CN102873335A - 一种热敏水溶性银纳米颗粒的制备方法 - Google Patents

一种热敏水溶性银纳米颗粒的制备方法 Download PDF

Info

Publication number
CN102873335A
CN102873335A CN2011101960940A CN201110196094A CN102873335A CN 102873335 A CN102873335 A CN 102873335A CN 2011101960940 A CN2011101960940 A CN 2011101960940A CN 201110196094 A CN201110196094 A CN 201110196094A CN 102873335 A CN102873335 A CN 102873335A
Authority
CN
China
Prior art keywords
preparation
pvme
solution
vinyl ether
silver nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101960940A
Other languages
English (en)
Inventor
张天柱
王紫芙
顾宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2011101960940A priority Critical patent/CN102873335A/zh
Publication of CN102873335A publication Critical patent/CN102873335A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种热敏水溶性银纳米颗粒的制备方法,包括以下步骤:(1)首先配制一定浓度的聚甲基乙烯基醚(PVME)水溶液;(2)加入新鲜的AgNO3溶液,不断搅拌;(3)在搅拌的同时,逐滴加入新鲜配制的NaBH4溶液;(4)搅拌过夜,即制备得到PVME包裹的银纳米粒子;(5)离心并洗涤3次,以去除多余的PVME和其他离子杂质,即得到聚甲基乙烯基醚修饰的银纳米颗粒。本发明用原位还原法制备聚甲基乙烯基醚修饰的银纳米粒子,经过PVME修饰的银纳米粒子将能够能够显著提高Ag纳米粒子在水溶液中的稳定性和分散性,实现可逆团聚的可控性,从而使Ag纳米粒子能够更好地应用在抗菌和肿瘤热疗等方面。

Description

一种热敏水溶性银纳米颗粒的制备方法
技术领域
    本发明涉及化学品制备领域,具体地涉及一种热敏水溶性银纳米颗粒的制备方法。
 
背景技术
银纳米粒子展示了很高的等离子激发效应,有较高的催化性能和广谱抗菌性,在催化, 医药卫生和生物医学工程等领域都具有潜在的应用价值。但由于纯银纳米颗粒表面能高,在电介质溶液中易氧化和团聚,限制了其应用。常用巯基乙酸、巯基乙胺、半胱氨酸和多肽等对银纳米粒子进行修饰,但银纳米颗粒的聚集还是不能完全避免。聚甲基乙烯基醚(PVME)是无毒、可生物相容的材料,具有亲水和疏水的两亲特性。聚甲基乙烯基的水溶液具有双峰的低临界共溶温度(lower critical solution temperature, LCST) 曲线,在人体的生理温度37℃ 附近。并且用高能辐射(如γ射线或电子束)很容易将PVME 水溶液交联成三维网络结构。鉴于此特性,PVME的修饰将能够显著提高其在水溶液中的稳定性和分散性。经过修饰的银纳米粒子将能够更好地应用在抗菌和肿瘤热疗等方面。
 
