CN102910767B - 活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法 - Google Patents

活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法 Download PDF

Info

Publication number
CN102910767B
CN102910767B CN201210394589.9A CN201210394589A CN102910767B CN 102910767 B CN102910767 B CN 102910767B CN 201210394589 A CN201210394589 A CN 201210394589A CN 102910767 B CN102910767 B CN 102910767B
Authority
CN
China
Prior art keywords
arsenic
carbon fiber
activated carbon
titanium dioxide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210394589.9A
Other languages
English (en)
Other versions
CN102910767A (zh
Inventor
潘湛昌
谢英豪
魏志钢
左俊辉
胡光辉
肖楚民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201210394589.9A priority Critical patent/CN102910767B/zh
Publication of CN102910767A publication Critical patent/CN102910767A/zh
Application granted granted Critical
Publication of CN102910767B publication Critical patent/CN102910767B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法,该方法采用光电催化氧化处理,将毒性大并且难处理的三价砷氧化为容易处理的五价砷,然后利用二氧化钛、铁氧化物或活性氧化铝等对砷有强烈吸附的吸附剂将五价砷完全去除;本发明工艺简单、操作方便、成本低廉,不产生污泥渣,可有效去除水中砷,活性炭纤维光电极可长期运转,不用更换,可大面积大规模使用,出口水质达到国家标准,适用于处理饮用水和高砷污水。

