CN102891373A - 一种超材料制成的基站天线 - Google Patents

一种超材料制成的基站天线 Download PDF

Info

Publication number
CN102891373A
CN102891373A CN2011100996945A CN201110099694A CN102891373A CN 102891373 A CN102891373 A CN 102891373A CN 2011100996945 A CN2011100996945 A CN 2011100996945A CN 201110099694 A CN201110099694 A CN 201110099694A CN 102891373 A CN102891373 A CN 102891373A
Authority
CN
China
Prior art keywords
base station
refractive index
super
antenna according
microwave antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100996945A
Other languages
English (en)
Other versions
CN102891373B (zh
Inventor
刘若鹏
徐冠雄
张洋洋
李蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang Chi Institute of Advanced Technology
Kuang Chi Innovative Technology Ltd
Original Assignee
Kuang Chi Institute of Advanced Technology
Kuang Chi Innovative Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Institute of Advanced Technology, Kuang Chi Innovative Technology Ltd filed Critical Kuang Chi Institute of Advanced Technology
Priority to CN201110099694.5A priority Critical patent/CN102891373B/zh
Publication of CN102891373A publication Critical patent/CN102891373A/zh
Application granted granted Critical
Publication of CN102891373B publication Critical patent/CN102891373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

一种超材料制成的基站天线包括:至少一个辐射振子,用于产生电磁辐射波;一超材料面板,用于将所述至少一个辐射振子产生的部分电磁波汇聚后并向外辐射;及一反射单元,用于将所述述至少两个辐射振子产生的剩余部分电磁波反射至超材料面板,所述超材料面板用于将该部分电磁波也一同汇聚后向外辐射。从而减少了基站天线辐射波波瓣的宽度,使基站天线的增益得以显著提高。

