CN102851299B - Application of OsDLS1 gene in regulating and controlling rice leaf senescence and heading stage - Google Patents

Application of OsDLS1 gene in regulating and controlling rice leaf senescence and heading stage Download PDF

Info

Publication number
CN102851299B
CN102851299B CN 201210123259 CN201210123259A CN102851299B CN 102851299 B CN102851299 B CN 102851299B CN 201210123259 CN201210123259 CN 201210123259 CN 201210123259 A CN201210123259 A CN 201210123259A CN 102851299 B CN102851299 B CN 102851299B
Authority
CN
China
Prior art keywords
osdls1
gene
ala
leu
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201210123259
Other languages
Chinese (zh)
Other versions
CN102851299A (en
Inventor
栾维江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN 201210123259 priority Critical patent/CN102851299B/en
Publication of CN102851299A publication Critical patent/CN102851299A/en
Application granted granted Critical
Publication of CN102851299B publication Critical patent/CN102851299B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to an application of an OsDLS1 gene which is a family member of HD-ZipIII in regulating and controlling rice leaf senescence and heading stage, wherein the nucleotide sequence of the OsDLS1 gene is represented by SEQ ID NO.1, protein with 855 amino acids coded by the OsDLS1 has the sequence represented by SEQ ID No.2, and the mRNA sequence of the OsDLS1 gene is represented by SEQ ID No.3. According to the nucleotide sequence of the OsDLS1 gene disclosed herein, the rice yield can be further raised, the loss of the rice yield caused by poor environment is reduced, a design scheme can be provided for molecular breeding of rice, and an important meaning of ensuring food safety is achieved.

Description

The OsDLS1 gene is in the application aspect adjusting and controlling rice leaf senile and heading stage
This research obtains the subsidy of project of national nature science fund project (No. 31171515) and Tianjin application foundation and cutting edge technology research plan main project (No. 11JCZDJC17900).
Technical field
The invention belongs to the paddy rice integral body situation of growing and improve technical field, relate to the breeding for paddy rice, the research work of breed improvement, the HD-Zip III family member OsDLS1 gene of more specifically saying so, and this gene is in the application aspect adjusting and controlling rice leaf senile and heading stage.
Background technology
China is maximum in the world rice producing country and country of consumption, and rice yield is directly connected to China's grain security, and therefore improving rice yield has very important strategic meaning to guaranteeing China's agricultural sustainable and stable development and social stability.China has obtained important breakthrough in the breeding of hybrid rice super high-yielding, hybrid rice output increases substantially.But the especially easy early ageing of inter-subspecies hybrid paddy rice of hybrid rice makes seed circularity poor (Yuan Longping 1990).The Plant Senescence is the coefficient result of external environment and idiotype network, is the result of gene program expression in the plant.Under the influence of bad external environment, aging early takes place in rice leaf regular meeting, and the too early flavescence of blade is withered, thereby makes the rice nutrition poor growth, causes its reproductive organ grouting not to be full of, and unfilled gtains increases, and has influenced the output of paddy rice greatly.Because rice leaf is one of topmost green organs of paddy rice, be that paddy rice carries out the topmost organ of photosynthesis generation nutritive substance, it is disorderly that rice leaf early ageing often causes that source, storehouse relation transforms, and generation and the transportation of nutritive substance are obstructed, thereby cause the paddy rice underproduction.In addition, rice leaf early ageing causes the too early out of season disintegration of cellularstructure, and endomembrane system destroys, and macromolecular substance degraded etc. makes whole plant decline.Therefore, from paddy rice, separate important function gene in the old and feeble regulatory pathway, further investigate its function, understand fully its regulatory pathway in the rice leaf aging course, the mechanism of research rice leaf aging, development and improve the old and feeble regulated and control network of rice leaf, be conducive to solve the early ageing problem of late growth stage of rice, for further raising rice yield, the loss of the rice yield that minimizing causes because of poor environment, for the molecular breeding of paddy rice provides design, guarantee that grain security has great importance.
In addition, be the Main Agronomic Characters of paddy rice the heading stage of paddy rice, China is from area, low latitude Hainan (~ 22 ° of N, the short day torrid areas) to area, Heilungkiang, high latitude northeast (~ 45 ° of N, the long day cold district) there is cultivated rice to distribute, even in Heihe (~ 50 ° of N) also has a small amount of distribution (Xu Wenxia, 1999).The adaptability at the distribution that cultivated rice is so broad and the Main Agronomic Characters-heading stage of paddy rice is closely related, be that paddy rice is in long-term cultivation domestication process, under the artificial selection condition, some adapt to the mutational variety of local environment condition and preserve, make it under local condition, to ear and bloom, and applied.Therefore can promote furnishing fresh evidence and vision to the adaptive molecular mechanism research of rice ear sprouting period for the adaptability in the domestication history of paddy rice and paddy rice future, provide scientific basis for breeding, the breed improvement of paddy rice.
Plant leaf is most important to growth and development of plant, and it can be by photosynthesis with luminous energy and CO 2Change into the utilizable organic compound of plant, for growing of itself and other histoorgan of plant.In recent years, rice leaf is crossed presenility and is caused the paddy rice underproduction to cause domestic attention, and some investigators study from the angle of plant physiology, for example the Ca of lower concentration 2+Can improve chlorophyll content and protein content in the blade, improve peroxidase activity, delay the senescence process (Zhu Cheng etc. 2002) of blade; In addition, by reducing source, storehouse ratio, can slow down the decline (Duan Jun etc. 1997) of protein content and chlorophyll content in the hybrid rice blade.Though the research of existing many decades aspect Physiology and biochemistry both at home and abroad is still unclear and perfect for the gene regulatory network of plant leaf aging.
Under the normal growth condition, the plant leaf aging is the process of an active.Plant leaf is old and feeble mainly by the leaf age information Control, when leaf development ripe and reach certain leaf age after, blade cell starts old and feeble program automatically.Though the aging of plant leaf mainly is that it still is subjected to the influence of external environment by an active process of inherent Gene Handling.The extraneous factor of inducing plant aging mainly comprises some biologies and abiotic stress.Biotic factor mainly shows infecting of disease and pest, and after plant was subjected to disease insect bite evil, on the one hand, plant can start self-protective mechanism, shows a kind of allergy, thus the inducing plant aging.In fact, this allergy that produces of plant also is a kind of programmed cell death (Van Doorn, 2005).The abiotic factor of inducing plant leaf senile comprises physical abuse, arid, the high heat of high temperature, reaches oxidative stress etc.These abiotic stress normal with different hormone approach (regulatory pathways such as ethene, ABA, JA) interact the aging of plant organ, for example in the Sunflower Receptacle, HD-Zip transcription factor family member HAHB4Transcription factor expression amount under sick worm erosion, physical abuse and water stress condition rises rapidly.In addition, when handling with ethene or methyl jasmonate MeJA, HAHB4Transcriptional level also increase sharply.Overexpression HAHB4The transfer-gen plant of gene is before and after handling with mechanical wounding, and the content of JA and ethene has all increased, and shows HAHB4The resultant quantity of positive regulation JA and ethene, thereby the aging (Manavella of positive regulation plant leaf Et al. 2008).
The plant leaf aging at first begins to spread to centre and the base portion of leaf from blade tip or leaf margin, and blade flavescence gradually is withered to the whole blade death that comes off.In the process of leaf senile, obvious variation is exactly chlorophyllous degraded.In Arabidopis thaliana and paddy rice, identified the functional gene of several controlling chlorophyll degradeds recently by several green mutant that stagnate.Wool grass undergraduate course study group of Fudan University utilizes the model plant Arabidopis thaliana to identify a key gene regulating and control chlorophyll degradation in the green plant organ senescence process AtNYE1(Ren Et al.2007), disclosed plant in senescence process, how the photosynthetic essential substance chlorophyll of plant leaf is by procedural degraded.Paddy rice NYC1Gene is from the stagnant green mutant of paddy rice Nyc1Middle clone obtains, NYC1Be the integral part of LHCPII (light-harvesting complex II) among the photosystem II (PSII), be responsible for chlorophyllous degraded (Kusaba Et al. 2007). Nyc1In the mutant, in plant leaf senescence phase, chlorophyll can not correctly be degraded, thereby makes the mutant blade still show green in old and feeble period.(Sato such as Sato Et al. 2009) reported one similar Nyc1Mutant Nol, this mutation type surface with Nyc1Similar, chlorophyll can be kept the long period in the ripening stage, and the chloroplast grana laminated structure also keeps stable in ripe senescence phase. Nyc1nolDouble-mutant can suppress chlorophyllous degraded lastingly.Another paddy rice green mutant that stagnates SgrBlade is compared with the wild-type plant, can keep the green of longer time in the old and feeble later stage, has postponed leaf senile.Cross expression SGRObviously accelerated the degraded of leaf chlorophyll, blade presents pale brown color table type, shows SGRPositive regulation rice leaf aging (Park Et al.2007).(Jiang such as Jiang Et al.2007) also reported one from the stagnant green mutant of paddy rice SgrMiddle cloned genes SGR, the chloroplast transit peptides of a deduction of this genes encoding, the low abundance of performance composing type is expressed under the normal growth condition, but dark induce or the ABA treatment condition under, expression level increases, and expression level descends under phytokinin CTK treatment condition.This gene of overexpression has accelerated the aging of rice leaf, shows this SGRCan the aging of positive regulation rice leaf.
Plant senescence often is subjected to phytohormone Regulation, and plant hormone all worked in each period of leaf senile, and aging has the positive regulation effect to ethene for plant leaf, increases ethylene content and can accelerate the plant leaf aging.The Guo Hong of Peking University the has defended study group's systematic research signal transduction pathway of plant hormone ethene regulation and control plant leaf aging, and disclose different plant hormones are regulated and control plant leaf jointly by interaction aging (Chen Etal. 2009; Zhong Et al. 2009,2010).Jing etc. have reported the regulatory pathway that old and feeble approach that ethylene signaling and leaf age are relied on combines, and utilize Arabidopis thaliana Old1( Onset of leaf death 1) mutant clone gone out the key gene in this regulatory pathway OLD1Give Old1Mutant applies exogenous ethylene then can accelerate early stage leaf senile, shows OLD1Effect (the Jing of negative regulation ethene in leaf age dependence leaf senile Et al. 2005).(Cytokinin CTK) has important effect for delaying The Plant Senescence to phytokinin.Phytokinin is mainly synthetic at root, transfers to the plant other parts by xylem and works.(Kim such as Kim Et al. 2006) utilize Arabidopis thaliana function gain mutation body Ore12-1The clone has obtained the CTK acceptor gene AHK3, find that it plays a crucial role in the leaf senile regulation and control of CTK mediation.
Some receptor kinases are also related to the plant leaf aging by evaluation, and Wang Ningning study group of Nankai University has identified a soybean receptor kinase gene GmSARK, cross and express the senescence process that this gene has accelerated soybean leaves, show that this gene relates to the old and feeble regulation and control of soybean leaves (Li Et al.2006).These receptor kinases are targets of WARK transcription factor, regulate and control leaf senile (Robatzek jointly with regulation and control WARK transcription factor interaction Et al.2002).In addition, the plant leaf aging is subjected to the adjusting of sugared concentration in inducing of optical condition and the blade, Arabidopis thaliana hexokinase gene HXK1Be a gene that typically is subjected to the aging of intensity of illumination regulation and control plant leaf, this gene is from the insensitive mutant of glucose Gin2Middle clone obtains, and when the external source glucose concn reached 6%, the wild-type vine growth and development was stagnated, and Gin2Still can normal growth.Under the normal illumination condition, wild-type and mutant blade performance normal growth, yet, under high intensity of illumination is handled, the rapid old and feeble flavescence of wild-type plant leaf, and Gin2Though the mutant plant has reduced increment, its leaf senile postpones, leaf look dark green (Moore Et al.2003).Show HXK1Regulate and control The Plant Senescence by integrating exterior illumination signal and inherent gene signal.
Summary of the invention
The object of the present invention is to provide HD-Zip III family member OsDLS1Gene and application thereof.
Above-mentioned purpose of the present invention is to be achieved by following method:
HD-Zip III family member OsDLS1The nucleotides sequence of gene is classified as shown in the SEQ ID No.1, OsDLS1855 the amino acid whose protein sequences of encoding are shown in the SEQ ID No.2.
HD-Zip III family member of the present invention OsDLS1The mRNA sequence of gene is shown in the SEQ ID No.3.
The present invention further discloses HD-Zip III family member OsDLS1The application aspect preparation adjusting and controlling rice leaf senile and rice ear sprouting period of gene and protein.
Experimental result of the present invention shows:
(1) HD-Zip III family member OsDLS1Gene can the adjusting and controlling rice blade aging, after the forfeiture of OsDLS1 gene function or descending, accelerated the aging of rice leaf, when OsDLS1Delayed the aging of rice leaf after the gene function rise (cross and express).
(2) OsDLS1Gene can promote the heading of paddy rice under the long day condition, and after the forfeiture of OsDLS1 gene function or descending, paddy rice is postponed the heading stage under the long day condition.
Description of drawings:
Fig. 1 OsDLS1 transcription factor structural domain and subfamily member thereof; A:OsDLS1 transcription factor structural domain wherein; B: HD-ZIP III subfamily member kinship in the paddy rice;
The phenotype of Fig. 2 RNAi transfer-gen plant; The phenotype of A:RNAi transfer-gen plant wherein.The at first blade tip flavescence of RNAi rotaring gene plant blade, rust staining appears in the blade middle and lower part, and rust staining extends to whole blade afterwards, finally makes the blade withered death.B:RNAi transfer-gen plant destination gene expression detects, and CK is the empty carrier transfer-gen plant.C: OsDLS1The expression of homologous gene in the RNAi transfer-gen plant;
Fig. 3 crosses the phenotype of express transgenic plant; A wherein: the phenotype of crossing the express transgenic plant.When the wild-type plant leaf begins to dry up, cross the express transgenic plant leaf and also be in complete green, do not show withered.B: cross express transgenic plant destination gene expression and detect, WT is that to spend 11, OV1 ~ OV5 in the wild-type be the express transgenic plant;
Fig. 4 OsDLS1Expression in different tissues; A wherein: OsDLS1Expression under leaf, the second internode stem, fringe in stem, young fringe, ripe floral organ and the young tender meristematic tissue.B: OsDLS1Expression at the leaf different development stage.
Embodiment:
In order to explain enforcement of the present invention more fully, provide HD-Zip III family member OsDLS1 the preparation embodiment of gene.These embodiments only are to explain rather than limit the scope of the invention.Wherein used reagent all has commercially available.
Embodiment 1
1 vegetable material: spend 11(to have commercially available in the japonica rice variety) (Oryza sativa L. ssp. Japonica) is used for this experiment.
Method
2.1 the structure of RNAi carrier
We have made up two RNAi carriers, and an interference region section is positioned at 5 '-UTR district, and another interference region section is positioned at 3 '-UTR district.Interfere sections to obtain from the oryza sativa genomic dna amplification for two that are used for structure RNAi carrier, the primer sequence is: RNAi-3 ' UTR:IHD1:5 '-CACCATCCATGGTTTCCAG-3 ' and IHD2:5 '-GGTAACTCAATGCCGATTGC-3 '.RNAi-5 ' UTR:IHD3:5 '-CACCGGTCGAGAGA GAAAGT-3 ' and IHD4:5 '-TCCTCCTCGTCGCTGCTTGT-3 '.The fragment pENTR that amplification is good TMDirectional TOPO Cloning Kits (Invitrogen, USA) according to the program construction on the specification sheets in purpose carrier pANDA35HK, cut and PCR method is identified in the method rice transformation material that correct clone mediates with agricultural bar and spent 11 (Hiei et al. 1994) by enzyme.The pcr amplification condition is: 1 min/95 ℃; 30 cycles (30 sec/94 ℃, 30 sec/59 ℃, 30 sec/72 ℃); 5 min/72 ℃.
Reaction system following (cumulative volume 20 μ L):
DNA 10-30ng
10 * Buffer (contains 20 mM Mg 2+) 2 μ L
dNTP(2.5mM)   0.2mM
PrimerF (IHD1/IHD3) 0.2μM
PrimerR (IHD2/IHD4) 0.2μM
ExTaq enzyme (TaKaRa) 1 U
DdH 2O mends to 20 μ L
2.2 cross the structure of expression vector
Have complete ORF's OsDLS1The cDAN of gene obtains by the RT-PCR method from the rice seedling of 15 days sizes, introduces in design of primers SmaI and SacTwo restriction enzyme sites of I are used for corresponding restriction enzyme site with carrier and are connected.The primer sequence of amplification is: OSHDF:5 '-ATGA CCCGGGCGAGTTCTTGCTGGGTTGTTG-3 ' and OSHDR:5 '-TTGC GAGCTCACGGTGGTGGTATTCAGGTCT-3 '.Connect back transformed into escherichia coli DH5 α (TaKaRa, Dalian), cut by enzyme and identify and after PCR identified, positive colony carried out sequencing analysis that the correct carrier that checks order is with spending 11 in the agrobacterium mediation method conversion.The pcr amplification condition is: 1 min/95 ℃; 35 cycles (30 sec/95 ℃, 30 sec/63 ℃, 3min/72 ℃); 5 min/72 ℃.
Reaction system following (cumulative volume 20 μ L):
cDNA        1μL
10 * Buffer (contains 20 mM Mg 2+) 2 μ L
dNTP(2.5mM)    0.2 mM
OSHDF 0.2μM
OSHDR 0.2μM
Phusion Taq(NEB) 1U
DdH 2O mends to 20 μ L
2.3 OsDLS1The expression of gene in the different tissues organ
In order to analyze OsDLS1The expression of gene in paddy rice different tissues organ, rice leaf, stem, young fringe, ripe floral organ and young tender meristematic tissue are collected, (Invitrogen, (Invitrogen USA) handled digested genomic dna to total RNA with DNase I after USA) reagent extracted with TRIzol.(China) cDNA is synthesized in reverse transcription to total RNA of 1 μ g for TaKaRa, Dalian with the M-MLV ThermoScript II.Synthetic cDNA uses OsDLS1The special primer of gene carries out PCR reaction amplification, with paddy rice OsActin1Doing confidential reference items analyzes relatively OsDLS1Expression of gene.Genetic expression special primer sequence is:
FDF:5 '-CACCACGCGACTTTTGGACT-3 ' and FDR:5 '-GGAGATTCATAGAGCGGTCG-3 '.Amplification program is 1 min/95 ℃; 30 cycles (30 sec/94 ℃, 30 sec/59 ℃, 30 sec/72 ℃); 5 min/72 ℃.
2.4 OsDLS1Expression analysis in RNAi and mistake express transgenic plant
In order to detect RNAi and to cross the interference effect of express transgenic plant and cross expression effect, total RNA extracts the back from the blade of the transfer-gen plant of 40 days sizes and contrast thereof (Invitrogen USA) handles digested genomic dna with DNase I.(China) cDNA is synthesized in reverse transcription to total RNA of 1 μ g for TaKaRa, Dalian with the M-MLV ThermoScript II.The cDNA that counter-rotating records is used for RT-PCR or Real-time pcr template.(China) test kit description operation is at Stratagene Mx3000P for Tiangen, Beijing according to SYBR Green PCR master mix for Real-time PCR TM(STRATAGENE USA) carries out amplified reaction on the PCR instrument to Thermal System.The primer sequence is with 2.3 used sequences.Each reaction is carried out 3 times and is repeated, and uses paddy rice OsActin1As the confidential reference items relative quantitative assay, 2 of Livak description is adopted in data analysis -△ △ Ct Method is carried out (Livak et al. 2001).Real-time pcr amplification condition is: 2 min/95 ℃; 40 cycles (95 ℃ of 20 sec/, 59 ℃ of 30 sec/, 68 ℃ of 30 sec/).
Interpretation of result
3.1 OsDLS1Gene structure and subfamily analysis
OsDLS1855 the amino acid whose protein of encoding contain 4 structural domains, wherein the HD-ZIP structural domain that constitutes of Homeobox and bZIP play an important role in this transcription factor (Figure 1A).Special dna sequence dna can with HD-ZIP in conjunction with the territory in conjunction with and other gene is played regulating and controlling effect.In the paddy rice, HD-Zip III subfamily has 5 members, their kinship as shown in Figure 1B, wherein OsDLS1With OsHOX32Sibship is nearest, and amino acid sequence identity is up to 87%. OsDLS1Also very high with the HD-Zip III subfamily member's of other plant homology, with the amino acid identity of ATHB9, the ATHB14 of known Arabidopis thaliana and ATHB15 also all more than 65%.The aminoacid sequence that shows this transcription factor subfamily is very conservative.
OsDLS1The RNAi transfer-gen plant obtains and phenotype analytical
In order to explore the function of this transcription factor, we adopt the reverse genetics method to make up RNAi and cross expression vector, spend in 11 during it is imported to.Two RNAi carriers have obtained 108 strain T0 altogether for transgenic positive plant (61 strain RNAi5 '-UTR, 47 strain RNAi3 '-UTR), but do not see obvious phenotype.20 RNAi5 ' of picked at random-UTR T0 obtains T1 for plant for plant and 12 RNAi3 '-UTR T0 for the plant sowing, there are 8 strain systems that phenotype is arranged in 20 RNAi5 '-UTR T1 strain systems, show rust staining on the beginning plant leaf, patch expansion is afterwards drawn out to whole blade, finally makes blade withered death (Fig. 2 A).12 RNAi3 '-UTR T1 are for there being 2 strain systems that phenotype is arranged in the strain system, and are slightly different with RNAi5 '-UTR phenotype, at first blade tip flavescence of plant leaf, and rust staining appears in the blade middle and lower part, and rust staining extends to whole blade afterwards, finally makes blade withered death (Fig. 2 A).The sampling of listing of phenotype plant will be arranged, extract RNA, with RT-PCR method testing goal expression of gene, find in the RNAi transfer-gen plant, OsDLS1Expression obviously reduce compared with the control, show that RNAi has disturbed really OsDLS1Expression of gene (Fig. 2 B).Individual plant is received kind of the T2 that the plantation acquisition is isozygotied and is used for follow-up study for transfer-gen plant.
T1 is (long day area, ~ 39 ° of N) and Hainan (~ 22 ° of N) plantation respectively in Tianjin in 2011 for the RNAi transfer-gen plant, finds the heading stage of statistics RNAi transfer-gen plant, OsDLS1The RNAi transfer-gen plant was postponed 35 days than contrast at the heading stage of Tianjin plantation, and postponed 6 days than contrast at the heading stage of Hainan plantation.Because the photoperiod of two regional field plantings is all different with temperature, we plant (LD:14h illumination, 10 h dark under the growth cabinet control condition of laboratory; SD:10h illumination, 14 h dark; Temperature all is 28 ℃) RNAi transfer-gen plant and contrast, the statistics heading date is found transfer-gen plant and contrast heading substantially simultaneously under the short day condition, but has postponed more than 40 days at the heading stage of transfer-gen plant under the long day condition.This result shows that this transcription factor can promote the heading of paddy rice under the long day condition.
Interfered other member of HD-ZIP III subfamily in order to detect constructed RNAi carrier, we with RT-PCR detected with OsDLS1The expression of several genes in the RNAi transfer-gen plant of homology, the result shows that RNAi3 ' UTR carrier is very special, can not interfere other HD-ZIP III subfamily member, but RNAi5 ' UTR carrier can be interfered OsHOX32Gene, but can not interfere other 4 members (Fig. 2 C).This may also be the slightly different reason of transfer-gen plant phenotype that the RNAi carrier of two structures obtains.
OsDLS1Crossing the express transgenic plant obtains and phenotype analytical
Cross expression vector and obtain 68 strain T0 altogether for plant, wherein 42 strains are the transgenic positive plant.6 strain blades performance delay senility is arranged in the positive transfer-gen plant, and fringe and floral organ performance deformity (Fig. 3 A).All the other plant do not have obvious phenotype difference.Individual plant is listed to take a sample and is extracted RNA, with RT-PCR method testing goal expression of gene, crosses the express transgenic plant OsDLS1The expression of expression of gene obviously strengthens (Fig. 3 B).
OsDLS1Expression analysis in different tissues
In order to detect OsDLS1Expression in the paddy rice different tissues is collected wild-type different time and different tissues material, isolation of RNA, and with the spatial and temporal expression characteristic of RT-PCR analysis purposes gene in the paddy rice different tissues, the result shows after the reverse transcription OsDLS1Expression is all arranged in the paddy rice different tissues, but higher at children tender meristematic tissue and the expression amount in the young fringe, expression amount lower (Fig. 4 A) in the floral organ of maturation.Whole growing OsDLS1All express.In order to detect OsDLS1In the expression of rice leaf different development stage, analyzed in young tender blade (15 days seedling leaves), mature leaf (60 days plant sword-like leaves) and the old and feeble blade (blade begins flavescence) with real time quantitative PCR method OsDLS1Expression, the result shows that expression amount is higher in the tender blade of children, and the expression amount in old and feeble blade lower (Fig. 4 B), shows that this transcription factor expression amount in the tender tissue of children is higher, along with the old and feeble expression amount of tissue descends.
OsDLS1Gene order (shown in the SEQ ID No.1):
AAATAAGAAACAACGAGACTCTTGATGTACCAAGCCGAGTCTGAAGAAGAGAAAAGAGAGAGAGTTCAGAAAAAGGAAACGACCCTATTCTGATCAGAAAAATTCAATCTTTCTCTCTCTTTCTCTCAGAAAAGGTCGAGAGAGAAAGTGGATGTCTTCATGTGAAGACCAGAGAGAAGACGAGAGGCGATCGCAGTGGAGTGGAGTGAAGTACTAGCAGTATTAAAACCAGCAGCAAGCGAGAGAGAGGCCACCAACCACTTCCTCCTCCAAGAAACCACCCCCACCACGAGCACGAGCACGAGCAACCATGGCGGTGGCAGAGGGAGCTGCGACTGCGAGCTACGGGCCATGACTGCGGCGAGTTCTTGCTGGGTTGTTGTTGTACAAGCAGCGACGAGGAGGAGGGGAGCAGAGGAGGAGGAGGCGGAGGGATGGCAGCGGCGGCGGTGGGGGGAAGGGGGGAGAGGCTGTCGTCCTCCTCCCCGACGGCGGCGGCGCCGCAGGTGGACGCCGGGAAGTACGTCCGGTACACGCCCGAGCAGGTGGAGGCGCTGGAGCGGGTGTACACCGAGTGCCCCAAGCCCAGCTCACTCCGCCGCCAGCAGCTCATCCGGGAGTGCCCCATCCTCAGCAACATCGAGCCCAAGCAGATCAAGGTCTGGTTTCAGAATCGCAGGTCAGTCTCATCTCCTTCTCTCTCTTCGATCTGTTTCTGCTCGGGTTTGTTCAGCAGCCATGGCGTGTGTTCTTCGGTTTCTTTTCTTGGTTTTGTGTAATGTGATGAGATTGATTGCTTTGTTGTTTGCAGTTTTTTTTCATGTTCTTGTGGGAATGGGGGATCCTTTGTGAGGAAGATTTGGGTTCTTGAGATGAGTTTTTTTTTTCTGTTTGATTTGTAGATGTCTGTAACTTTTTGGGTGTTGATTTTAGGGCTTGCAATGTGTTGGATTGGTGACGAGAAGGTTCATTTCTGGGATTTGCATCCTATATGATGGGTTTTGTTTTTTTAGTTCGTCTTGTGCAATAATGAAGCGCAATCTGTTTGCTTGAAATTTATCAGGATATTTTCTTTTATAAAACTTTGCGGCAATGATTTGAGTTCCTGTGCCCACACTGTTCTTCGCTGCATTATTCTGCTGGGTTGTGTGGTGGGTAGGGAGCGAAATGGCAGCATCATTCGTTGGTTTCCTCTTGGATTTTGTGGTGATGTGAATAGCCAAATATCCTGGATCTCTGTACAGACTTTACAGTTAATTTTGTTTGGTTTAAATTGTAAATATATGCTCTCTGATTGTTTTGTTGCTTGTGGTGACCAATGATTGGTTGGAGCAAAATTGCCTTAGGTCATTTCTTGTTTCCTGTGCTTGCCATTTTAAGGGCCATCTTTTTAACCCTGTGTTGTGGGCTGTGGTAGTGTTCATGTTTTCTTGCTATAGGCCTCCATAAGCATCACCTCCTGGTTATCATCTCGCTTTCTTTTTTCAGTGGATCACAAGTAGGGCAATAGTTTTGTCACTGGTGGTGTCACTGTGGAAGAATGTGAAGGGCAACATTTTGAGCAAGTTTGGTATATACTATTACTGTACTCATGAAGGCCAAATATAAATCAAGAATCCTTTTTAGGTAGAGGATGCTCTTGTTTAGAGTTGAGTTCACAGATGCAGACAGAAACATCACTGTCAATTAGGCAATGATTTTCACATATGGAATACTAACTGTTATTGCATAGTATATAGTCATTTGTCTCTTTTGCAAATGACCTTTTGCTTGTTCCTGTTCAATGATCCCCCTTTTAACCTTGGGGAATATTTGCTAAAATGCCTTTGCCTAACTTCCTTTGTGCTCATTTGGGCTGTGCCAATCAGTATCCATTAACAAGTATTGGAATCTTGTGTATTAGAAGACACCATCCTTTAGATAGTTTATTCATGTACTTTTGCCACTGAAATTGTGCCTTCCTTGTAATTGGCAGATGCCGGGAGAAGCAGCGCAAGGAGGCCTCCCGGCTGCAAACTGTGAACCGGAAGCTGAATGCGATGAACAAGCTGTTGATGGAGGAAAATGACCGGCTGCAGAAGCAGGTGTCCCGTCTCGTCTACGAGAACGGCTACATGCGGACTCAACTGCACAATGTGAGCTCCCTGTGCTTACAGGCTTTTGTTCTTACAATTGCTTCATATTTTGATCATCCTGTTTTCTTAATCAGTAATGTTTGTATGTACTTTGTAGCCTTCTGCAGCCACCACAGATACAAGCTGTGAGTCTGTGGTGACAAGTGGTCAGCACCATCAACAGCAAAACCCAGCAGTTCTGCATCCGCAAAGGGATGCGAACAACCCAGCAGGGTATCCACAAAACCTGGTCTATTTTCTTCTTTTGTTAGGCCGTGCTTTTTTGTATGAAAGATTGCTGAGATGATTTTATTTGCGCAGTCTTCTCGCTATTGCTGAGGAGACCTTGGCAGAGTTCATGTCGAAGGCGACAGGAACTGCTGTCGAATGGGTGCAAATGGTTGGGATGAAGGTAATGTATTCGTTGTACAAGAAAACTGTGCAGTATGTTGATTTTCTCTTTCCATTCATGTTTTTTTTGTTCAAATCAACTGAAATGAAAATTTGATTACAGCCTGGTCCGGATTCCATTGGAATCATCGCTGTTTCGCACAATTGCAGTGGCGTAGCAGCACGAGCTTGCGGCCTGGTGAGCCTTGAGCCCACAAAGGTATGATTTGTTTTCCTTGATATTGTGTTACATTTCCCATTAACTGGCATGCTACAGACCCTGATAAGCTTCATTTTAGGTTGCAGAGATCCTCAAGGATCGCCCCTCTTGGTACCGTGATTGCCGATGCGTAGATATCATCCATGTTATCCCTACGGGTAACGGCGGAACCATTGAGCTAATCTACATGCAGGTAAATATACCCAATCGTGACTCATGTGTTGCATTTTTCTCAAGCATCACTAGCTACTCTTTGTTTTTGGTAATAACCATTGCCCTTTTCAATTCCTTAGACATATGCACCGACAACTTTGGCGGCACCACGCGACTTTTGGACTCTCCGCTACACAAGTGGACTTGAAGATGGGAGTCTTGTGGTATTACTTTGATCTTTAATTGCATGCTGTCAGCTCATTAAACAAAATGCTTCCTTTCATTTTCTTGTATGGTCTATTCGTCATGTTATGATCGGACTTGTTCTGTTTGGATCATACCACATCATCATGGTTTTCAACTGAAGTGTAGTTTCTGTTGTATTAAATATTGTTTGACACCATTCCTGTTCTGTAGATCTGTGAAAGGTCATTGACTCAGTCCACTGGTGGCCCATCTGGGCCTAACACTCCGAATTTTATCAGAGCCGAGGTACTTCCCAGTGGTTATCTGATTCGACCATGTGAGGGAGGTGGCTCCATGATTTACATTGTTGATCATGTTGATTTGGATGTAAGTAACAATAGTGTTTTCACATTAACTAGTGTAATATTGAATAGTTTTGAGATACATATCTTATTAATCCTGTGTATTTTACAGGCTTGGAGTGTGCCTGAGGTTCTTCGACCGCTCTATGAATCTCCAAAGATCCTTGCACAGAAGATGACCATTGCAGTATGTGCACTGTTTTATTCTGTTGTTGAAGAGCACTTGGTCACCTCATGGTGATTGTGAGTGCATAACTTTTCTTATCACCAATGACATGGTTCATTCTGTTCAGGCATTGCGACACATTAGGCAAATTGCGCATGAGTCAAGCGGTGAAATCCCCTACGGTGCTGGTCGCCAGCCTGCTGTTTTCAGGACCTTCAGTCAAAGGCTCAGCAGGTCTGTAGCTATTTGAGGGTTCCCATGTATTAGAACCAATTGGCATACTGTCATATGACACAGTTCCATGCATGTCTCATTGCTCACGCATCTGAACTCCATACTCTAATTTGCAGAGGTTTCAATGATGCTGTTAGTGGATTTCCAGATGATGGGTGGTCTTTGTTGAGCAGTGATGGTAGTGAGGACATTACAATTTCAGTAAACTCGTCTCCAAACAAGCTTGTTGGATCCCATGTCAGCCCGAACCCTCTGTTTTCTACTGTTGGAGGTGGCATCTTGTGCGCAAAGGCATCAATGCTACTTCAGGTTGACATAGGCTCTATTTAGTTGCTCAGCTAATTATAGATTGTCTCTATCTTTGTTTCACTTTGACCAAAATTGTTCCAAATCAAAGAATTAAGCTTTACAAAATGTCATTTTTTTTATAATGTAGAATGTACCTCCTGCTCTACTTGTGCGATTTCTGAGGGAGCATCGTTCTGAATGGGCTGATCCTGGTGTTGATGCTTATTCTGCTGCTTCTTTGCGAGCCAGCCCATATGCAGTTCCAGGCTTAAGGACCAGCGGGTTTATGGGCAGTCAGGTTATACTACCCCTCGCTCATACCTTAGAGCATGAAGAGGTAATGTTGTAATTGAGTCCTTGTAGGCTTGTAGCTCCTTTTCCACAATGAATGGCAAATATTAATGCATCAACCTGGCATTCTGAATTGCAGTTCTTGGAGGTTATTAGGCTCGAAGGACATGGTTTCAGCCATGATGAGGTGCTTCTATCACGGGATATGTACCTTCTACAGGTATTGTGGACCATCCGAGTCAACTATTTATTCCTTTGCTGTTGGGCTGGACAAGTGGGCTTCGGTGGGAGGCATGCTGCTGTTCTTGGCCACCGTATGGGCCTAACCTTCTGCTCAGGGTTTCTGGTGGATCAGGTCCTCCTGCGCACGAATTATTTTTTATTTTTGTTCATAATAAAAGCTGAGATGTAAAAGGTTTAAGAGTCTTAGTTTAGGTTATGGTGCTTCGTTAAGTCTAGCAGGGTGTGCTGCAGCTCGAGGACGAGCTGCTCAAAAAGGGGGGAGTAATGTCATGGGCTTTGGGCCGGGCGTCCTAAGTCCATTGGATAGGATTAGGGTTTGTTAGGATTAGATAAGGTTTGTTAGGATTAGATTAAGGAGTCCTCCATCTATATAAGGAGGGATCCTATCTCAGGTCAATTAGGCATTAGATCAAGATTTATCTTAGTGCCCATCGGCCTGCCTTCTCAGTGCGACGGAGAGCGTCGCGCCGTTTAGGTTCAGGACCGTATTCCTTGTTATTTCATCTACTATAATCCAATCTATCCCCATTCATCCCGATTCTTCTCCACATAATCCTTGCTCATGACAATTGCCTTAAGTTGTACCTGTTTGTTGCATTTTCCTGGTTCTGAGAGATTGCTTTCTATGCAGCTTTGCAGCGGGGTTGATGAGAATGCTACTAGTGCATCTGCACAGCTTGTCTTTGCTCCTATTGACGAATCTTTTGCTGATGATGCACCACTTTTACCCTCAGGATTCCGTGTGATACCACTAGATACAAAAATGGTATGACTGGTCCATAATCTTATTCCAGAGGCCTTGTCTTTCCCATGTTGGCTCACCAATTAACCGTTATGCACTCAAACCTGCAGGATGGGCCATCTGCAACACGCACGCTCGACCTTGCATCCGCCCTTGAGGTTGGACCAGGTGGAGCTTCGCGTGCTTCAGTTGAAGCATCTGGCACATGTAACAGATCAGTCCTGACCATTGCTTTCCAATTCTCATACGAGAACCACCTTCGTGAGAGCGTGGCGGCAATGGCTAGGAGTTATGTCAGAGCTGTGATGGCATCCGTGCAGAGGGTGGCTGTGGCAATAGCTCCTTCTCGACTTGGACCCCAGATCGGAATGAAGCACCCTCCAGCCTCTCCTGAGGCGCTTACACTTGCTAGCTGGATTGGTAGGAGCTATAGGTAAGTAAAATACTTATTTTTAGCAAAAGTCTATCTCAGGTTCTTCATCATCAGAACCACCTACACATTGCCACATCTGAAGTTGTGATCAATGATGTTAATGCACTAGTTATTTCCGTGGATCTTTCAGGGCTCACACCGGAGCAGATATCCGTTGGTCTGATACCGAAGATGCCGATTCTCCCCTGGCGCTCCTGTGGAAGCACAGCGACGCAATACTGTGCTGTTCTCTGAAGGTTAGTAGTGCTGCCCACTAATTTTATGCTCATTTCATCACATGCATGTTCTGGAAACCTTGCTAATGGTCAGTTTGGTTATCTACTGGCAGCCTGCTCCTATGTTCACCTTCGCCAACAATGCCGGCCTCGACATCCTTGAGACGACGCTGGTCAACCTCCAGGACATCTCGCTCGAGATGATCCTGGATGACGAGGGCCGGAAGGCGCTGTGCTCGGAGTTCCCCAAGATCATGCAGCAGGTAAAACCACCGTGTCCCTGCCTCGCGACAATCGGTGACGCATCCATCAGAGTACTACCAGACCATGAGCAATGTTCCTGATCAAGCCTGTTTGGGGTCTGTCTATCTTCTTTCAGGGTTTCACCTATCTCCCTGGAGGCGTCTGCAAGTCGAGCATGGGGCGGCAGGCATCGTATGAGCAGGCGGTGGCGTGGAAGGTTCTTAGCGACGACGACGCGCCGCACTGCCTCGCCTTCATGCTCGTCAACTGGACCTTCATGTGATCCACCATCCATGGTTTCCAGCTTCCAGCTAGTGCTTTTGCTTTTGTGCCATTGTGGCAAACTGAACAAAGACCTGAATACCACCACCGTATTGTATTAAACATATGCGTCCATACATGCATGGTGCTTGCTTTATCCTAGCTAGTGCTAGCACCTGTGTGTATGGTCTCTCCATGTTTGAAGCTTAAAATTTTAGAACCCTGGTTTTTTTTTTTCTGCTGCTGTGTGGATGAACAAGTTTCAGGACCTATGTATCTCTATCTATCTATGCTAATGCTATGAATTGTGTGATGTGTGTATGCTTTGAGCAATCGGCATTGAGTTACCTTGGTTGGTTTATGCCGTGCTGAACCATTGTTGATGCATATGTAGCTGAAGGAAGTATTTGCTGAATGTGATTCGTATTCCTCCACCGTTAAACTAAAACAAAAGCGTTTCTACCTATCAAAACCGGCTCATTATGCTCTCAGCTTAAACCATTATCCTTTGCTGATTGTGGTACATAGTTGAGGGAGCCCAAATAGACTTTTCTCAGTGCTACGTCCTGCTCACTGATCTCGGCCACGAATAGAATCGT。
OsDLS1855 the amino acid whose protein sequences of encoding are shown in the SEQ ID No.2:
MAAAAVGGRGERLSSSSPTAAAPQVDAGKYVRYTPEQVEALERVYTECPKPSSLRRQQLIRECPILSNIEPKQIKVWFQNRRCREKQRKEASRLQTVNRKLNAMNKLLMEENDRLQKQVSRLVYENGYMRTQLHNPSAATTDTSCESVVTSGQHHQQQNPAVLHPQRDANNPAGLLAIAEETLAEFMSKATGTAVEWVQMVGMKPGPDSIGIITVSHNCSGVAARACGLVSLEPTKVAEILKDRPSWYRDCRCVDIIHVIPTGNGGTIELIYMQTHAPTTLAAPRDFWTLRYTSGLEDGSLVICERSLTQSTGGPSGPNTLNFIRAEVLPSGYLIRPCEGGGSMIYIVDHVDLDAWSVPEVLRPLYESPKILAQKMTIAALRHIRQIAHESSGEIPYGAGRQPAVFRTFSQRLSRGFNDAVSGFPDDGWSLLSSDGSEDITISVNSSPNKLVGSHVSPNPLFSTVGGGILCAKASMLLQNVPPALLVRFLREHRSEWADPGVDAYSAASLRASPYAVPGLRTSGFMGSQVILPLAHTLEHEEFLEVIRLEGHGFSHDEVLLSRDMYLLQLCSGVDENATSASAQLVFAPIDESFADDAPLLPSGFRVIPLDTKMDGPSATRTLDLASALEVGPGGASRASVEASGTCNRSVLTIAFQFSYENHLRESVAAMARSYVRAVMASVQRVAVAIAPSRLGPQIGMKHPPASPEALTLASWIGRSYRAHTGADIRWSDTEDADSPLALLWKHSDAILCCSLKPAPMFTFANNAGLDILETTLVNLQDISLEMILDDEGRKALCSEFPKIMQQGFTYLPGGVCKSSMGRQASYEQAVAWKVLSDDDAPHCLAFMLVNWTFM.
OsDLS1 mRNA sequence (shown in the SEQ ID No.3):
ATGGCAGCGGCGGCGGTGGGGGGAAGGGGGGAGAGGCTGTCGTCCTCCTCCCCGACGGCGGCGGCGCCGCAGGTGGACGCCGGGAAGTACGTCCGGTACACGCCCGAGCAGGTGGAGGCGCTGGAGCGGGTGTACACCGAGTGCCCCAAGCCCAGCTCACTCCGCCGCCAGCAGCTCATCCGGGAGTGCCCCATCCTCAGCAACATCGAGCCCAAGCAGATCAAGGTCTGGTTTCAGAATCGCAGATGCCGGGAGAAGCAGCGCAAGGAGGCCTCCCGGCTGCAAACTGTGAACCGGAAGCTGAATGCGATGAACAAGCTGTTGATGGAGGAAAATGACCGGCTGCAGAAGCAGGTGTCCCGTCTCGTCTACGAGAACGGCTACATGCGGACTCAACTGCACAATCCTTCTGCAGCCACCACAGATACAAGCTGTGAGTCTGTGGTGACAAGTGGTCAGCACCATCAACAGCAAAACCCAGCAGTTCTGCATCCGCAAAGGGATGCGAACAACCCAGCAGGTCTTCTCGCTATTGCTGAGGAGACCTTGGCAGAGTTCATGTCGAAGGCGACAGGAACTGCTGTCGAATGGGTGCAAATGGTTGGGATGAAGCCTGGTCCGGATTCCATTGGAATCATCACTGTTTCGCACAATTGCAGTGGCGTAGCAGCACGAGCTTGCGGCCTGGTGAGCCTTGAGCCCACAAAGGTTGCAGAGATCCTCAAGGATCGCCCCTCTTGGTACCGTGATTGCCGATGCGTAGATATCATCCATGTTATCCCTACGGGTAACGGCGGAACCATTGAGCTAATCTACATGCAGACACATGCACCGACAACTTTGGCGGCACCACGCGACTTTTGGACTCTCCGCTACACAAGTGGACTTGAAGATGGGAGTCTTGTGATCTGTGAAAGGTCATTGACTCAGTCCACTGGTGGCCCATCTGGGCCTAACACTCTGAATTTTATCAGAGCCGAGGTACTTCCCAGTGGTTATCTGATTCGACCATGTGAGGGAGGTGGCTCCATGATTTACATTGTTGATCATGTTGATTTGGATGCTTGGAGTGTGCCTGAGGTTCTTCGACCGCTCTATGAATCTCCAAAGATCCTTGCACAGAAGATGACCATTGCAGCATTGCGACACATTAGGCAAATTGCGCATGAGTCAAGCGGTGAAATCCCCTACGGTGCTGGTCGCCAGCCCGCTGTTTTCAGGACCTTCAGTCAAAGGCTCAGCAGAGGTTTCAATGATGCTGTTAGTGGATTTCCAGATGATGGGTGGTCTTTGTTGAGCAGTGATGGTAGTGAGGACATTACAATTTCAGTAAACTCGTCTCCAAACAAGCTTGTTGGATCCCATGTCAGCCCGAACCCTCTGTTTTCTACTGTTGGAGGTGGCATCTTGTGCGCAAAGGCATCAATGCTACTTCAGAATGTACCTCCTGCTCTACTTGTGCGATTTCTGAGGGAGCATCGTTCTGAATGGGCTGATCCTGGTGTTGATGCTTATTCTGCTGCTTCTTTGCGAGCCAGCCCATATGCAGTTCCAGGCTTAAGGACCAGCGGGTTTATGGGCAGTCAGGTTATACTACCCCTCGCTCATACCTTAGAGCATGAAGAGTTCTTGGAGGTTATTAGGCTCGAAGGACATGGTTTCAGCCATGATGAGGTGCTTCTATCACGGGATATGTACCTTCTACAGCTTTGCAGCGGGGTTGATGAGAATGCTACTAGTGCATCTGCACAGCTTGTCTTTGCTCCTATTGACGAATCTTTTGCTGATGATGCACCACTTTTACCCTCAGGATTCCGTGTGATACCACTAGATACAAAAATGGATGGGCCATCTGCAACACGCACGCTCGACCTTGCATCCGCCCTTGAGGTTGGACCAGGTGGAGCTTCGCGTGCTTCAGTTGAAGCATCTGGCACATGTAACAGATCAGTCCTGACCATTGCTTTCCAATTCTCATACGAGAACCACCTTCGTGAGAGCGTGGCGGCAATGGCTAGGAGTTATGTCAGAGCTGTGATGGCATCCGTGCAGAGGGTGGCTGTGGCAATAGCTCCTTCTCGACTTGGACCCCAGATCGGAATGAAGCACCCTCCAGCCTCTCCTGAGGCGCTTACACTTGCTAGCTGGATTGGTAGGAGCTATAGGGCTCACACCGGAGCAGATATCCGTTGGTCTGATACCGAAGATGCCGATTCTCCCCTGGCGCTCCTGTGGAAGCACAGCGACGCAATACTGTGCTGTTCTCTGAAGCCTGCTCCTATGTTCACCTTCGCCAACAATGCCGGCCTCGACATCCTTGAGACGACGCTGGTCAACCTCCAGGACATCTCGCTCGAGATGATCCTGGATGACGAGGGCCGGAAGGCGCTGTGCTCGGAGTTCCCCAAGATCATGCAGCAGGGTTTCACCTATCTCCCTGGAGGCGTCTGCAAGTCGAGCATGGGGCGGCAGGCATCGTATGAGCAGGCGGTGGCGTGGAAGGTTCTTAGCGACGACGACGCGCCGCACTGCCTCGCCTTCATGCTCGTCAACTGGACCTTCATGTGA。
SEQUENCE LISTING
<110〉Tianjin Normal University
<120〉the OsDLS1 gene is in the application aspect adjusting and controlling rice leaf senile and heading stage
<160> 3
<170> PatentIn version 3.5
<210> 1
<211> 7140
<212> DNA
<213〉OsDLS1 gene
<400> 1
aaataagaaa caacgagact cttgatgtac caagccgagt ctgaagaaga gaaaagagag 60
agagttcaga aaaaggaaac gaccctattc tgatcagaaa aattcaatct ttctctctct 120
ttctctcaga aaaggtcgag agagaaagtg gatgtcttca tgtgaagacc agagagaaga 180
cgagaggcga tcgcagtgga gtggagtgaa gtactagcag tattaaaacc agcagcaagc 240
gagagagagg ccaccaacca cttcctcctc caagaaacca cccccaccac gagcacgagc 300
acgagcaacc atggcggtgg cagagggagc tgcgactgcg agctacgggc catgactgcg 360
gcgagttctt gctgggttgt tgttgtacaa gcagcgacga ggaggagggg agcagaggag 420
gaggaggcgg agggatggca gcggcggcgg tggggggaag gggggagagg ctgtcgtcct 480
cctccccgac ggcggcggcg ccgcaggtgg acgccgggaa gtacgtccgg tacacgcccg 540
agcaggtgga ggcgctggag cgggtgtaca ccgagtgccc caagcccagc tcactccgcc 600
gccagcagct catccgggag tgccccatcc tcagcaacat cgagcccaag cagatcaagg 660
tctggtttca gaatcgcagg tcagtctcat ctccttctct ctcttcgatc tgtttctgct 720
cgggtttgtt cagcagccat ggcgtgtgtt cttcggtttc ttttcttggt tttgtgtaat 780
gtgatgagat tgattgcttt gttgtttgca gttttttttc atgttcttgt gggaatgggg 840
gatcctttgt gaggaagatt tgggttcttg agatgagttt tttttttctg tttgatttgt 900
agatgtctgt aactttttgg gtgttgattt tagggcttgc aatgtgttgg attggtgacg 960
agaaggttca tttctgggat ttgcatccta tatgatgggt tttgtttttt tagttcgtct 1020
tgtgcaataa tgaagcgcaa tctgtttgct tgaaatttat caggatattt tcttttataa 1080
aactttgcgg caatgatttg agttcctgtg cccacactgt tcttcgctgc attattctgc 1140
tgggttgtgt ggtgggtagg gagcgaaatg gcagcatcat tcgttggttt cctcttggat 1200
tttgtggtga tgtgaatagc caaatatcct ggatctctgt acagacttta cagttaattt 1260
tgtttggttt aaattgtaaa tatatgctct ctgattgttt tgttgcttgt ggtgaccaat 1320
gattggttgg agcaaaattg ccttaggtca tttcttgttt cctgtgcttg ccattttaag 1380
ggccatcttt ttaaccctgt gttgtgggct gtggtagtgt tcatgttttc ttgctatagg 1440
cctccataag catcacctcc tggttatcat ctcgctttct tttttcagtg gatcacaagt 1500
agggcaatag ttttgtcact ggtggtgtca ctgtggaaga atgtgaaggg caacattttg 1560
agcaagtttg gtatatacta ttactgtact catgaaggcc aaatataaat caagaatcct 1620
ttttaggtag aggatgctct tgtttagagt tgagttcaca gatgcagaca gaaacatcac 1680
tgtcaattag gcaatgattt tcacatatgg aatactaact gttattgcat agtatatagt 1740
catttgtctc ttttgcaaat gaccttttgc ttgttcctgt tcaatgatcc cccttttaac 1800
cttggggaat atttgctaaa atgcctttgc ctaacttcct ttgtgctcat ttgggctgtg 1860
ccaatcagta tccattaaca agtattggaa tcttgtgtat tagaagacac catcctttag 1920
atagtttatt catgtacttt tgccactgaa attgtgcctt ccttgtaatt ggcagatgcc 1980
gggagaagca gcgcaaggag gcctcccggc tgcaaactgt gaaccggaag ctgaatgcga 2040
tgaacaagct gttgatggag gaaaatgacc ggctgcagaa gcaggtgtcc cgtctcgtct 2100
acgagaacgg ctacatgcgg actcaactgc acaatgtgag ctccctgtgc ttacaggctt 2160
ttgttcttac aattgcttca tattttgatc atcctgtttt cttaatcagt aatgtttgta 2220
tgtactttgt agccttctgc agccaccaca gatacaagct gtgagtctgt ggtgacaagt 2280
ggtcagcacc atcaacagca aaacccagca gttctgcatc cgcaaaggga tgcgaacaac 2340
ccagcagggt atccacaaaa cctggtctat tttcttcttt tgttaggccg tgcttttttg 2400
tatgaaagat tgctgagatg attttatttg cgcagtcttc tcgctattgc tgaggagacc 2460
ttggcagagt tcatgtcgaa ggcgacagga actgctgtcg aatgggtgca aatggttggg 2520
atgaaggtaa tgtattcgtt gtacaagaaa actgtgcagt atgttgattt tctctttcca 2580
ttcatgtttt ttttgttcaa atcaactgaa atgaaaattt gattacagcc tggtccggat 2640
tccattggaa tcatcgctgt ttcgcacaat tgcagtggcg tagcagcacg agcttgcggc 2700
ctggtgagcc ttgagcccac aaaggtatga tttgttttcc ttgatattgt gttacatttc 2760
ccattaactg gcatgctaca gaccctgata agcttcattt taggttgcag agatcctcaa 2820
ggatcgcccc tcttggtacc gtgattgccg atgcgtagat atcatccatg ttatccctac 2880
gggtaacggc ggaaccattg agctaatcta catgcaggta aatataccca atcgtgactc 2940
atgtgttgca tttttctcaa gcatcactag ctactctttg tttttggtaa taaccattgc 3000
ccttttcaat tccttagaca tatgcaccga caactttggc ggcaccacgc gacttttgga 3060
ctctccgcta cacaagtgga cttgaagatg ggagtcttgt ggtattactt tgatctttaa 3120
ttgcatgctg tcagctcatt aaacaaaatg cttcctttca ttttcttgta tggtctattc 3180
gtcatgttat gatcggactt gttctgtttg gatcatacca catcatcatg gttttcaact 3240
gaagtgtagt ttctgttgta ttaaatattg tttgacacca ttcctgttct gtagatctgt 3300
gaaaggtcat tgactcagtc cactggtggc ccatctgggc ctaacactcc gaattttatc 3360
agagccgagg tacttcccag tggttatctg attcgaccat gtgagggagg tggctccatg 3420
atttacattg ttgatcatgt tgatttggat gtaagtaaca atagtgtttt cacattaact 3480
agtgtaatat tgaatagttt tgagatacat atcttattaa tcctgtgtat tttacaggct 3540
tggagtgtgc ctgaggttct tcgaccgctc tatgaatctc caaagatcct tgcacagaag 3600
atgaccattg cagtatgtgc actgttttat tctgttgttg aagagcactt ggtcacctca 3660
tggtgattgt gagtgcataa cttttcttat caccaatgac atggttcatt ctgttcaggc 3720
attgcgacac attaggcaaa ttgcgcatga gtcaagcggt gaaatcccct acggtgctgg 3780
tcgccagcct gctgttttca ggaccttcag tcaaaggctc agcaggtctg tagctatttg 3840
agggttccca tgtattagaa ccaattggca tactgtcata tgacacagtt ccatgcatgt 3900
ctcattgctc acgcatctga actccatact ctaatttgca gaggtttcaa tgatgctgtt 3960
agtggatttc cagatgatgg gtggtctttg ttgagcagtg atggtagtga ggacattaca 4020
atttcagtaa actcgtctcc aaacaagctt gttggatccc atgtcagccc gaaccctctg 4080
ttttctactg ttggaggtgg catcttgtgc gcaaaggcat caatgctact tcaggttgac 4140
ataggctcta tttagttgct cagctaatta tagattgtct ctatctttgt ttcactttga 4200
ccaaaattgt tccaaatcaa agaattaagc tttacaaaat gtcatttttt ttataatgta 4260
gaatgtacct cctgctctac ttgtgcgatt tctgagggag catcgttctg aatgggctga 4320
tcctggtgtt gatgcttatt ctgctgcttc tttgcgagcc agcccatatg cagttccagg 4380
cttaaggacc agcgggttta tgggcagtca ggttatacta cccctcgctc ataccttaga 4440
gcatgaagag gtaatgttgt aattgagtcc ttgtaggctt gtagctcctt ttccacaatg 4500
aatggcaaat attaatgcat caacctggca ttctgaattg cagttcttgg aggttattag 4560
gctcgaagga catggtttca gccatgatga ggtgcttcta tcacgggata tgtaccttct 4620
acaggtattg tggaccatcc gagtcaacta tttattcctt tgctgttggg ctggacaagt 4680
gggcttcggt gggaggcatg ctgctgttct tggccaccgt atgggcctaa ccttctgctc 4740
agggtttctg gtggatcagg tcctcctgcg cacgaattat tttttatttt tgttcataat 4800
aaaagctgag atgtaaaagg tttaagagtc ttagtttagg ttatggtgct tcgttaagtc 4860
tagcagggtg tgctgcagct cgaggacgag ctgctcaaaa aggggggagt aatgtcatgg 4920
gctttgggcc gggcgtccta agtccattgg ataggattag ggtttgttag gattagataa 4980
ggtttgttag gattagatta aggagtcctc catctatata aggagggatc ctatctcagg 5040
tcaattaggc attagatcaa gatttatctt agtgcccatc ggcctgcctt ctcagtgcga 5100
cggagagcgt cgcgccgttt aggttcagga ccgtattcct tgttatttca tctactataa 5160
tccaatctat ccccattcat cccgattctt ctccacataa tccttgctca tgacaattgc 5220
cttaagttgt acctgtttgt tgcattttcc tggttctgag agattgcttt ctatgcagct 5280
ttgcagcggg gttgatgaga atgctactag tgcatctgca cagcttgtct ttgctcctat 5340
tgacgaatct tttgctgatg atgcaccact tttaccctca ggattccgtg tgataccact 5400
agatacaaaa atggtatgac tggtccataa tcttattcca gaggccttgt ctttcccatg 5460
ttggctcacc aattaaccgt tatgcactca aacctgcagg atgggccatc tgcaacacgc 5520
acgctcgacc ttgcatccgc ccttgaggtt ggaccaggtg gagcttcgcg tgcttcagtt 5580
gaagcatctg gcacatgtaa cagatcagtc ctgaccattg ctttccaatt ctcatacgag 5640
aaccaccttc gtgagagcgt ggcggcaatg gctaggagtt atgtcagagc tgtgatggca 5700
tccgtgcaga gggtggctgt ggcaatagct ccttctcgac ttggacccca gatcggaatg 5760
aagcaccctc cagcctctcc tgaggcgctt acacttgcta gctggattgg taggagctat 5820
aggtaagtaa aatacttatt tttagcaaaa gtctatctca ggttcttcat catcagaacc 5880
acctacacat tgccacatct gaagttgtga tcaatgatgt taatgcacta gttatttccg 5940
tggatctttc agggctcaca ccggagcaga tatccgttgg tctgataccg aagatgccga 6000
ttctcccctg gcgctcctgt ggaagcacag cgacgcaata ctgtgctgtt ctctgaaggt 6060
tagtagtgct gcccactaat tttatgctca tttcatcaca tgcatgttct ggaaaccttg 6120
ctaatggtca gtttggttat ctactggcag cctgctccta tgttcacctt cgccaacaat 6180
gccggcctcg acatccttga gacgacgctg gtcaacctcc aggacatctc gctcgagatg 6240
atcctggatg acgagggccg gaaggcgctg tgctcggagt tccccaagat catgcagcag 6300
gtaaaaccac cgtgtccctg cctcgcgaca atcggtgacg catccatcag agtactacca 6360
gaccatgagc aatgttcctg atcaagcctg tttggggtct gtctatcttc tttcagggtt 6420
tcacctatct ccctggaggc gtctgcaagt cgagcatggg gcggcaggca tcgtatgagc 6480
aggcggtggc gtggaaggtt cttagcgacg acgacgcgcc gcactgcctc gccttcatgc 6540
tcgtcaactg gaccttcatg tgatccacca tccatggttt ccagcttcca gctagtgctt 6600
ttgcttttgt gccattgtgg caaactgaac aaagacctga ataccaccac cgtattgtat 6660
taaacatatg cgtccataca tgcatggtgc ttgctttatc ctagctagtg ctagcacctg 6720
tgtgtatggt ctctccatgt ttgaagctta aaattttaga accctggttt ttttttttct 6780
gctgctgtgt ggatgaacaa gtttcaggac ctatgtatct ctatctatct atgctaatgc 6840
tatgaattgt gtgatgtgtg tatgctttga gcaatcggca ttgagttacc ttggttggtt 6900
tatgccgtgc tgaaccattg ttgatgcata tgtagctgaa ggaagtattt gctgaatgtg 6960
attcgtattc ctccaccgtt aaactaaaac aaaagcgttt ctacctatca aaaccggctc 7020
attatgctct cagcttaaac cattatcctt tgctgattgt ggtacatagt tgagggagcc 7080
caaatagact tttctcagtg ctacgtcctg ctcactgatc tcggccacga atagaatcgt 7140
<210> 2
<211> 855
<212> PRT
<213〉OsDLS1 amino acid
<400> 2
Met Ala Ala Ala Ala Val Gly Gly Arg Gly Glu Arg Leu Ser Ser Ser
1 5 10 15
Ser Pro Thr Ala Ala Ala Pro Gln Val Asp Ala Gly Lys Tyr Val Arg
20 25 30
Tyr Thr Pro Glu Gln Val Glu Ala Leu Glu Arg Val Tyr Thr Glu Cys
35 40 45
Pro Lys Pro Ser Ser Leu Arg Arg Gln Gln Leu Ile Arg Glu Cys Pro
50 55 60
Ile Leu Ser Asn Ile Glu Pro Lys Gln Ile Lys Val Trp Phe Gln Asn
65 70 75 80
Arg Arg Cys Arg Glu Lys Gln Arg Lys Glu Ala Ser Arg Leu Gln Thr
85 90 95
Val Asn Arg Lys Leu Asn Ala Met Asn Lys Leu Leu Met Glu Glu Asn
100 105 110
Asp Arg Leu Gln Lys Gln Val Ser Arg Leu Val Tyr Glu Asn Gly Tyr
115 120 125
Met Arg Thr Gln Leu His Asn Pro Ser Ala Ala Thr Thr Asp Thr Ser
130 135 140
Cys Glu Ser Val Val Thr Ser Gly Gln His His Gln Gln Gln Asn Pro
145 150 155 160
Ala Val Leu His Pro Gln Arg Asp Ala Asn Asn Pro Ala Gly Leu Leu
165 170 175
Ala Ile Ala Glu Glu Thr Leu Ala Glu Phe Met Ser Lys Ala Thr Gly
180 185 190
Thr Ala Val Glu Trp Val Gln Met Val Gly Met Lys Pro Gly Pro Asp
195 200 205
Ser Ile Gly Ile Ile Thr Val Ser His Asn Cys Ser Gly Val Ala Ala
210 215 220
Arg Ala Cys Gly Leu Val Ser Leu Glu Pro Thr Lys Val Ala Glu Ile
225 230 235 240
Leu Lys Asp Arg Pro Ser Trp Tyr Arg Asp Cys Arg Cys Val Asp Ile
245 250 255
Ile His Val Ile Pro Thr Gly Asn Gly Gly Thr Ile Glu Leu Ile Tyr
260 265 270
Met Gln Thr His Ala Pro Thr Thr Leu Ala Ala Pro Arg Asp Phe Trp
275 280 285
Thr Leu Arg Tyr Thr Ser Gly Leu Glu Asp Gly Ser Leu Val Ile Cys
290 295 300
Glu Arg Ser Leu Thr Gln Ser Thr Gly Gly Pro Ser Gly Pro Asn Thr
305 310 315 320
Leu Asn Phe Ile Arg Ala Glu Val Leu Pro Ser Gly Tyr Leu Ile Arg
325 330 335
Pro Cys Glu Gly Gly Gly Ser Met Ile Tyr Ile Val Asp His Val Asp
340 345 350
Leu Asp Ala Trp Ser Val Pro Glu Val Leu Arg Pro Leu Tyr Glu Ser
355 360 365
Pro Lys Ile Leu Ala Gln Lys Met Thr Ile Ala Ala Leu Arg His Ile
370 375 380
Arg Gln Ile Ala His Glu Ser Ser Gly Glu Ile Pro Tyr Gly Ala Gly
385 390 395 400
Arg Gln Pro Ala Val Phe Arg Thr Phe Ser Gln Arg Leu Ser Arg Gly
405 410 415
Phe Asn Asp Ala Val Ser Gly Phe Pro Asp Asp Gly Trp Ser Leu Leu
420 425 430
Ser Ser Asp Gly Ser Glu Asp Ile Thr Ile Ser Val Asn Ser Ser Pro
435 440 445
Asn Lys Leu Val Gly Ser His Val Ser Pro Asn Pro Leu Phe Ser Thr
450 455 460
Val Gly Gly Gly Ile Leu Cys Ala Lys Ala Ser Met Leu Leu Gln Asn
465 470 475 480
Val Pro Pro Ala Leu Leu Val Arg Phe Leu Arg Glu His Arg Ser Glu
485 490 495
Trp Ala Asp Pro Gly Val Asp Ala Tyr Ser Ala Ala Ser Leu Arg Ala
500 505 510
Ser Pro Tyr Ala Val Pro Gly Leu Arg Thr Ser Gly Phe Met Gly Ser
515 520 525
Gln Val Ile Leu Pro Leu Ala His Thr Leu Glu His Glu Glu Phe Leu
530 535 540
Glu Val Ile Arg Leu Glu Gly His Gly Phe Ser His Asp Glu Val Leu
545 550 555 560
Leu Ser Arg Asp Met Tyr Leu Leu Gln Leu Cys Ser Gly Val Asp Glu
565 570 575
Asn Ala Thr Ser Ala Ser Ala Gln Leu Val Phe Ala Pro Ile Asp Glu
580 585 590
Ser Phe Ala Asp Asp Ala Pro Leu Leu Pro Ser Gly Phe Arg Val Ile
595 600 605
Pro Leu Asp Thr Lys Met Asp Gly Pro Ser Ala Thr Arg Thr Leu Asp
610 615 620
Leu Ala Ser Ala Leu Glu Val Gly Pro Gly Gly Ala Ser Arg Ala Ser
625 630 635 640
Val Glu Ala Ser Gly Thr Cys Asn Arg Ser Val Leu Thr Ile Ala Phe
645 650 655
Gln Phe Ser Tyr Glu Asn His Leu Arg Glu Ser Val Ala Ala Met Ala
660 665 670
Arg Ser Tyr Val Arg Ala Val Met Ala Ser Val Gln Arg Val Ala Val
675 680 685
Ala Ile Ala Pro Ser Arg Leu Gly Pro Gln Ile Gly Met Lys His Pro
690 695 700
Pro Ala Ser Pro Glu Ala Leu Thr Leu Ala Ser Trp Ile Gly Arg Ser
705 710 715 720
Tyr Arg Ala His Thr Gly Ala Asp Ile Arg Trp Ser Asp Thr Glu Asp
725 730 735
Ala Asp Ser Pro Leu Ala Leu Leu Trp Lys His Ser Asp Ala Ile Leu
740 745 750
Cys Cys Ser Leu Lys Pro Ala Pro Met Phe Thr Phe Ala Asn Asn Ala
755 760 765
Gly Leu Asp Ile Leu Glu Thr Thr Leu Val Asn Leu Gln Asp Ile Ser
770 775 780
Leu Glu Met Ile Leu Asp Asp Glu Gly Arg Lys Ala Leu Cys Ser Glu
785 790 795 800
Phe Pro Lys Ile Met Gln Gln Gly Phe Thr Tyr Leu Pro Gly Gly Val
805 810 815
Cys Lys Ser Ser Met Gly Arg Gln Ala Ser Tyr Glu Gln Ala Val Ala
820 825 830
Trp Lys Val Leu Ser Asp Asp Asp Ala Pro His Cys Leu Ala Phe Met
835 840 845
Leu Val Asn Trp Thr Phe Met
850 855
<210> 3
<211> 2568
<212> DNA
<213〉OsDLS1 gene
<400> 3
atggcagcgg cggcggtggg gggaaggggg gagaggctgt cgtcctcctc cccgacggcg 60
gcggcgccgc aggtggacgc cgggaagtac gtccggtaca cgcccgagca ggtggaggcg 120
ctggagcggg tgtacaccga gtgccccaag cccagctcac tccgccgcca gcagctcatc 180
cgggagtgcc ccatcctcag caacatcgag cccaagcaga tcaaggtctg gtttcagaat 240
cgcagatgcc gggagaagca gcgcaaggag gcctcccggc tgcaaactgt gaaccggaag 300
ctgaatgcga tgaacaagct gttgatggag gaaaatgacc ggctgcagaa gcaggtgtcc 360
cgtctcgtct acgagaacgg ctacatgcgg actcaactgc acaatccttc tgcagccacc 420
acagatacaa gctgtgagtc tgtggtgaca agtggtcagc accatcaaca gcaaaaccca 480
gcagttctgc atccgcaaag ggatgcgaac aacccagcag gtcttctcgc tattgctgag 540
gagaccttgg cagagttcat gtcgaaggcg acaggaactg ctgtcgaatg ggtgcaaatg 600
gttgggatga agcctggtcc ggattccatt ggaatcatca ctgtttcgca caattgcagt 660
ggcgtagcag cacgagcttg cggcctggtg agccttgagc ccacaaaggt tgcagagatc 720
ctcaaggatc gcccctcttg gtaccgtgat tgccgatgcg tagatatcat ccatgttatc 780
cctacgggta acggcggaac cattgagcta atctacatgc agacacatgc accgacaact 840
ttggcggcac cacgcgactt ttggactctc cgctacacaa gtggacttga agatgggagt 900
cttgtgatct gtgaaaggtc attgactcag tccactggtg gcccatctgg gcctaacact 960
ctgaatttta tcagagccga ggtacttccc agtggttatc tgattcgacc atgtgaggga 1020
ggtggctcca tgatttacat tgttgatcat gttgatttgg atgcttggag tgtgcctgag 1080
gttcttcgac cgctctatga atctccaaag atccttgcac agaagatgac cattgcagca 1140
ttgcgacaca ttaggcaaat tgcgcatgag tcaagcggtg aaatccccta cggtgctggt 1200
cgccagcccg ctgttttcag gaccttcagt caaaggctca gcagaggttt caatgatgct 1260
gttagtggat ttccagatga tgggtggtct ttgttgagca gtgatggtag tgaggacatt 1320
acaatttcag taaactcgtc tccaaacaag cttgttggat cccatgtcag cccgaaccct 1380
ctgttttcta ctgttggagg tggcatcttg tgcgcaaagg catcaatgct acttcagaat 1440
gtacctcctg ctctacttgt gcgatttctg agggagcatc gttctgaatg ggctgatcct 1500
ggtgttgatg cttattctgc tgcttctttg cgagccagcc catatgcagt tccaggctta 1560
aggaccagcg ggtttatggg cagtcaggtt atactacccc tcgctcatac cttagagcat 1620
gaagagttct tggaggttat taggctcgaa ggacatggtt tcagccatga tgaggtgctt 1680
ctatcacggg atatgtacct tctacagctt tgcagcgggg ttgatgagaa tgctactagt 1740
gcatctgcac agcttgtctt tgctcctatt gacgaatctt ttgctgatga tgcaccactt 1800
ttaccctcag gattccgtgt gataccacta gatacaaaaa tggatgggcc atctgcaaca 1860
cgcacgctcg accttgcatc cgcccttgag gttggaccag gtggagcttc gcgtgcttca 1920
gttgaagcat ctggcacatg taacagatca gtcctgacca ttgctttcca attctcatac 1980
gagaaccacc ttcgtgagag cgtggcggca atggctagga gttatgtcag agctgtgatg 2040
gcatccgtgc agagggtggc tgtggcaata gctccttctc gacttggacc ccagatcgga 2100
atgaagcacc ctccagcctc tcctgaggcg cttacacttg ctagctggat tggtaggagc 2160
tatagggctc acaccggagc agatatccgt tggtctgata ccgaagatgc cgattctccc 2220
ctggcgctcc tgtggaagca cagcgacgca atactgtgct gttctctgaa gcctgctcct 2280
atgttcacct tcgccaacaa tgccggcctc gacatccttg agacgacgct ggtcaacctc 2340
caggacatct cgctcgagat gatcctggat gacgagggcc ggaaggcgct gtgctcggag 2400
ttccccaaga tcatgcagca gggtttcacc tatctccctg gaggcgtctg caagtcgagc 2460
atggggcggc aggcatcgta tgagcaggcg gtggcgtgga aggttcttag cgacgacgac 2520
gcgccgcact gcctcgcctt catgctcgtc aactggacct tcatgtga 2568

Claims (1)

1.HD-Zip III family member OsDLS1The application of gene in delaying the rice leaf aging, described OsDLS1The aminoacid sequence of genes encoding is shown in SEQ ID No.2.
CN 201210123259 2012-04-25 2012-04-25 Application of OsDLS1 gene in regulating and controlling rice leaf senescence and heading stage Expired - Fee Related CN102851299B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210123259 CN102851299B (en) 2012-04-25 2012-04-25 Application of OsDLS1 gene in regulating and controlling rice leaf senescence and heading stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210123259 CN102851299B (en) 2012-04-25 2012-04-25 Application of OsDLS1 gene in regulating and controlling rice leaf senescence and heading stage

Publications (2)

Publication Number Publication Date
CN102851299A CN102851299A (en) 2013-01-02
CN102851299B true CN102851299B (en) 2013-08-07

Family

ID=47398276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210123259 Expired - Fee Related CN102851299B (en) 2012-04-25 2012-04-25 Application of OsDLS1 gene in regulating and controlling rice leaf senescence and heading stage

Country Status (1)

Country Link
CN (1) CN102851299B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177019B (en) * 2015-09-01 2018-10-26 天津师范大学 Application of the OsHox10 genes in terms of plant type of rice builds up control leaf morphology

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415886C (en) * 2005-10-17 2008-09-03 华中农业大学 Promoting plant growth in poor environment by using paddy nucleoprotein gene OsSKIP1
CN100510076C (en) * 2006-06-14 2009-07-08 中国科学院遗传与发育生物学研究所 Leaf senile correlation gene and code protein and application thereof
CN101353376B (en) * 2008-08-22 2011-08-31 中国科学院遗传与发育生物学研究所 Protein related to rice ear sprouting period and encoding genes and uses thereof
CN101704885A (en) * 2009-12-14 2010-05-12 四川农业大学 Protein for controlling heading stage and seed size of paddy rice and encoding gene thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177019B (en) * 2015-09-01 2018-10-26 天津师范大学 Application of the OsHox10 genes in terms of plant type of rice builds up control leaf morphology

Also Published As

Publication number Publication date
CN102851299A (en) 2013-01-02

Similar Documents

Publication Publication Date Title
ES2553384T3 (en) Plants that have enhanced traits related to performance and a production procedure for them
CN109456982B (en) Application of rice OsMYB6 gene and encoding protein thereof in drought resistance and salt resistance
CN102766618B (en) Rice OsICL protein and coding gene thereof, and application of the two
CN111304216B (en) Rice low-temperature germination related gene OsDJC58 and application thereof
CN103387609A (en) Gene capable of improving anti-stress capability of plants and application thereof
CN106520798A (en) Identification and application of cotton drought-resistance related gene GhDRP1
CN101608184B (en) Clone of cotton mitogen activated protein kinase gene GhMAPK16 and application thereof
CN112813083B (en) Application of OsCIPK31 gene and coding protein in regulation and control of rice sheath blight disease resistance
CN112626078A (en) Corn transcription factor ZmGBF1 gene and expression vector and application thereof
CN102477435A (en) Method for improving plant drought resistance using Poncirus trifoliata transcription factor gene PtrABF
CN102851299B (en) Application of OsDLS1 gene in regulating and controlling rice leaf senescence and heading stage
CN108034662B (en) Application of wheat stripe rust PSTG _06025 gene in stripe rust prevention and treatment and cultivation method of stripe rust resistant wheat
CN103911384A (en) Gene for controlling Sclerotinia sclerotiorum (Lib.) de Bary of Brassica napus L. and use thereof
CN114525303B (en) Application of CaM2 gene as regulatory factor in improving plant resistance to insect pest stress
CN108559753B (en) Application of wheat stripe rust PSTG _17694 gene in stripe rust prevention and treatment and stripe rust resistant wheat cultivation method
CN109456983A (en) Soybean GmERF10 gene and its application
CN113493802B (en) Application of chrysanthemum zinc finger protein BBX19 and related factors thereof in adjusting drought stress tolerance
CN109097367A (en) A kind of rubber tree HbWRKY82 gene and its application
AU2007311982B2 (en) Environmental stress responsive promoter and method of tissue-specific gene expression using the same
CN108841831B (en) The application of florigen gene GmFT2a
CN109810984A (en) A kind of relevant Sesame SiGolS6 of drought resisting and its application
CN110183524B (en) Gene GmKRP2a for promoting soybean main root elongation, protein and application thereof
KR101485825B1 (en) Gene Implicated in Salt Stress Tolerance and Transformed Plants with the Same
CN107881179A (en) Rice heteroauxin amination synthase gene OsGH3.6 coded sequence and its application
CN112321695B (en) Application of OsSEC3B gene in controlling drought resistance of rice

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130807

Termination date: 20150425

EXPY Termination of patent right or utility model