发明内容
    本发明的目的在于提供了一种热敏水溶性银纳米颗粒的制备方法,以聚甲基乙烯基醚对银纳米粒子进行修饰,解决了现有技术中以巯基乙酸、巯基乙胺、半胱氨酸和多肽等对银纳米粒子进行修饰,对于银纳米颗粒的聚集不能完全避免的问题。
本发明的目的是这样实现的:首先配制1-10wt%的聚甲基乙烯基醚(PVME)水溶液; 再分别加入浓度为0.03-0.1mmol/L的新鲜配制的AgNO3溶液(AgNO3 固体与干燥的PVME质量比0.03-0.08);保持搅拌;随后,逐滴加入新鲜配制的NaBH4溶液(AgNO3与NaBH4物质的量比0.2-0.8 NaBH4保持过量),反应一定时间后,离心沉淀,并用二次水洗涤三次,以去除多余的PVME和其他离子杂质,即得到聚甲基乙烯基醚修饰的银纳米颗粒(PVME-Ag NPs)。
与现有技术相比,本发明具有以下优点:
    本发明的一种具有热敏水溶性的银纳米粒子,也就是用原位还原法制备聚甲基乙烯基醚(PMVE)修饰的银纳米粒子,使Ag纳米粒子在溶液中的溶解度随温度的改变而发生变化,实现可逆团聚的可控性。
具体实施方式
    本发明的一种热敏水溶性银纳米颗粒的制备方法,具体包括以下步骤:
步骤一:首先将浓度为50wt% PVME原溶液利用旋转蒸发仪蒸发3-4h,再放入真空干燥箱中,加热至50℃过夜干燥。隔天即得干燥的PVME固体;
步骤二:以此配制一系列不同浓度(1-10wt%)的PVME溶液置于圆底烧瓶中,伴随着磁力搅拌;
 步骤三:再分别加入不同浓度(0.03-0.1mmol/L)的新鲜配制的AgNO3溶液,AgNO3 固体与干燥的PVME质量比0.03-0.08),保持搅拌;
 步骤四:快速配制好新鲜的不同浓度的NaBH4水溶液(AgNO3与NaBH4物质的量比0.2-0.8),将NaBH4水溶液逐滴加入圆底烧瓶中的PVME和AgNO3的混合溶液中,持续搅拌过夜;
步骤五:离心沉淀,除去上清液,并用水重新溶解。重复三次。
实施例1
1.  称取0.2000g干燥的PVME置于圆底烧瓶中,加入3.8000g的超纯水,配成 5wt%的溶液,放入搅拌子,常温下磁力搅拌约3h至完全溶解;
2.  称取0.0100g的AgNO3 固体置于试管中,加入5.0000g的超纯水配成溶液,将AgNO3溶液转移至上述盛有PMVE溶液的圆底烧瓶中,搅拌下混合均匀;
3.  称取0.0040g 纯度为96%的NaBH4 固体置于试管中,加入5.0000g的超纯水配成溶液,逐滴将NaBH4溶液加入到上述圆底烧瓶中的PVME和AgNO3混合溶液中,并保持搅拌;
4.  搅拌过夜;
5.  离心并洗涤3次,以去除多余的PVME和其他离子杂质,获得的银纳米粒子的平均粒径约为12nm;
实施例2 
1.  称取0.3000g干燥的PVME置于圆底烧瓶中,加入3.8000g的超纯水,配成7.3wt%的溶液,放入搅拌子,常温下磁力搅拌约3h至完全溶解;
2.  称取0.0200g的AgNO固体置于试管中,加入5.0000g的超纯水配成溶液,将AgNO3溶液转移至上述盛有PMVE溶液的圆底烧瓶中,搅拌下混合均匀;
3.  称取0.0040g 纯度为96%的NaBH4 固体置于试管中,加入5.0000g的超纯水配成溶液,逐滴将NaBH4溶液加入到上述圆底烧瓶中的PMVE和AgNO3混合溶液中,并保持搅拌;
4.  搅拌过夜;
5.  离心并洗涤3次,以去除多余的PVME和其他离子杂质,获得的银纳米粒子的平均粒径约为22nm;
实施例3
1.  称取0.2000g干燥的PVME置于圆底烧瓶中,加入3.8000g的超纯水,配成5wt%的溶液,放入搅拌子,磁力搅拌约3h至完全溶解;
2.  称取0.0055g的AgNO3 固体置于试管中,加入5.0000g的超纯水配成溶液,将AgNO3溶液转移至上述盛有PMVE溶液的圆底烧瓶中,混合均匀;
3.  称取0.0022g 96%的NaBH4 固体置于试管中,加入5.0000g的超纯水配成溶液,逐滴将NaBH4溶液加入到上述圆底烧瓶中的PMVE和AgNO3混合溶液中,并保持搅拌;
4.  搅拌过夜;
5.  离心并洗涤3次,以去除多余的PVME和其他离子杂质,获得的银纳米粒 子的平均粒径约为11nm;
  上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (5)