Description

活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法
技术领域
本发明涉及一种饮用水脱除砷的方法。更具体地说,本发明涉及一种活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法。
背景技术
自然界中砷元素广泛存在于土壤、岩石、水体和动植物体的食物链中。在我国饮水型地方性砷中毒分布于8省市区,受影响人口多达200余万人,砷元素污染会造成严重的人类健康问题,长期饮用高砷饮用水可导致黑脚病和皮肤癌,严重时因脑麻痹而死亡。最新《生活饮用水卫生标准》(GB5749-2006)对城市供水水质提出了更高的要求,砷含量由旧标准的0.05mg/L降低至0.01mg/L。砷污染目前处理砷污染废水的方法主要有:吸附法、混凝法、离子交换法、生物法、电凝聚法,压力膜驱动法等,然而都有各自的局限性,如二氧化钛对砷具有较好的吸附能力,化学性质稳定,耐酸碱,对受污染水处理后不会引入副产物和有毒物质。当二氧化钛受到波长小于或等于387.5nm的光子能量照射时,价带的电子跃迁到导带上,从而产生了光生电子(e-)-空穴(h+)对。所产生的h+将吸附在二氧化钛表面的OH-和H2O氧化为羟基自由基;电子(e-)与表面的氧分子反应,最终可能生成羟基自由基,羟基自由基有很强的氧化能力,可将水中As(Ⅲ)氧化成As(V)。美国专利号US20090364505采用掺杂金属或者非金属的二氧化钛粉末在可见光照射下光催化氧化水中As (III),除砷的效果较好,然而,粉体二氧化钛颗粒很小,悬浮相催化剂难收回,成本高,不适宜直接以粉体二氧化钛作为氧化As(Ⅲ)催化剂。
As(Ⅲ)的毒性和迁移性大于As(V),大部分自然界的水中As(Ⅲ)以中性物质(H3AsO3)存在,而As(V)以离子形式(H2AsO4 - 或者HAsO4 2-)存在,离子形式的As(V)通过吸附或者絮凝沉淀比As(Ⅲ)更容易去除,因此大多数技术需要预先将三价砷氧化成五价砷。此外,研究表明砷化物的毒性有很大差异,各种形态的砷化物毒性AsH3>As(Ⅲ)>As(V)>MMA>DMA。以亚砷酸盐存在的As(III)比以砷酸盐形式存在的As(V)的毒性高出60倍。因此,将As(Ⅲ)氧化成As(V),既可提高砷的去除率,又可降低毒性。目前,有学者以次氯酸盐、氧气、臭氧、高锰酸钾等为氧化剂,采用化学氧化法对三价砷的氧化进行了研究,如中国专利号ZL02155224.X采用臭氧将As(Ⅲ)氧化成As(V),但该方法需要连续不断通入大量的臭氧成本较高;授权公告号CN101348296B采用高锰酸钾作为氧化剂,但是使用该种方法容易造成饮用水的二次污染,不宜在生活饮用水中使用。处理生活饮用水应尽量避免化学试剂的使用。魏志钢等在中国专利公告CN101492199A公布了铂掺杂二氧化钛光电催化氧化除砷,除砷的效果较好,但是载体使用活性炭,活性炭颗粒与颗粒之间接触电阻较大,导电能力不好,必然影响其催化效果;而且使用了贵金属铂,成本较高。因此,开发一种廉价有效的除砷技术成为目前的研究方向。
本发明以导电性好,直径细,外表面积大,不会造成二次污染的活性炭纤维为载体,由于炭-炭复合材料的致命弱点是在高于500℃的氧化性气氛下易被氧化,炭纤维材料的物理性能强度和模量会因此大大减弱。一般的负载方法如原子层沉积法、溅射法、激光辅助分子束沉积法、离化团簇法等物理气相沉积法、化学气相沉积法负载温度高和溶胶-凝胶法须高温焙烧晶化,必然对载体活性炭纤维物理机械强度造成一定程度破坏。若使用粘结剂将事先制备好的TiO2粉末加载到活性炭纤维上,会一定程度上降低TiO2的活性,一般粘结剂为有机物,长时间使用后易产生裂痕甚至剥落,并且有可能缓慢溶出对水体造成二次污染。
采用水热法在较低温度下制备出光催化活性高的锐钛矿型纳米二氧化钛,水热法负载只需将前驱体和活性炭纤维置于高压反应釜中在200℃内反应一段时间则制备出光催化活性高的锐钛矿型纳米二氧化钛。水热法无需经过高温处理不会破坏活性炭纤维原有的机械强度。
颗粒大小直接影响光催化活性,粒径越小,光催化剂的比表面积越大,单位面积上发生反应的几率增大,越有利于提高光催化效率。当颗粒粒径在1~10 nm时,量子尺寸效应变得明显,带隙变宽,从而提高光生电子和空穴的氧化-还原能力。因此表面的纳米TiO2颗粒将接受光子对催化氧化As(Ⅲ)起重要作用。
光电催化技术把表面覆盖TiO2薄膜的导体作为光阳极,且另设一惰性电极,在外加电场的作用下半导体内光生电子和空穴(载流子)会被更加有效的分离,这一电场增强效应明显地减少了简单复合,使用 TiO2光电极可显著提高过程的量子效率。此外,这种光电化学***还具有另外两个突出优点,一是把导带电子的还原过程同价带空穴的氧化过程从空间位置上分开(与半导体微粒相比较),结果大大增加了半导体表面·OH的生成效率且防止了氧化中间产物在阴极上的再还原。二是由于导带电子被引到阴极还原水中的H+,因此不需要向***内鼓入作为电子俘获剂的氧气。因此,在含砷超标饮用水中,首选光电催化氧化技术是合理的。
发明内容
本发明的目的在于解决现有技术中不能有效去除三价砷,除砷成本高的问题,提供了一种更具有应用价值的饮用水处理方法,达到低成本净化高砷饮用水的目的。
活性炭纤维与颗粒状、粉末状活性炭相比较,活性炭纤维具有特有的微孔结构,更高的外表面积和比表面积以及多种官能团,平均细孔直径也很小,通过物理吸附、化学吸附以及物理化学吸附等方式在废水、废气处理、溶液回收、水净化等领域达到广泛的应用。将电化学应用于氧化三价砷,是一种新型处理饮用水中砷的方法。利用活性炭纤维的导电、吸附及形态多样的综合性能,将其作为一种新型的光催化电极,用于饮用水中去除砷具有广阔的前景。
