673B1 (en) 1997-07-30 2008-12-17 Emory University Novel bone mineralization proteins, dna, vectors, expression systems
US5940812A (en) 1997-08-19 1999-08-17 Loanmarket Resources, L.L.C. Apparatus and method for automatically matching a best available loan to a potential borrower via global telecommunications network
US5991525A (en) 1997-08-22 1999-11-23 Voyan Technology Method for real-time nonlinear system state estimation and control
US6000832A (en) 1997-09-24 1999-12-14 Microsoft Corporation Electronic online commerce card with customer generated transaction proxy number for online transactions
US6026348A (en) 1997-10-14 2000-02-15 Bently Nevada Corporation Apparatus and method for compressing measurement data correlative to machine status
US6240372B1 (en) 1997-11-14 2001-05-29 Arch Development Corporation System for surveillance of spectral signals
US6021396A (en) 1997-11-19 2000-02-01 International Business Machines Corporation Method to provide sensitivity information for (R,s,S) inventory systems with back-ordered demand
US5987399A (en) 1998-01-14 1999-11-16 Arch Development Corporation Ultrasensitive surveillance of sensors and processes
US6128540A (en) 1998-02-20 2000-10-03 Hagen Method Pty. Ltd. Method and computer system for controlling an industrial process using financial analysis
US6144893A (en) 1998-02-20 2000-11-07 Hagen Method (Pty) Ltd. Method and computer system for controlling an industrial process by analysis of bottlenecks
US6192352B1 (en) 1998-02-20 2001-02-20 Tennessee Valley Authority Artificial neural network and fuzzy logic based boiler tube leak detection systems
US6651035B1 (en) 1998-03-24 2003-11-18 Exergetic Systems Llc Method for detecting heat exchanger tube failures and their location when using input/loss performance monitoring of a power plant
US6141674A (en) 1998-06-10 2000-10-31 Hewlett-Packard Company Reducing the hardware cost of a bank of multipliers by combining shared terms
DE69813040T2 (de) 1998-08-17 2003-10-16 Aspen Technology Inc Verfahren und vorrichtung zur sensorbestätigung
US6941287B1 (en) 1999-04-30 2005-09-06 E. I. Du Pont De Nemours And Company Distributed hierarchical evolutionary modeling and visualization of empirical data
US6502082B1 (en) 1999-06-01 2002-12-31 Microsoft Corp Modality fusion for object tracking with training system and method
US20110208567A9 (en) 1999-08-23 2011-08-25 Roddy Nicholas E System and method for managing a fleet of remote assets
US6522978B1 (en) 1999-09-15 2003-02-18 General Electric Company Paper web breakage prediction using principal components analysis and classification and regression trees
US6519552B1 (en) 1999-09-15 2003-02-11 Xerox Corporation Systems and methods for a hybrid diagnostic approach of real time diagnosis of electronic systems
US20030126258A1 (en) 2000-02-22 2003-07-03 Conkright Gary W. Web based fault detection architecture
DE60137122D1 (de) 2000-03-09 2009-02-05 Smartsignal Corp Winkelähnlichkeitsoperator mit verallgemeinertem lensing
US7739096B2 (en) 2000-03-09 2010-06-15 Smartsignal Corporation System for extraction of representative data for training of adaptive process monitoring equipment
US6957172B2 (en) 2000-03-09 2005-10-18 Smartsignal Corporation Complex signal decomposition and modeling
US6952662B2 (en) 2000-03-30 2005-10-04 Smartsignal Corporation Signal differentiation system using improved non-linear operator
US6609036B1 (en) 2000-06-09 2003-08-19 Randall L. Bickford Surveillance system and method having parameter estimation and operating mode partitioning
US6917839B2 (en) 2000-06-09 2005-07-12 Intellectual Assets Llc Surveillance system and method having an operating mode partitioned fault classification model
GB0014855D0 (en) 2000-06-16 2000-08-09 Isis Innovation Combining measurements from different sensors
US6567752B2 (en) 2000-08-15 2003-05-20 The Penn State Research Foundation General method for tracking the evolution of hidden damage or other unwanted changes in machinery components and predicting remaining useful life
US6587737B2 (en) 2000-09-14 2003-07-01 Sulzer Makert And Technology Ag Method for the monitoring of a plant
US6502042B1 (en) * 2000-10-26 2002-12-31 Bfgoodrich Aerospace Fuel And Utility Systems Fault tolerant liquid measurement system using multiple-model state estimators
US6556939B1 (en) 2000-11-22 2003-04-29 Smartsignal Corporation Inferential signal generator for instrumented equipment and processes
US6859739B2 (en) 2001-01-19 2005-02-22 Smartsignal Corporation Global state change indicator for empirical modeling in condition based monitoring
US7233886B2 (en) 2001-01-19 2007-06-19 Smartsignal Corporation Adaptive modeling of changed states in predictive condition monitoring
US7373283B2 (en) 2001-02-22 2008-05-13 Smartsignal Corporation Monitoring and fault detection system and method using improved empirical model for range extrema
WO2002073475A1 (en) 2001-03-08 2002-09-19 California Institute Of Technology Exception analysis for multimissions
US20020183971A1 (en) 2001-04-10 2002-12-05 Wegerich Stephan W. Diagnostic systems and methods for predictive condition monitoring
US7539597B2 (en) 2001-04-10 2009-05-26 Smartsignal Corporation Diagnostic systems and methods for predictive condition monitoring
GB0113212D0 (en) 2001-05-31 2001-07-25 Oxford Biosignals Ltd Patient condition display
US6975962B2 (en) 2001-06-11 2005-12-13 Smartsignal Corporation Residual signal alert generation for condition monitoring using approximated SPRT distribution
US7089154B2 (en) 2001-08-09 2006-08-08 Rovsing Dynamics A/S Automatic machinery fault diagnostic method and apparatus
GB0130010D0 (en) 2001-12-14 2002-02-06 Isis Innovation Combining measurements from breathing rate sensors
US7085675B2 (en) 2002-02-06 2006-08-01 The University Of Chicago Subband domain signal validation
US6892163B1 (en) 2002-03-08 2005-05-10 Intellectual Assets Llc Surveillance system and method having an adaptive sequential probability fault detection test
US6839660B2 (en) 2002-04-22 2005-01-04 Csi Technology, Inc. On-line rotating equipment monitoring device
DK1579288T3 (en) 2002-11-04 2017-06-26 Ge Intelligent Platforms Inc SYSTEM CONDITION MONITORING USING RECORDING LOCAL LEARNING MACHINE
US20050261837A1 (en) 2004-05-03 2005-11-24 Smartsignal Corporation Kernel-based system and method for estimation-based equipment condition monitoring
GB0410248D0 (en) 2004-05-07 2004-06-09 Isis Innovation Signal analysis method
JP2006135412A (ja) * 2004-11-02 2006-05-25 Tokyo Gas Co Ltd 遠隔監視システム
US20060293859A1 (en) * 2005-04-13 2006-12-28 Venture Gain L.L.C. Analysis of transcriptomic data using similarity based modeling
US7640145B2 (en) 2005-04-25 2009-12-29 Smartsignal Corporation Automated model configuration and deployment system for equipment health monitoring
US7818131B2 (en) 2005-06-17 2010-10-19 Venture Gain, L.L.C. Non-parametric modeling apparatus and method for classification, especially of activity state
JP4791874B2 (ja) * 2006-03-31 2011-10-12 株式会社エクォス・リサーチ 運転支援装置及び運転行動判定装置
US8275577B2 (en) 2006-09-19 2012-09-25 Smartsignal Corporation Kernel-based method for detecting boiler tube leaks
US7565262B2 (en) * 2006-10-05 2009-07-21 Siemens Corporate Research, Inc. Bayesian sensor estimation for machine condition monitoring
GB0624081D0 (en) 2006-12-01 2007-01-10 Oxford Biosignals Ltd Biomedical signal analysis method
GB0624085D0 (en) 2006-12-01 2007-01-10 Oxford Biosignals Ltd Biomedical signal analysis method
US8285513B2 (en) * 2007-02-27 2012-10-09 Exxonmobil Research And Engineering Company Method and system of using inferential measurements for abnormal event detection in continuous industrial processes
KR101491196B1 (ko) 2007-08-03 2015-02-06 스마트시그널 코포레이션 결함 패턴 매칭을 위한 퍼지 분류 접근
JP2009145951A (ja) * 2007-12-11 2009-07-02 Toyota Central R&D Labs Inc ドライバ状態推定装置及びプログラム
US8979765B2 (en) 2010-04-19 2015-03-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US20120029320A1 (en) 2010-07-30 2012-02-02 Nellcor Puritan Bennett Llc Systems and methods for processing multiple physiological signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030163790A1 (en) * 2002-02-22 2003-08-28 Communications Research Laboratory, Independent Administrative Institution Solution data edit processing apparatus and method, and automatic summarization processing apparatus and method
US20070149862A1 (en) * 2005-11-29 2007-06-28 Pipke Robert M Residual-Based Monitoring of Human Health
US20090177443A1 (en) * 2007-04-23 2009-07-09 Nikovski Daniel N Method and system for detecting changes in sensor sample streams