Description

一种超材料制成的基站天线
技术领域
本发明涉及一种无线通讯的基站天线,尤其涉及一种无线通讯的且由超材料制成的基站天线。
背景技术
基站天线是移动通信***中无线接入的重要组成部分,其发展受到多方面因素的限制,特别是随着移动通信网络的不断向广度和深度的扩张,造成基站布局越来越密集。这也对基站天线的设计参数提出了更高的要求,如基站天线的增益、体积、前后比、交叉极化鉴别率、重量等相关参数。
现有技术中的基站天线包括发射信号辐射振子、接收信号辐射振子及反射器。上述辐射振子沿着反射器纵向排列,在反射器的底板的四条边上分别垂直延伸形成四个侧壁,从而使反射器成为一侧开口的腔体。这样设置的反射器可将发射信号辐射振子产生的电磁辐射进行更好的反射以提高基站天线的前后比和交叉极化鉴别率。但是,上述基站天线辐射波的波瓣相对较宽,使该基站天线增益很难满足现代通信***高增益的***设计要求。
发明内容
因此,有必要提供一种超材料制成的基站天线,用于减少基站天线辐射波的波瓣相对宽度,以提高基站天线的增益。
一种超材料制成的基站天线,所述基站天线包括至少一个辐射振子,用于产生电磁辐射波;一超材料面板,用于将所述至少一个辐射振子产生的部分电磁波汇聚后并向外辐射;及一反射单元,用于将所述述至少两个辐射振子产生的剩余部分电磁波反射至超材料面板,所述超材料面板用于将该部分电磁波也一同汇聚后向外辐射。
进一步地,所述基站天线包括多个辐射振子且呈矩阵式固定于反射单元上。
进一步地,所述基站天线还包括设置于反射单元上的多个无源功分器件,所述无源功分器件与分别所述多个辐射振子电连接且通过多输入多输出接口接收基带信号处理器产生的电信号。
进一步地,所述超材料面板的折射率在垂直于该超材料面板的中心轴上最大,以中心轴为圆心,随着半径的增大,折射率逐渐变小且折射率的变化量逐渐增大,相同半径处的折射率相同,所述辐射振子位于所述超材料面板的中心轴向上。
进一步地,所述超材料面板包括由多个超材料片层叠加形成,每一超材料片层包括片状基材以及附着在该片状基材上的多个人造微结构。
进一步地,所述片状基材选用陶瓷材料、高分子材料、铁电材料、铁氧材料、铁磁材料中的任意一种。
进一步地,所述每一超材料片层中心点处的折射率最大,以中心点为圆心,随着半径的增大,折射率逐渐变小且折射率的变化量逐渐增大,相同半径处的折射率相同。
进一步地,所述每一超材料片层具有相同几何图案的人造微结构,以中心点为圆心,相同半径上的人造微结构尺寸相同,随着半径逐渐增大所述人造微结构的尺寸逐渐变小。
进一步地,所述的人造微结构是附着在所述片状基材上的具有特定几何图案的金属线。
进一步地,所述几何图案为在工字形、工字形的衍生形、雪花状或雪花状的衍生形任意一种。
相对于现有技术,基站天线的辐射振子电磁波经由超材料面板折射汇聚向外辐射,从而减少了基站天线辐射波波瓣的宽度,使基站天线的增益得以显著提高。
附图说明
图1为本发明中一实施方式中的基站天线的截面结构示意图。
图2为图1所示基站天线去除超材料面板后的正向平面示意图。
图3为图2所示超材料面板相对中心轴对称的折射率分布示意图。
图4为图2所示超材料面板对电磁波进行汇聚的示意图。
图5A为图2或图3所示的超材料面板上‘工字形’人造微结构。
图5B为图2或图3所示的超材料面板上‘雪花状’人造微结构。
图5C为图2或图3所示的超材料面板上的另一种‘雪花状’的人造微结构。
图5D为图2或图3所示的超材料面板上的人造微结构的一种具体形式‘雪花状’结构的又一种衍生结构。
图6是采用工字形结构的人造微结构在超材料面板中每层基板中的排列示意图。
具体实施方式
下面结合相关附图及具体实施例对本发明做进一步的描述:
图1为本发明中一实施中的基站天线的截面结构示意图,基站天线10包括反射单元101、多个辐射振子102及用于将多个辐射振子102产生的电磁波进行汇聚的超材料面板103。所述多个辐射振子102产生的部分电磁波经由所述超材料面板103汇聚并向外辐射,而多个辐射振子102产生的剩余部分的电磁波经过反射单元101反射至所述超材料面板103上,所述超材料面板103将该部分被反射的辐射波汇聚后向外辐射。
图2为图1所示基站天线去除超材料面板103后的正向平面示意图。所述反射单元101包括一底板121,所述辐射振子102通过馈电支架(图中未出)固定于底板121上,其中辐射振子呈矩阵式排列于反射单元101上。在本实施方式中,所述反射单元101采用金属材料制成。
所述基站天线10还包括设置于反射单元101上的多个无源功分器件105,所述无源功分器件105与分别所述多个辐射振子102分别电连接且通过多输入输出(MIMO)接口106接收基带信号处理器产生的电信号。此处的即是指多输入多输出。即MIMO天线上的所有单个的天线同时发射,同时接收。
超材料面板103对入射电磁波的折射率分布如图3所示,中心轴向处的折射率为n1,以中心轴AA′与超材料面板的交点为圆心,随着半径的逐渐增加折射率逐渐变小,而且随着半径的增大,折射率的变化量逐渐增大,其中n1>n2>n3>...>np,(nm-nm-1)>(nm-1-nm-2),m为大于3小于等于q的自然数。
由上述描述可知,超材料面板103的设计至关重要,下面对超材料面板103做具体说明,由辐射振子102产生的电磁波经由超材料面板103平行射出,在该超材料面板1033基材上设置人造微结构,基材采用介电绝缘材料制成,可以为陶瓷材料、高分子材料、铁电材料、铁氧材料、铁磁材料等,例如高分子材料可以为环氧树脂或聚四氟乙烯。人造微结构为以一定的几何形状附着在基材上的金属线,金属线可以是剖面为圆柱状或者扁平状的铜线、银线等,当然金属线的剖面也可以为其他形状,金属线通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻等工艺附着在基材上,每一超材料片层划分为多个单元(包括该单元中的单元基材和附着在该单元基材上的人造微结构),每个单元都具有一个人造微结构,每一个单元都会对通过其中的电磁波产生响应,从而影响电磁波在其中的传输,每个单元的尺寸取决于需要响应的电磁波,通常为所需响应的电磁波波长的十分之一,否则空间中包含人造微结构的单元所组成的排列在空间中不能被视为连续。
在基材选定的情况下,通过调整人造微结构的图案、尺寸及其在基材上的空间分布,可以调整超材料上各处的等效介电常数及等效磁导率进而改变超材料各处的等效折射率。当人造微结构采用相同的几何形状时,某处人造微结构的尺寸越大,则该处的等效介电常数越大,折射率也越大。本实施例采用的人造微结构的图案为工字形,如图5A所示,人造微结构在基材上的分布如图6所示,由图6可知,基板上如图5B所示的在三维空间中各条边相互垂直的雪花状的人造微结构的尺寸从中心向周围逐渐变小,在基板中心处,雪花状的人造微结构的尺寸最大,并且在距离中心相同半径处的雪花状人造微结构的尺寸相同,因此基板的等效介电常数由中间向四周逐渐变小,中间的等效介电常数及等效磁导率最大,因而基板的折射率从中间向四周逐渐变小,中间部分的折射率最大。
如图3所示,由馈源S发出的电磁波经过超材料面板汇聚后沿S1方向平行传出时,偏折角θ与折射率的关系为:Sinθ=q·Δn(参见Metamaterials:Theory,Design,and Applications,Publisher:Springer,ISBN 1441905723,75页-76页),其中q是沿轴向排列的人造微结构的厚度;Δn表示相邻单元的折射率变化量,且0<q·Δn<1,由上述公式可知,超材料面板上相邻单元的折射率变化量大小相同时,对于传输到该位置的电磁波的偏折角相同,折射率变化量越大,偏折角越大。
材料的折射率与其介电常数及磁导率存在如下关系:其中k为比例系数,k取值为正负1,ε为材料的介电常数,u为材料的磁导率,通过对超材料空间中每一点的介电常数ε的精确设计,可以实现由发射源发出的电磁波经超材料折射后平行射出的汇聚特性。
若干人造微结构可通过人工仿真技术实现,即可由人工对具有特定电磁特性的人造微结构进行设计,将片状基板划分为多个单元,每个单元中的基材与附着在该单元上的人造微结构的等效介电常数ε与等效磁导率μ的选择方法为:
通过计算机仿真和实验测试,先预设发射源与超材料面板的距离,预选一个单元(包括该单元中的基材和附着在基材上具有一定几何形状的人造微结构)作为中心处的单元,将若干单元(包含不同几何参数的人造微结构)响应发射源发出的电磁波的电磁特性进行测量,存储测量得到的电磁响应曲线,确定各种不同单元结构的等效介电常数以及等效磁导率并存在于一个数据库中;然后根据公式Sinθ=q·Δn,(参见Metamaterials:Theory,Design,andApplications,Publisher:Springer,ISBN 1441905723,75页-76页),对于不同的偏转角度,确定折射率的变化量,确定不同半径处的折射率,根据折射率与介电常数和磁导率的关系从数据库中选择符合条件的单元结构。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,人造微结构的图案可以是二维、也可以是三维结构,不限于该实施例中使用的“工”字形(如图5A所示),可以为“工”字形的衍生结构,可以是图5B所示的在三维空间中各条边相互垂直的雪花状及图5C和图5D所示的雪花状的衍生结构,也可以是其他的几何形状,其中不同的人造微结构可以是图案相同,但是其设计尺寸不同;也可以是图案和设计尺寸均不相同。构成超材料的基板的数量根据需要可增可减,每一片基板的结构可以相同,也可以不同,只要满足由天线单元发出的电磁波经过超材料面板传播后可以平行射出即可。
通过使用在基站天线前端添加一超材料面板103,从而将辐射振子102产生的大部分电磁波经由超材料面板折射汇,而将辐射振子102产生的剩余部分电磁波经过反射单元101反射至超材料面板103并折射汇聚同,从而大大减少了辐射波波瓣的宽度,使基站天线10的增益得以显著提高,保证了基站天线的信号强度以确保为移动通讯无线稳定得接入。
上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