负载二氧化钛活性炭纤维作为阳极,活性炭纤维作为阴极,外加电压设置为0.1~1V;将毒性大并且难处理的三价砷氧化成五价砷。最后,采用高效除砷吸附剂将五价砷完全去除。
本发明提供的一种活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法,包括如下步骤 :
所述的活性碳纤维的处理方法是:将市售的活性炭纤维在1mol/L 氢氧化钠溶液80℃下浸泡30min,用水清洗干净后用68%硝酸在115℃下恒温4h,用水清洗干净后放入烘箱中105℃干燥12h。
称取10g钛酸四丁酯于锥形瓶中,依次加入45mL无水乙醇和20mL冰乙酸,磁力搅拌30min,混合为A液;在另一锥形瓶中加入25mL无水乙醇、6.5mL二次蒸馏水和5mL冰乙酸,磁力搅拌30min,混合为B液;将B液用分液漏斗以1滴/秒的速度滴入磁力搅拌中的A液中,搅拌速度为300r/min,滴完后继续搅拌3h;
量取60mL以上溶液和活性炭纤维置于内衬聚四氟乙烯的高压反应釜中,所述的高压反应釜有效体积100mL,压强10MPa,采用水热法,在120~200℃下反应1~5h制备负载二氧化钛活性炭纤维,超声波清洗5min后,于105℃干燥12h,待用;
光电催化氧化在4~1000W紫外灯照射下进行;采用负载二氧化钛活性炭纤维作为阳极,活性炭纤维作为阴极,外加电压设置为0.1~1V;实验用水均为二次蒸馏水,由于含砷溶液是As2O3溶解在NaOH溶液中得到,催化前调节溶液pH为6.5~8.5。在含砷溶液中加入硫酸钠作为电解质调节溶液电导率为100~1000 μs/cm,与自来水电导率相近;紫外灯光照前将负载二氧化钛活性炭纤维置于含砷溶液中黑暗搅拌吸附3h使其达到吸附平衡,紫外灯光照20~120min;光照后用除砷吸附剂去除五价砷。得到符合《生活饮用水卫生标准》(GB5749-2006)的饮用水。
所述的二氧化钛负载量与活性炭纤维的质量比为0.2~1.0%。
所述负载的二氧化钛是纳米二氧化钛。
上述步骤3)中所用的吸附剂包括是二氧化钛、铁氧化物、铁氢氧化物、锰氧化物、活性氧化铝或活性炭。
所述的负载二氧化钛活性炭纤维重复使用。
本发明将毒性大并且难处理的三价砷氧化成五价砷。最后,采用高效除砷吸附剂将五价砷完全去除。
本发明的有益效果:
(1)本发明首次将活性炭纤维作为电极运用在砷污染饮用水处理领域。可将高毒性的三价砷氧化成五价砷,并且通过吸附塔对氧化后的五价砷进行有效吸附,减少了吸附剂的用量,降低了再生次数,实现低成本高效除砷。
(2)本发明低能耗,只需施加0.1~1V槽压足以有效将光生电子与空穴分离,此时水不会被电解,低投资和低运行管理费用,可大规模应用,具有非常显著的环境效益和社会效益,操作简单,运行管理方便,并在整体运行中最大限度地减少了污染物的暴露,对环境友好。
(3)本发明不产生污泥渣,不需要进行二次处理,对饮用水中去除砷的方法简单易行,非常经济有效的达到除砷目的,有利于大面积大规模推广。
附图说明
图1  实施例 1制备的TiO2透射电镜图片。
图2  实施例 1制备的TiO2/ACF的扫描电镜图片。
图3  是本发明活性炭纤维光电催化氧化除砷装置示意图。
其中:1.负载二氧化钛活性炭纤维  2. 活性炭纤维(ACF)   3.稳压电源   4.处理前的含砷水溶液入口   5.排污口   6.除砷吸附剂   7.处理后的含砷水溶液出口   8.紫外灯   9.石英套管。
具体实施方式
为了更好的理解本发明,下面结合实施例对本发明作进一步的描述,但本发明要求保护的范围并不局限于实施例所述的范围。
实施例1
称取10g钛酸四丁酯于锥形瓶中,依次加入45mL无水乙醇和20mL冰乙酸,磁力搅拌30min,称为A液。在另一锥形瓶中加入25mL无水乙醇、6.5mL二次蒸馏水和5mL冰乙酸,磁力搅拌30min,称为B液。将B液用分液漏斗以1滴/秒的速度滴入磁力搅拌中的A液中,搅拌速度控制为300r/min,滴完后继续搅拌3h。
量取60mL以上溶液和活性炭纤维置于内衬聚四氟乙烯的高压反应釜中(有效体积100mL,压强10MPa,填充度60%)中,在烘箱中180℃下反应3h制备负载二氧化钛活性炭纤维,超声波清洗5min后,于105℃干燥12h。
实施例2  
采用如图3所示反应器,在反应器中加入2mg/L的砷溶液250mL,调节pH=7,加入硫酸钠调节电导率为158 μs/cm,功率为9W的紫外灯置于反应器内部,0.25g负载二氧化钛活性炭纤维置于反应器内部为阳极,以活性炭纤维为阴极,施加槽压0.5V,加入负载二氧化钛活性炭纤维后黑暗放置3h使其达到吸附平衡,紫外灯光照20分钟。吸附剂为0.25g二氧化钛粉末。
单一施加电压电吸附和光催化氧化处理三价砷溶液,经测定,其去除率分别为6.7%,66.7%,而经上述条件处理的三价砷溶液,经测定,其去除率为86.7%,具有较好的氧化去除效果。
实施例3
采用如图3所示反应器,在反应器中加入0.25mg/L的砷溶液250mL,调节pH=7,加入硫酸钠调节电导率为158 μs/cm,功率为100W的紫外灯置于反应器内部,0.25g负载二氧化钛活性炭纤维置于反应器内部为阳极,以活性炭纤维为阴极,施加槽压1V,加入负载二氧化钛活性炭纤维后黑暗放置3h使其达到吸附平衡,紫外灯光照60分钟,吸附剂为0.03g活性氧化铝粉末。
单一施加电压电吸附和光催化氧化处理三价砷溶液,经测定,其去除率分别为6.7%,91.3%,而经上述条件处理的三价砷溶液,经测定,其去除率为99.7%,砷浓度低于0.01mg/L,达到《生活饮用水卫生标准》。