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙广玲等: "基于分层高斯混合模型的半监督学习算法", 《计算机研究与发展》, vol. 41, no. 1, 16 January 2004 (2004-01-16) *
欧贵文等: "基于高斯混合模型的文本无关说话人识别", 《第六届全国人机语音通讯学术会议文集》, 1 November 2001 (2001-11-01), pages 395 - 397 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105631186A (zh) * 2014-11-07 2016-06-01 ***通信集团公司 一种体征数据管理方法、装置和***
CN108366759A (zh) * 2015-09-29 2018-08-03 皇家飞利浦有限公司 用于提取生理信息的设备、***和方法
CN112085200A (zh) * 2016-08-29 2020-12-15 韩国水力原子力株式会社 包括确定设备重要度和警报有效性的处理程序的用于预检核电站设备异常迹象的方法及***
CN110461215A (zh) * 2017-05-05 2019-11-15 三星电子株式会社 使用便携式设备确定健康标志
CN110461215B (zh) * 2017-05-05 2022-09-13 三星电子株式会社 使用便携式设备确定健康标志
CN109223174A (zh) * 2017-07-11 2019-01-18 韦伯斯特生物官能(以色列)有限公司 实时地在ecg信号中嵌入视觉信息
CN109545326A (zh) * 2019-01-28 2019-03-29 吉林师范大学 一种基于运动监测分析的体育设施器材
CN110051336A (zh) * 2019-04-24 2019-07-26 京东方科技集团股份有限公司 处理生理数据的方法、装置和存储介质
CN110916643A (zh) * 2019-11-25 2020-03-27 华中科技大学同济医学院附属协和医院 一种无线式心电监护仪及其监测方法
CN112971791A (zh) * 2020-03-23 2021-06-18 北京海思瑞格科技有限公司 一种个体化的生理状态监测分析方法和设备
CN112971791B (zh) * 2020-03-23 2024-04-05 北京海思瑞格科技有限公司 一种个体化的生理状态监测分析方法和设备