1.一种超材料制成的基站天线,其特征在于,所述基站天线包括:
至少一个辐射振子,用于产生电磁辐射波;
一超材料面板,用于将所述至少一个辐射振子产生的部分电磁波汇聚后并向外辐射;及
一反射单元,用于将所述述至少两个辐射振子产生的剩余部分电磁波反射至超材料面板,所述超材料面板用于将该部分电磁波也一同汇聚后向外辐射。
2.根据权利要求1所述的微波天线,其特征在于,所述基站天线包括多个辐射振子且呈矩阵式固定于反射单元上。
3.根据权利要求1所述的微波天线,其特征在于,所述基站天线还包括设置于反射单元上的多个无源功分器件,所述无源功分器件与分别所述多个辐射振子电连接且通过多输入多输出接口接收基带信号处理器产生的电信号。
4.根据权利要求1所述的微波天线,其特征在于,所述超材料面板的折射率在垂直于该超材料面板的中心轴上最大,以中心轴为圆心,随着半径的增大,折射率逐渐变小且折射率的变化量逐渐增大,相同半径处的折射率相同,所述辐射振子位于所述超材料面板的中心轴向上。
5.根据权利要求4所述的微波天线,其特征在于,所述超材料面板包括由多个超材料片层叠加形成,每一超材料片层包括片状基材以及附着在该片状基材上的多个人造微结构。
6.根据权利要求5所述的微波天线,所述片状基材选用陶瓷材料、高分子材料、铁电材料、铁氧材料、铁磁材料中的任意一种。
7.根据权利要求6所述的微波天线,其特征在于,所述每一超材料片层中心点处的折射率最大,以中心点为圆心,随着半径的增大,折射率逐渐变小且折射率的变化量逐渐增大,相同半径处的折射率相同。
8.根据权利要求7所述的微波天线,其特征在于,所述每一超材料片层具有相同几何图案的人造微结构,以中心点为圆心,相同半径上的人造微结构尺寸相同,随着半径逐渐增大所述人造微结构的尺寸逐渐变小。
9.根据权利要求8所述的微波天线,其特征在于,所述的人造微结构是附着在所述片状基材上的具有特定几何图案的金属线。
10.根据权利要求9所述的微波天线,其特征在于,所述几何图案为在工字形、工字形的衍生形、雪花状或雪花状的衍生形任意一种。
CN201110099694.5A 2011-04-20 2011-04-20 一种超材料制成的基站天线 Active CN102891373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110099694.5A CN102891373B (zh) 2011-04-20 2011-04-20 一种超材料制成的基站天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110099694.5A CN102891373B (zh) 2011-04-20 2011-04-20 一种超材料制成的基站天线