Claims (5)

1.一种活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法,其特征在于包括如下步骤 :
(1)称取10g钛酸四丁酯于锥形瓶中,依次加入45mL无水乙醇和20mL冰乙酸,磁力搅拌30min,混合为A液;在另一锥形瓶中加入25mL无水乙醇、6.5mL二次蒸馏水和5mL冰乙酸,磁力搅拌30min,混合为B液;将B液用分液漏斗以1滴/秒的速度滴入磁力搅拌中的A液中,搅拌速度为300r/min,滴完后继续搅拌3h;
(2)量取60mL以上溶液和活性炭纤维置于内衬聚四氟乙烯的高压反应釜中,所述的高压反应釜有效体积100mL,压强10MPa,采用水热法,在120~200℃下反应1~5h制备负载二氧化钛活性炭纤维,超声波清洗5min后,于105℃干燥12h,待用;
(3)光电催化氧化在4~1000W紫外灯照射下进行;采用负载二氧化钛活性炭纤维作为阳极,活性炭纤维作为阴极,外加电压设置为0.1~1V;由于含砷溶液是As2O3溶解在NaOH溶液中得到,催化前调节溶液pH为6.5~8.5;在含砷溶液中加入硫酸钠作为电解质调节溶液电导率为100~1000 μs/cm,与自来水电导率相近;紫外灯光照前将负载二氧化钛活性炭纤维置于含砷溶液中黑暗搅拌吸附3h使其达到吸附平衡,紫外灯光照20~120min;光照后用除砷吸附剂去除五价砷。
2.如权利要求1所述的方法,其特征在于:所述的二氧化钛负载量与活性炭纤维的质量比为0.2~1.0%。
3.如权利要求1所述的方法,其特征在于:所述负载的二氧化钛是纳米二氧化钛。
4.如权利要求1所述的方法,其特征在于:上述步骤3)中所用的吸附剂包括是二氧化钛、铁氧化物、铁氢氧化物、锰氧化物、活性氧化铝或活性炭。
5.如权利要求1所述的方法,其特征在于:所述的负载二氧化钛活性炭纤维重复使用。
CN201210394589.9A 2012-10-17 2012-10-17 活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法 Expired - Fee Related CN102910767B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210394589.9A CN102910767B (zh) 2012-10-17 2012-10-17 活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210394589.9A CN102910767B (zh) 2012-10-17 2012-10-17 活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法

Publications (2)

Publication Number Publication Date
CN102910767A CN102910767A (zh) 2013-02-06
CN102910767B true CN102910767B (zh) 2014-04-02

Family

ID=47609375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210394589.9A Expired - Fee Related CN102910767B (zh) 2012-10-17 2012-10-17 活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法

Country Status (1)

Country Link
CN (1) CN102910767B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566894A (zh) * 2013-09-26 2014-02-12 蚌埠华纺滤材有限公司 一种除砷改性活性炭及其制备方法
CN103566928B (zh) * 2013-11-05 2016-04-13 清华大学 用于室温下脱除NOx的负载二氧化锰的活性炭纤维及其制备方法
CN104319102A (zh) * 2014-10-23 2015-01-28 上海工程技术大学 一种制备负载三维花状石墨烯/二硫化钼复合材料的纤维状对电极的方法
CN105148891A (zh) * 2015-07-18 2015-12-16 常州大学 一种处理纺织印染废水中刚果红脱色剂
CN106269440B (zh) * 2016-08-01 2019-08-20 绍兴文理学院 一种钛氧改性涂层电极的制备方法
CN108298731B (zh) * 2018-03-22 2021-10-29 沈阳建筑大学 一种深度除砷方法
CN108554417A (zh) * 2018-05-28 2018-09-21 昆明理工大学 一种铁铈掺杂纳米二氧化钛多元复合半导体光催化剂的制备方法与应用
CN109078629A (zh) * 2018-08-20 2018-12-25 广东工业大学 一种在碳纤维纸上可控性生长的TiO2及其制备方法和应用
CN109499598A (zh) * 2018-11-23 2019-03-22 南昌航空大学 一种促进亚砷酸根离子转换为砷酸根离子的电催化剂及其制备方法
CN110369480A (zh) * 2019-06-27 2019-10-25 常熟理工学院 一种三价砷污染土壤的光电催化修复方法
CN110330080A (zh) * 2019-07-18 2019-10-15 太原理工大学 一种光助电控离子交换工艺及处理低浓度废水中阴离子的方法
CN110845056A (zh) * 2019-11-27 2020-02-28 天津工业大学 一种电催化膜反应器耦合纳滤处理富砷水的方法
CN113684679B (zh) * 2021-07-29 2023-11-03 超越者新材料科技河北有限公司 一种碳纤维基纳米复合材料的制备方法及其应用
CN114162912B (zh) * 2021-11-04 2023-09-26 泉州南京大学环保产业研究院 一种负载高{001}晶面二氧化钛粒子电极的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492199A (zh) * 2009-03-04 2009-07-29 广东工业大学 铂掺杂二氧化钛光电催化氧化去除砷的方法
WO2010088513A2 (en) * 2009-02-02 2010-08-05 The Board Of Trustees Of The University Of Illinois Materials and methods for removing arsenic from water
CN102600792A (zh) * 2011-01-20 2012-07-25 中国科学院生态环境研究中心 一种用于饮用水净化的二氧化钛颗粒吸附剂的制备方法
CN102671649A (zh) * 2012-04-05 2012-09-19 沈阳化工大学 一种饮用水除砷(iii)纳米光催化氧化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088513A2 (en) * 2009-02-02 2010-08-05 The Board Of Trustees Of The University Of Illinois Materials and methods for removing arsenic from water
CN101492199A (zh) * 2009-03-04 2009-07-29 广东工业大学 铂掺杂二氧化钛光电催化氧化去除砷的方法
CN102600792A (zh) * 2011-01-20 2012-07-25 中国科学院生态环境研究中心 一种用于饮用水净化的二氧化钛颗粒吸附剂的制备方法
CN102671649A (zh) * 2012-04-05 2012-09-19 沈阳化工大学 一种饮用水除砷(iii)纳米光催化氧化剂的制备方法

Also Published As

Publication number Publication date
CN102910767A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
CN102910767B (zh) 活性炭纤维水热法负载二氧化钛光电催化氧化除砷的方法
Jiang et al. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments
Soltani et al. Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst
Zhao et al. Photocatalytic Cr (VI) reduction over MIL-101 (Fe)–NH2 immobilized on alumina substrate: from batch test to continuous operation
Zhang et al. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange
Lee et al. TiO2 photocatalyst for water treatment applications
Shaban et al. Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations
Mondal et al. Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials–a mini-review
Fan et al. Application of carbon aerogel electrosorption for enhanced Bi2WO6 photoelectrocatalysis and elimination of trace nonylphenol
CN100427183C (zh) 填充式球载纳米TiO2气体净化组合装置
CN1562795A (zh) 光电催化氧化处理水中有机物的装置
Bocos et al. Application of a new sandwich of granular activated and fiber carbon as cathode in the electrochemical advanced oxidation treatment of pharmaceutical effluents
CN107500382A (zh) 新型三维电极光电催化降解工业废水反应器的构建及其催化材料的制备方法
Ma et al. Ultrasonic-assisted efficient degradation of tetracycline over ZnO/BiOBr heterojunctions: Synergistic effect and role of oxidative species
EP0766647B1 (en) Photoelectrochemical reactor
Yu et al. Silver nanoparticles decorated anatase TiO2 nanotubes for removal of pentachlorophenol from water
Testoni et al. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
Zhang et al. A review of electrochemical oxidation technology for advanced treatment of medical wastewater
Lu et al. Three-dimensional electro-Fenton degradation of ciprofloxacin catalyzed by CuO doped red mud particle electrodes: Electrodes preparation, kinetics and mechanism
An et al. Returnable MoS2@ carbon nitride nanotube composite hollow spheres drive photo-self-Fenton-PMS system for synergistic catalytic and photocatalytic tetracycline degradation
Chen et al. Towards removal of PPCPs by advanced oxidation processes: a review
Zhao Research progress of semiconductor photocatalysis applied to environmental governance
CN109019761B (zh) 一种光电化学过滤器装置及其应用
Pouramini et al. Enhancing PFC ability to dye removal and power generation simultaneously via conductive spheres in the anodic chamber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140402

Termination date: 20151017

EXPY Termination of patent right or utility model