1.一种热敏水溶性银纳米颗粒的制备方法,其特征在于,包括以下步骤:
    步骤一:首先配制浓度为1wt-10wt%的聚甲基乙烯基醚水溶液,置于圆底烧瓶中,并伴随着磁力搅拌;
  步骤二:再加入浓度为0.03-0.1 mmol/L的新鲜配制的硝酸银溶液,硝酸银固体与干燥的聚甲基乙烯基醚质量比为0.03-0.08,保持搅拌;
  步骤三:在试管中快速配制好新鲜的不同浓度的硼氢化钠水溶液,硝酸银与硼氢化钠物质的量比0.2-0.8,还原剂硼氢化钠保持过量,再将硼氢化钠水溶液逐滴加入到圆底烧瓶中聚甲基乙烯基醚和硝酸银的混合溶液中,持续搅拌过夜;
步骤四:离心沉淀,除去上清液,并用水重新溶解,重复三次,以去除多余的聚甲基乙烯基醚和其他离子杂质,即得到聚甲基乙烯基醚修饰的银纳米颗粒。
2.根据权利要求1所述的热敏水溶性银纳米颗粒的制备方法,其特征在于,所述步骤一中所用的聚甲基乙烯基醚,为线性的、支化的或交联的,重均分子量在2万到5万之间,分子量分布宽度为2.5。
3.根据权利要求1所述的热敏水溶性银纳米颗粒的制备方法,其特征在于,所述步骤一中所用的圆底***容积为100mL。
4.根据权利要求1所述的热敏水溶性银纳米颗粒的制备方法,其特征在于,所述步骤二中,是在不断搅拌的同时,逐滴加入硼氢化钠溶液。
5.   根据权利要求1所述的所述的热敏水溶性银纳米颗粒的制备方法,其特征在于,所述步骤三中,加入硼氢化钠溶液,以硼氢化钠还原硝酸银,反应的温度在-10℃-25℃之间。
CN2011101960940A 2011-07-14 2011-07-14 一种热敏水溶性银纳米颗粒的制备方法 Pending CN102873335A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101960940A CN102873335A (zh) 2011-07-14 2011-07-14 一种热敏水溶性银纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101960940A CN102873335A (zh) 2011-07-14 2011-07-14 一种热敏水溶性银纳米颗粒的制备方法

Publications (1)

Publication Number Publication Date
CN102873335A true CN102873335A (zh) 2013-01-16

Family

ID=47474973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101960940A Pending CN102873335A (zh) 2011-07-14 2011-07-14 一种热敏水溶性银纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN102873335A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588679A (zh) * 2015-01-15 2015-05-06 黑龙江大学 纳米银镍合金粉体的制备方法
CN109880572A (zh) * 2019-01-29 2019-06-14 安徽天光传感器有限公司 一种传感器用高导电耐热导电胶的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336060A (ja) * 2005-06-01 2006-12-14 Sumitomo Metal Mining Co Ltd ニッケル微粒子粉末及びその製造方法
CN101077528A (zh) * 2006-05-26 2007-11-28 徐健宏 超微细纳米贵重金属溶液的制造方法
CN101522557A (zh) * 2006-09-29 2009-09-02 Lg化学株式会社 用于喷墨印刷的墨水以及其中所使用的金属纳米粒子的制备方法
CN101758244A (zh) * 2010-01-29 2010-06-30 浙江大学 一种水溶性贵金属纳米粒子的制备方法
CN101990475A (zh) * 2008-04-28 2011-03-23 塔塔化学有限公司 用于制备银纳米颗粒的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336060A (ja) * 2005-06-01 2006-12-14 Sumitomo Metal Mining Co Ltd ニッケル微粒子粉末及びその製造方法
CN101077528A (zh) * 2006-05-26 2007-11-28 徐健宏 超微细纳米贵重金属溶液的制造方法
CN101522557A (zh) * 2006-09-29 2009-09-02 Lg化学株式会社 用于喷墨印刷的墨水以及其中所使用的金属纳米粒子的制备方法
CN101990475A (zh) * 2008-04-28 2011-03-23 塔塔化学有限公司 用于制备银纳米颗粒的方法
CN101758244A (zh) * 2010-01-29 2010-06-30 浙江大学 一种水溶性贵金属纳米粒子的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588679A (zh) * 2015-01-15 2015-05-06 黑龙江大学 纳米银镍合金粉体的制备方法
CN109880572A (zh) * 2019-01-29 2019-06-14 安徽天光传感器有限公司 一种传感器用高导电耐热导电胶的制备方法

Similar Documents

Publication Publication Date Title
Ruan et al. Interfacially Engineered Zn x Mn1–x S@ Polydopamine Hollow Nanospheres for Glutathione Depleting Photothermally Enhanced Chemodynamic Therapy
Chen et al. Synthesis of Cu-nanoparticle hydrogel with self-healing and photothermal properties
Dong et al. Cyclodextrin polymer-valved MoS2-embedded mesoporous silica nanopesticides toward hierarchical targets via multidimensional stimuli of biological and natural environments
Wang et al. A new temperature-responsive controlled-release pesticide formulation–poly (N-isopropylacrylamide) modified graphene oxide as the nanocarrier for lambda-cyhalothrin delivery and their application in pesticide transportation
Kouser et al. pH-responsive biocompatible nanocomposite hydrogels for therapeutic drug delivery
JP5709219B2 (ja) 金−銀コアシェルナノロッド粒子及びその製造方法
Singh et al. Controlled release of amoxicillin and antioxidant potential of gold nanoparticles-xanthan gum/poly (Acrylic acid) biodegradable nanocomposite
CN102321485B (zh) 一种改性磷矿粉复合保水剂及其制备方法
CN103752847B (zh) 一种半纤维素/纳米银溶胶的快速制备方法
Kurdtabar et al. Synthesis and characterization of a novel pH-responsive nanocomposite hydrogel based on chitosan for targeted drug release
Li et al. Preparation of hollow biopolymer nanospheres employing starch nanoparticle templates for enhancement of phenolic acid antioxidant activities
Tummalapalli et al. Facile and green synthesis of silver nanoparticles using oxidized pectin
Anagha et al. Biomass derived antimicrobial hybrid cellulose hydrogel with green ZnO nanoparticles for curcumin delivery and its kinetic modelling
Zhao et al. One-pot synthesis of Ln 3+-doped porous BiF 3@ PAA nanospheres for temperature sensing and pH-responsive drug delivery guided by CT imaging
Zheng et al. In situ generation of silver nanoparticles within crosslinked 3D guar gum networks for catalytic reduction
CN107376795A (zh) 一种聚乙烯醇/羟基磷灰石复合微球的制备方法
Bakur et al. Comparative study of antidiabetic, bactericidal, and antitumor activities of MEL@ AgNPs, MEL@ ZnONPs, and Ag–ZnO/MEL/GA nanocomposites prepared by using MEL and gum arabic
Bakre et al. Synthesis, characterization, and study of drug release properties of curcumin from polycaprolactone/organomodified montmorillonite nanocomposite
Zhang et al. A novel intelligent PANI/PPy@ Au@ MnO2 yolk− shell nanozyme for MRI-guided ‘triple-mode’synergistic targeted anti-tumor therapy
Li et al. Encapsulation of liquid metal nanoparticles inside metal–organic frameworks for hydrogel-integrated dual functional biotherapy
Mahajan et al. A systematic study to unravel the potential of using polysaccharides based organic-nanoparticles versus hybrid-nanoparticles for pesticide delivery
KR101958624B1 (ko) 전이금속 나노 입자의 제조방법 및 이를 이용하여 제조된 전이금속 나노 입자
CN102873335A (zh) 一种热敏水溶性银纳米颗粒的制备方法
Qi et al. PEGMa modified molybdenum oxide as a NIR photothermal agent for composite thermal/pH-responsive p (NIPAM-co-MAA) microgels
Siva Gangi Reddy et al. Fabrication of aminosilanized halloysite based floating biopolymer composites for sustained gastro retentive release of curcumin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20170908