Also Published As

Publication number Publication date
US20140107433A1 (en) 2014-04-17
EP2523625B1 (en) 2017-03-08
JP5859979B2 (ja) 2016-02-16
CN102917661B (zh) 2015-09-23
AU2017239519A1 (en) 2017-10-26
CA2787170C (en) 2018-05-08
AU2016201807A1 (en) 2016-04-14
WO2011087927A1 (en) 2011-07-21
AU2021203784B2 (en) 2022-07-14
AU2019202009A1 (en) 2019-04-18
US20180325460A1 (en) 2018-11-15
CA2998940A1 (en) 2011-07-21
JP2013517053A (ja) 2013-05-16
EP2523625A1 (en) 2012-11-21
AU2020213311A1 (en) 2020-08-27
US20110172504A1 (en) 2011-07-14
EP2523625A4 (en) 2015-03-25
AU2021203784A1 (en) 2021-07-08
CA2787170A1 (en) 2011-07-21
AU2011205557A1 (en) 2012-09-06
US8620591B2 (en) 2013-12-31

Similar Documents

Publication Publication Date Title
CN102917661B (zh) 基于多变量残差的用于人体健康监视的健康指数
US20230334972A1 (en) Remote health monitoring system
Xiao et al. Wearable heart rate monitoring intelligent sports bracelet based on Internet of things
Jin et al. Predicting cardiovascular disease from real-time electrocardiographic monitoring: An adaptive machine learning approach on a cell phone
WO2016168980A1 (zh) 一种生理体征信息获取方法和***
CN111084618A (zh) 一种可穿戴式多功能呼吸循环检测***及方法
CN101791214A (zh) 面向社区医疗的便携式监护***
CN113317794B (zh) 一种生命体征分析方法与***
CN105982643B (zh) 睡眠事件检测方法与***
CN103908241B (zh) 睡眠及呼吸检测方法、装置
CN105266764B (zh) 一种中医宗气测评装置
US20230038108A1 (en) Real-time multi-monitoring apparatus and method using electrocardiograph
KR100955716B1 (ko) 생체데이터의 문자열 생성 방법 및 장치와, 이를 이용한 생체 파형 검출 방법 및 장치와 맥파 분류 방법 및 장치
Shen et al. An ear-lead ECG based smart sensor system with voice biofeedback for daily activity monitoring
Tanantong A KNN approach for ECG signal quality classification
Chitra et al. Implementation of QT Interval Measurement to Remove Errors in ECG
CN116965800A (zh) 一种基于心电数据的呼吸状态评估方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171026

Address after: Illinois

Patentee after: Fisk Company Limited

Address before: Illinois

Patentee before: Venture Gain LLC