Publications (2)

Publication Number Publication Date
CN102891373A true CN102891373A (zh) 2013-01-23
CN102891373B CN102891373B (zh) 2015-05-13

Family

ID=47534814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110099694.5A Active CN102891373B (zh) 2011-04-20 2011-04-20 一种超材料制成的基站天线

Country Status (1)

Country Link
CN (1) CN102891373B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347958A (zh) * 2013-07-31 2015-02-11 深圳光启创新技术有限公司 基站天线
CN107078378A (zh) * 2014-11-18 2017-08-18 康普技术有限责任公司 具有用于控制波束宽度的介电板载荷的天线
CN110534921A (zh) * 2019-09-11 2019-12-03 西安电子科技大学 基于反射超表面和部分反射表面的电调下倾基站天线
WO2021063182A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201572A1 (en) * 2008-02-07 2009-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
CN101587990A (zh) * 2009-07-01 2009-11-25 东南大学 基于人工电磁材料的宽带圆柱形透镜天线
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201572A1 (en) * 2008-02-07 2009-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
CN101587990A (zh) * 2009-07-01 2009-11-25 东南大学 基于人工电磁材料的宽带圆柱形透镜天线
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347958A (zh) * 2013-07-31 2015-02-11 深圳光启创新技术有限公司 基站天线
CN107078378A (zh) * 2014-11-18 2017-08-18 康普技术有限责任公司 具有用于控制波束宽度的介电板载荷的天线
US10461414B2 (en) 2014-11-18 2019-10-29 Commscope Technologies Llc Antenna having dielectric sheet loading to control beam width
CN110534921A (zh) * 2019-09-11 2019-12-03 西安电子科技大学 基于反射超表面和部分反射表面的电调下倾基站天线
CN110534921B (zh) * 2019-09-11 2021-06-25 西安电子科技大学 基于反射超表面和部分反射表面的电调下倾基站天线
WO2021063182A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备

Also Published As

Publication number Publication date
CN102891373B (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
Minatti et al. Modulated metasurface antennas for space: Synthesis, analysis and realizations
Huang et al. A 2-D multibeam half Maxwell fish-eye lens antenna using high impedance surfaces
Meng et al. Automatic design of broadband gradient index metamaterial lens for gain enhancement of circularly polarized antennas
CN110336137A (zh) 一种阻抗匹配高增益透镜天线及其设计方法
CN105609961A (zh) 一种基于梯度超表面的透射双功能器件
CN102891373B (zh) 一种超材料制成的基站天线
CN102480031B (zh) 一种后馈式雷达天线
CN110729821B (zh) 用于多目标无线能量传输的准无衍射波束形成方法
CN102480019B (zh) 一种超材料天线
CN102480025B (zh) 一种前馈式雷达天线
CN102810755B (zh) 一种超材料天线
CN102751589A (zh) 一种超材料制成的微波天线
CN103036035B (zh) 室外天线装置
CN102751581B (zh) 基站天线
CN102683893B (zh) 一种天线
Chen et al. Truncated 2D Gutman Lens Antenna with Planar Feeding Surface for Stable Wide-Angle Beam Scanning in Millimeter-Wave Band
Bansal et al. Simplified Design Methodology for RF Dielectric Homogeneous and Graded Index Lenses
CN102790278B (zh) 定向天线
Etesami et al. Improvement of radiation characteristics of balanced antipodal Vivaldi antenna using trasformation optics
Guo et al. A Millimeter-Wave 3D-Printed Dual-Polarized Wideband Luneburg Lens Antenna
CN102800982B (zh) 一种超材料天线
CN102800984B (zh) 一种超材料天线
Bie et al. Modal Expansion Analysis, Inverse Design, and Experimental Verification of a Broadband High-Aperture Efficiency Circular Short Backfire Antenna Loaded With Anisotropic Impedance Surfaces
Zhu et al. Design of 1-D Transmitarray Antenna Using HFSS FEM-IE
Pantoja et al. Metallic Planar Lens for Increased Directivity of Standard Horn Antennas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant