CN102812628A - 谐振电路和谐振dc/dc转换器 - Google Patents

谐振电路和谐振dc/dc转换器 Download PDF

Info

Publication number
CN102812628A
CN102812628A CN2010800578257A CN201080057825A CN102812628A CN 102812628 A CN102812628 A CN 102812628A CN 2010800578257 A CN2010800578257 A CN 2010800578257A CN 201080057825 A CN201080057825 A CN 201080057825A CN 102812628 A CN102812628 A CN 102812628A
Authority
CN
China
Prior art keywords
resonant
resonant circuit
transformer
switch device
transformer switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800578257A
Other languages
English (en)
Other versions
CN102812628B (zh
Inventor
谢蒂尔·博伊森
罗阿尔·米勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eltek Valere AS
Original Assignee
Eltek Valere AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eltek Valere AS filed Critical Eltek Valere AS
Publication of CN102812628A publication Critical patent/CN102812628A/zh
Application granted granted Critical
Publication of CN102812628B publication Critical patent/CN102812628B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及谐振电路(20)。谐振电路包括三个谐振电路输入节点(11、12、13)、三个谐振电路输出节点(21、22、23)、变压器装置以及谐振回路装置。变压器装置(TR)包括彼此磁性连接的三个初级绕组(LP1、LP2、LP3)和三个次级绕组(LS1、LS2、LS3),其中,三个次级绕组(LS1、LS2、LS3)连接至三个谐振电路输出节点(21、22、23)。第一、第二和第三谐振回路装置(RT1、RT2、RT3)均连接在三个谐振电路输入节点(11、12、13)中的相应一个与初级绕组(LP1、LP2、LP3)中的相应一个之间。本发明还涉及包括这种谐振电路(20)的谐振DC-DC转换器。

Description

谐振电路和谐振DC/DC转换器
技术领域
本发明涉及谐振电路和谐振DC/DC转换器。
背景技术
在许多电力电子应用中,需要高效的电流隔离。由于安全、电压电平的变化或者功能性问题,会需要基于变压器的隔离。一些可再生能源需要电流隔离,以便正常工作;它们其中有具有不同类型的薄膜太阳能电池板。
太阳能电池板产生DC电力。为了将DC电力直接或经由AC电力分配网提供给AC负载,电力转换器***必须连接在太阳能电池板和AC负载之间,以将DC电力转换成AC电力。这种电力转换器***通常包括DC/DC转换器和DC/AC转换器,DC/AC转换器通常称为逆变器。此外,该***包括用于控制转换器的控制***以及诸如滤波器、熔断器、冷却***等其他元件。
太阳能电池板产生的DC输出电力随着太阳光强度和温度变化。在投资赢利的情况下,高转换效率是非常重要的,以使得从太阳能发电设备获得的能量最大化。
在许多应用中,串联谐振LLC DC/DC转换器已成为PWM型转换器的普遍替代物。谐振转换器的一个优点在于,其可被设计为在所有的负载和输入/输出电压条件下具有高效率,这是因为可在所有的工作条件下保持零电压切换。
随着输出电力增大,谐振电感器的尺寸和成本增大,这对单个谐振LLC转换器设定了实用限制。因此,可以以许多更小的串联谐振LLC转换器并联的方式提供高电力DC/DC转换器,而这由于大量的元件而会显著地增大成本。
本发明的目的在于提供一种具有高效率但低成本的谐振电路,并且该谐振电路在宽输入电压范围内具有高效率。而且,目的在于减少元件的数量,从而降低有关的复杂性以及成本。此外,本发明的目的在于降低转换器产生的纹波电流。
本发明的目的还在于提供具有这种谐振电路的谐振DC/DC转换器。
发明内容
本发明涉及谐振电路,该谐振电路包括三个谐振电路输入节点和三个谐振电路输出节点;变压器装置,包括彼此磁性连接的三个初级绕组以及三个次级绕组,其中三个次级绕组连接至三个谐振电路输出节点;第一、第二和第三谐振回路(resonant tank)装置,分别连接在三个谐振电路输入节点中的相应一个和初级绕组中的相应一个之间;其中三个初级线圈与三个谐振回路装置一起配置为△结构。
一方面,每个谐振回路装置包括谐振电感器和谐振电容器。
一方面,电路还包括第一、第二和第三变压器开关装置,用于在△结构和星形结构之间重新配置三个次级绕组。
一方面,第一变压器开关装置包括连接至第二变压器开关装置的第二端的共同端、连接至第一谐振输出节点的第一端以及连接至第三变压器开关装置的共同端的第二端;第二变压器开关装置包括连接至第三变压器开关装置的第二端的共同端、连接至第二谐振电路输出节点的第一端以及连接至第一变压器开关装置的共同端的第二端;第三变压器开关装置包括连接至第一变压器开关装置的第二端的共同端、连接至第三谐振电路输出节点的第一端以及连接至第二变压器开关装置的共同端的第二端;其中第一次级绕组连接在第一变压器开关装置的第一端和第二端之间,第二次级绕组连接在第二变压器开关装置的第一端和第二端之间,第三次级绕组连接在第三变压器开关装置的第一端和第二端之间,其中在各个变压器开关装置的第一端连接至其共同端时,变压器装置连接成△结构,并且其中当各个变压器开关装置的第二端连接至其共同端时,变压器装置连接成星形结构。
一方面,第一谐振电感器、第一谐振电容器以及第一初级绕组串联连接在第一谐振电路输入节点与第三谐振电路输入节点之间;第二谐振电感器、第二谐振电容器以及第二初级绕组串联连接在第二谐振电路输入节点与第一谐振电路输入节点之间;以及第三谐振电感器、第三谐振电容器以及第三初级绕组串联连接在第三谐振电路输入节点与第二谐振电路输入节点之间。
一方面,励磁电感器与每个初级绕组并联连接。
本发明还涉及谐振DC-DC转换器,包括第一输入端和第二输入端以及第一输出和第二输出端;开关装置,连接在第一输入端和第二输入端与谐振电路的三个谐振电路输入节点之间;整流器装置,连接在三个谐振电路输出节点与第一输出端和第二输出端之间;其中谐振电路包括变压器装置,该变压器装置包括彼此磁性连接的三个初级绕组以及三个次级绕组,其中三个次级绕组连接至三个谐振电路输出节点;其中谐振电路包括第一谐振回路装置、第二谐振回路装置和第三谐振回路装置,三个谐振回路装置分别连接在三个谐振电路输入节点中相应的一个与初级绕组中的相应一个之间;以及其中三个初级线圈与三个谐振回路装置一起配置为△结构。
一方面,每个谐振回路装置包括谐振电感器和谐振电容器。
一方面,谐振回路装置还包括第一、第二和第三变压器开关装置,用于在△结构和星形结构之间重新配置三个次级绕组。
一方面,开关装置包括六个开关装置,其中每个开关装置连接在第一输入端或第二输入端中的一个与一个相应的开关输出节点之间。
一方面,整流器装置为二极管整流器或同步整流器。
附图说明
下面,将参照附图描述本发明的实施方式,其中:
图1示出了将来自太阳能电池板的DC电力转换成提供给AC电力分配网或AC负载的AC电力的电力转换器***;
图2为图1的DC/DC转换器的示意性框图;
图3为谐振DC/DC转换器的第一实施方式;
图4为谐振DC/DC转换器的第二实施方式;
图5为谐振DC/DC转换器的第三实施方式;
图6为谐振DC/DC转换器的第四实施方式;
图7为谐振DC/DC转换器的第五实施方式;
图8示出了这种应用中通常使用的现有技术的转换器,包括并联相移90度的两个串联谐振LLC转换器;
图9a示出了图8中的电路的仿真结果;以及
图9b示出了图3中的电路的仿真结果。
具体实施方式
现在,参照图1。电力转换器***1连接在DC电源2与AC负载或AC分配网3之间。在此,DC电源为太阳能电池板或包括若干块太阳能电池板的模块,但也可以是任何其他类型的合适能源。
电力转换器***将输入DC电力转换成AC输出电力。电力转换器***包括DC/DC转换器和逆变器(DC/AC转换器)、滤波器等,如在以上描述中所提及的。此外,该***包括用于控制DC/DC转换器、逆变器和其他元件的控制***。图1中的***对于技术人员通常是熟知的。
本发明涉及图1中的DC/DC转换器。现在参照图2。图2示出了谐振DC/DC转换器,其包括在第一输入端IT1和第二输入端IT2与第一输出端OT1和第二输出端OT2之间彼此连接的开关装置10、谐振电路20以及整流器30。
开关装置10包括六个开关S1、S2、S3、S4、S5、S6,其中每个开关连接在第一输入端IT1或第二输入端IT2中一个与谐振电路的各个输入节点(下文中将称为谐振电路输入节点11、12、13)中的一个之间。
第一开关S1连接在第一输入端IT1和第一开关输出端11之间,第二开关S2连接在第一开关输出节点11和第二输入端IT2之间,第三开关S3连接在第一输入端IT1和第二开关输出端12之间,第四开关S4连接在第二开关输出节点12和第二输入端IT2之间,第五开关S5连接在第一输入端IT1和第三开关输出端13之间,第六开关S6连接在第三开关输出节点13和第二输入端IT2之间。开关S1、S2、S3、S4、S5和S6为MOSFET开关。可替换地,这些开关可为具有本征二极管的开关或者与反并联二极管并联连接的开关。
开关装置10进一步包括开关电容器CS1、CS2、CS3、CS4、CS5和CS6,分别与开关S1、S2、S3、S4、S5、S6并联。
开关S1、S2、S3、S4、S5和S6被图1中所示的控制***控制。应当注意,可通过频率、PWM或两者的混合来控制开关S1-S6。
如上所述,谐振电路20包括三个谐振电路输入节点11、12、13。谐振电路20还包括三个谐振电路输出节点21、22、23。
整流器装置30连接在三个谐振电路输出节点21、22、23与第一输出端OT1和第二输出端OT2之间。图2的整流器装置30是二极管整流器。
图2的整流器装置30包括第一二极管D1,其正极连接至第一整流器输入节点21并且其负极连接至第一输出端OT1;第二二极管D2,其正极连接至第二输出端OT2并且其负极连接至第一整流器输入节点21;第三二极管D3,其正极连接至第二整流器输入节点22并且其负极连接至第一输出端OT1;第四二极管D4,其正极连接至第二输出端OT2并且其负极连接至第二整流器输入节点22;第五二极管D5,其正极连接至第三整流器输入节点23并且其负极连接至第一输出端OT1;以及第六二极管D6,其正极连接至第二输出端OT2并且其负极连接至第三整流器输入节点23。
可替换地,整流器装置30可为同步整流器。
在图2中,示出了输出电容器Cout连接在第一输出端OT1与第二输出端OT2之间。
应当注意,开关装置10和整流器装置30被认为是为技术人员所熟知的。开关装置10中的开关的控制也被认为是为技术人员所熟知的。基于软切换或所谓的零电压切换(ZVS)来控制开关,其中,当接通/断开开关时,开关两端的电压等于或者接近0V。
现在,将参照图2描述根据本发明的谐振电路20。谐振电路包括变压器装置TR,该变压器装置包括彼此磁性连接的三个初级绕组LP1、LP2、LP3以及三个次级绕组LS1、LS2、LS3,其中三个次级绕组LS1、LS2、LS3连接至三个谐振电路输出节点21、22、23。此外,谐振电路20包括第一谐振回路装置RT1、第二谐振回路装置RT2和第三谐振回路装置RT3,这三个谐振回路装置分别连接在三个谐振电路输入节点11、12、13中的相应一个与初级绕组LP1、LP2、LP3中的相应一个之间。
变压器装置TR可以是三相变压器。在可替换的实施方式中,还可使用三个单相变压器。初级绕组LP1、LP2、LP3可配置成△结构。更确切地说,三个初级绕组LP1、LP2、LP3以及三个谐振回路装置RT1、RT2、RT3一起可配置成△结构,如下面将详细描述的。次级绕组LS1、LS2、LS3可配置成△结构或星形结构。
如下面将要描述的,谐振电路20包括第一变压器开关装置ST1、第二变压器开关装置ST2和第三变压器开关装置ST3,用于在△结构和星形结构之间重新配置三个次级绕组LS1、LS2、LS3。
此外,谐振电路20可包括第一变压器开关装置ST1、第二变压器开关装置ST2和第三变压器开关装置ST3,用于在△结构和星形结构之间重新配置三个初级绕组LP1、LP2、LP3。变压器开关装置ST1、ST2、ST3可由控制***控制。
各谐振回路装置RT1、RT2、RT3包括谐振电感器LR1、LR2、LR3和谐振电容器CR1、CR2、CR3。谐振回路装置和初级绕组LP1、LP2、LP3一起为开关装置10的零电压切换提供谐振。使用漏电感和其他寄生元件,谐振回路装置可部分或完全整合在变压器装置内。
第一输入端IT1和第二输入端IT2之间的电压称为Uin。第一输出端OT1和第二输出端OT2之间的电压称为Uout。
应当注意,谐振装置20的三个分支中的各个分支内的电压和/或电流具有相同的振幅,但是时间上偏离120电角度。因此,装置20与装置10和30一起是三相谐振DC/DC转换器。
还应当注意,在平常的操作期间,变压器装置的初级绕组/次级绕组两端的电压具有高频切换的矩形波形。因此,这些电压不是50/60Hz的正弦波电压。
第一实施方式
现在参照图3。此处,第一谐振回路装置RT1包括在第一谐振电路输入节点11和第三谐振电路输入节点13之间、与第一初级绕组LP1串联连接的第一谐振电感器LR1和第一谐振电容器CR1。第二谐振回路装置RT2包括在第二谐振电路输入节点12和第一谐振电路输入节点11之间、与第二初级绕组LP2串联连接的第二谐振电感器LR2和第二谐振电容器CR2。第三谐振回路装置RT3包括在第三谐振电路输入节点13和第二谐振电路输入节点12之间、与第三初级绕组LP3串联连接的第三谐振电感器LR3和第三谐振电容器CR3。
次级绕组LS1、LS2、LS3连接在谐振电路输出节点21、22、23之间。第一次级绕组LS1连接在第一整流器输入节点21与第二整流器输入节点22之间,第二次级绕组LS2连接在第二整流器输入节点22和第三整流器输入节点23之间,第三次级绕组LS3连接在第三整流器输入节点23和第一整流器输入节点21之间。
因此,变压器装置TR的初级侧连接成△结构,并且变压器装置TR的次级侧连接成△结构。应当注意,术语“初级侧”在此表示初级绕组以及谐振回路的元件。因此,三个初级绕组LP1、LP2、LP3以及三个谐振回路装置RT1、RT2、RT3一起配置成△结构。
应当注意,此处,如上所述,谐振回路装置还可部分或完全地整合在变压器装置内。
第二实施方式
现在参照图4。
此处,谐振回路装置和变压器装置的初级侧配置为与上述第一实施方式相同。
在此,次级绕组也连接在谐振电路输出节点21、22、23之间。图4中示出了次级共同节点24。第一次级绕组LS1连接在第一谐振电路输出节点21和次级共同节点24之间。第二次级绕组LS2连接在第二谐振电路输出节点22和次级共同节点24之间。第三次级绕组LS3连接在第三谐振电路输出节点23和次级共同节点24之间。
因此,变压器装置TR的初级侧连接成△结构,并且变压器装置TR的次级侧连接成星形结构。应当注意,术语“初级侧”此处表示初级绕组以及谐振回路的元件。因此,三个初级绕组LP1、LP2、LP3和三个谐振回路装置RT1、RT2、RT3一起配置成△结构。
次级共同节点24可视为星形结构变压器的共同点。应当注意,术语“次级”在此用于表示变压器装置的次级侧上的位置。
同样在此处,应当注意,谐振回路装置可部分或完全整合在变压器装置内。
第三实施方式
现在参照图5a和图5b。
此处,谐振回路装置和变压器装置的初级侧配置为与上述第一实施方式相同。
在此,次级绕组也连接在谐振电路输出节点21、22、23之间。然而,此处,谐振电路20包括第一变压器开关装置ST1、第二变压器开关装置ST2和第三变压器开关装置ST3,用于在△结构和星形结构之间重新配置三个次级绕组LS1、LS2、LS3。在图5b中示出了第一变压器开关装置ST1的术语。可通过控制***的控制,借助于继电器装置或任何其他开关装置来执行变压器开关装置ST1、ST2、ST3的切换。
第一变压器开关装置ST1包括连接至第二变压器开关装置ST2的第二端T2的共同端Tcom、连接至第一谐振电路输出节点21的第一端T1以及连接至第三变压器开关装置ST3的共同端Tcom的第二端T2。
第二变压器开关装置ST2包括连接至第三变压器开关装置ST3的第二端T2的共同端Tcom、连接至第二谐振电路输出节点22的第一端T1以及连接至第一变压器开关装置ST1的共同端Tcom的第二端T2。
第三变压器开关装置ST3包括连接至第一变压器开关装置ST1的第二端T2的共同端Tcom、连接至第三谐振电路输出节点23的第一端T1以及连接至第二变压器开关装置ST2的共同端Tcom的第二端T2。
第一次级绕组LS1连接在第一变压器开关装置ST1的第一端T1与第二端T2之间,第二次级绕组LS2连接在第二变压器开关装置ST2的第一端T1与第二端T2之间,以及第三次级绕组LS3连接在第三变压器开关装置ST3的第一端T1和第二端T2之间。
当各个变压器开关装置的第一端T1连接至它们的共同端Tcom时,变压器装置TR连接成△-△结构。当各个变压器开关装置的第二端T2连接至它们的共同端Tcom时,变压器装置TR连接成△-星形结构。
变压器开关装置ST1、ST2、ST3由控制***控制。例如,输入电压Uin可被测量出,并且作为至控制***的输入来提供。如果测出的输入电压Uin低于某个阈值,那么切换变压器开关装置ST1、ST2、ST3,以使变压器装置的次级侧连接成星形结构。如果测出的输入电压Uin高于某个阈值,那么切换变压器开关装置ST1、ST2、ST3,以使变压器装置的次级侧连接成△结构。因此,输出电压Uout减小。
第四实施方式
现在参照图6。
谐振电路20在此与第二实施方式(图4)的谐振电路20相似。
此处,整流器装置30并非二极管整流器。代替地,整流器装置30是具有六个开关S7、S8、S9、S10、S11、S12而非六个二极管的同步整流器。整流器装置包括六个开关电容器CS7、CS8、CS9、CS10、CS11和CS12,每个电容器与六个开关中的一个开关并联连接。
此外,这些开关为MOSFET开关。可替换地,这些开关可为具有本征二极管的开关或者与反并联二极管并联连接的开关。
应当注意,这种整流器装置30可用于上述任一实施方式以及以下的任一实施方式中。此外,可用于变压器装置的任何结构(△-△、△-星形)。
也应当注意,利用这种整流器装置,能够实现双向电力流,即电力可从图6中所定义的输入端流到输出端,也可从输出端流到输入端。这种转换器通常被称为双向DC-DC转换器。
第五实施方式
现在参照图7。谐振电路20在此与图6和图4的谐振电路相似。此处,谐振电路20进一步包括励磁电感器Lm1、Lm2、Lm3,分别与初级绕组LP1、LP2、LP3并联连接。
第一励磁电感器Lm1与第一初级绕组LP1并联连接。第二励磁电感器Lm2与第二初级绕组LP2并联连接。第三励磁电感器Lm3与第三初级绕组LP3并联连接。励磁电感器会影响谐振电路的谐振。
励磁电感器可为磁性耦合电感器(三相),其可以是三个单电感器或者其可完全地整合在变压器装置内。
试验结果
如引言中所述,对于这种谐振DC/DC转换器,最常见的现有技术电路为两个串联的谐振LLC转换器,如图8中所述。
通过使用来自线性技术(Linear Technology)(http://www.linear.com)的LTspice,进行了图8中的现有技术的电路仿真。在仿真时,用于仿真的输入值和输出值为Uout=350Vdc,Iout=17Adc,Uin=350Vdc。
图9a中示出了仿真的结果。此处,示出了输入纹波电流IV2在此具有约10A的峰峰值。
以与上面相同的方式还对图3中所示的电路进行了相应的仿真,具有相同的输入值和输出值。
在图9b中示出了该仿真的结果。根据图9b的结果,输入纹波电流IV1在此具有约5A的峰峰值。
因此,与现有技术相比,本发明明显地降低了输入纹波电流。
而且,可看出,图3的转换器与图8的转换器相比,具有的元件少很多。根据谐振回路装置和变压器装置的三相设计,减少了每个分支的电流,这将减少损耗。
关于输入电压/输出电压的可控比,还实现了灵活性大的电路。流过谐振回路的低电流非常适合于高阻抗谐振回路。此外,对于低输入电压,对变压器装置和谐振回路装置进行重新配置,以例如从△-△结构变为△-星形结构,这就进一步提高了该可控比。
低纹波电流还消除了对电解电容器的需要。
应当注意,通过停止在初级侧的三个分支中的一个分支的切换,比如通过一直保持开关S5和S6断开,可进一步在低功率下提高高效率。于是,转换器将用作准全桥谐振转换器。

Claims (11)

1.一种谐振电路(20),包括:
三个谐振电路输入节点(11、12、13)和三个谐振电路输出节点(21、22、23);
变压器装置(TR),包括彼此磁性连接的三个初级绕组(LP1、LP2、LP3)和三个次级绕组(LS1、LS2、LS3),其中三个次级绕组(LS1、LS2、LS3)连接至三个谐振电路输出节点(21、22、23);
第一谐振回路装置、第二谐振回路装置和第三谐振回路装置(RT1、RT2、RT3),分别连接在三个谐振电路输入节点(11、12、13)中的相应一个与三个初级绕组(LP1、LP2、LP3)中的相应一个之间,
其中,三个初级绕组(LP1、LP2、LP3)以及三个谐振回路装置(RT1、RT2、RT3)一起配置成△结构。
2.根据权利要求1所述的谐振电路,其中,各谐振回路装置(RT1、RT2、RT3)包括谐振电感器(LR1、LR2、LR3)和谐振电容器(CR1、CR2、CR3)。
3.根据权利要求1或2所述的谐振电路,还包括用于在△结构和星形结构之间重新配置三个次级绕组(LS1、LS2、LS3)的第一变压器开关装置、第二变压器开关装置和第三变压器开关装置(ST1、ST2、ST3)。
4.根据权利要求3所述的谐振电路,其中:
第一变压器开关装置(ST1)包括连接至第二变压器开关装置(ST2)的第二端(T2)的共同端(Tcom)、连接至第一谐振输出节点(21)的第一端(T1)以及连接至第三变压器开关装置(ST3)的共同端(Tcom)的第二端(T2);
第二变压器开关装置(ST2)包括连接至第三变压器开关装置(ST3)的第二端(T2)的共同端(Tcom)、连接至第二谐振电路输出节点(22)的第一端(T1)以及连接至第一变压器开关装置(ST1)的共同端(Tcom)的第二端(T2);
第三变压器开关装置(ST3)包括连接至第一变压器开关装置(ST1)的第二端(T2)的共同端(Tcom)、连接至第三谐振电路输出节点(23)的第一端(T1)以及连接至第二变压器开关装置(ST2)的共同端(Tcom)的第二端(T2);
其中,第一次级绕组(LS1)连接在第一变压器开关装置(ST1)的第一端和第二端(T1、T2)之间,第二次级绕组(LS2)连接在第二变压器开关装置(ST2)的第一端和第二端(T1、T2)之间,第三次级绕组(LS3)连接在第三变压器开关装置(ST3)的第一端和第二端(T1、T2)之间,
其中,当各个变压器开关装置的第一端(T1)连接至其共同端(Tcom)时,所述变压器装置(TR)连接成△结构,并且其中当各个变压器开关装置的第二端(T2)连接至其共同端(Tcom)时,所述变压器装置(TR)连接成星形结构。
5.根据权利要求2所述的谐振电路,其中:
第一谐振电感器(LR1)、第一谐振电容器(CR1)以及第一初级绕组(LP1)串联连接在第一谐振电路输入节点(11)和第三谐振电路输入节点(13)之间;
第二谐振电感器(LR2)、第二谐振电容器(CR2)以及第二初级绕组(LP2)串联连接在第二谐振电路输入节点(12)和第一谐振电路输入节点(11)之间;以及
第三谐振电感器(LR3)、第三谐振电容器(CR3)以及第三初级绕组(LP3)串联连接在第三谐振电路输入节点(13)和第二谐振电路输入节点(12)之间。
6.根据权利要求2所述的谐振电路,其中,三个励磁电感器(Lm 1、Lm2、Lm3)与三个初级绕组(LP1、LP2、LP3)各自并联连接。
7.一种谐振DC-DC转换器,包括:
第一输入端和第二输入端(IT1、IT2)以及第一输出端和第二输出端(OT1、OT2);
开关装置(10),连接在第一输入端和第二输入端(IT1、IT2)与谐振电路(20)的三个谐振电路输入节点(11、12、13)之间;
整流器装置(30),连接在三个谐振电路输出节点(21、22、23)与第一输出端和第二输出端(OT1、OT2)之间;
其中,谐振电路(20)包括变压器装置(TR),该变压器装置包括彼此磁性连接的三个初级绕组(LP1、LP2、LP3)和三个次级绕组(LS1、LS2、LS3),其中三个次级绕组(LS1、LS2、LS3)连接至三个谐振电路输出节点(21、22、23);
其中,谐振电路(20)包括第一谐振回路装置、第二谐振回路装置和第三谐振回路装置(RT1、RT2、RT3),分别连接在三个谐振电路输入节点(11、12、13)中的相应一个与三个初级绕组(LP1、LP2、LP3)中的相应一个之间;以及
其中,三个初级绕组(LP1、LP2、LP3)以及三个谐振回路装置(RT1、RT2、RT3)一起配置成△结构。
8.根据权利要求7所述的转换器,其中,各谐振回路装置(RT1、RT2、RT3)包括谐振电感器(LR1、LR2、LR3)和谐振电容器(CR1、CR2、CR3)。
9.根据权利要求7至8中任一项所述的转换器,还包括用于在△结构和星形结构之间重新配置三个次级绕组(LS1、LS2、LS3)的第一变压器开关装置、第二变压器开关装置和第三变压器开关装置(ST1、ST2、ST3)。
10.根据权利要求7至9中任一项所述的转换器,其中,开关装置(10)包括六个开关装置(S 1、S2、S3、S4、S5、S6),其中每个开关装置连接在第一输入端或第二输入端(IT1、IT2)中的一个与各个开关输出节点(11、12、13)中的一个之间。
11.根据权利要求8至10中任一项所述的转换器,其中,整流器装置(30)为二极管整流器或同步整流器。
CN201080057825.7A 2009-12-17 2010-12-09 谐振电路和谐振dc/dc转换器 Active CN102812628B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US28721009P 2009-12-17 2009-12-17
GB0922081.5 2009-12-17
US61/287,210 2009-12-17
GB0922081A GB2476278A (en) 2009-12-17 2009-12-17 Resonant circuit with transformer having three sets of windings
PCT/NO2010/000453 WO2011074976A2 (en) 2009-12-17 2010-12-09 Resonant circuit and resonant dc/dc converter

Publications (2)

Publication Number Publication Date
CN102812628A true CN102812628A (zh) 2012-12-05
CN102812628B CN102812628B (zh) 2015-06-03

Family

ID=41717130

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080057825.7A Active CN102812628B (zh) 2009-12-17 2010-12-09 谐振电路和谐振dc/dc转换器
CN201080057823.8A Active CN103004074B (zh) 2009-12-17 2010-12-10 谐振电路和谐振dc/dc转换器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201080057823.8A Active CN103004074B (zh) 2009-12-17 2010-12-10 谐振电路和谐振dc/dc转换器

Country Status (8)

Country Link
US (2) US9240723B2 (zh)
EP (2) EP2514086A2 (zh)
CN (2) CN102812628B (zh)
AU (2) AU2010330952A1 (zh)
CA (2) CA2783557A1 (zh)
GB (1) GB2476278A (zh)
IN (2) IN2012DN05063A (zh)
WO (2) WO2011074976A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337961A (zh) * 2013-06-19 2013-10-02 南京航空航天大学 一种高电压变比双向直流变换器及其控制方法
CN103683964A (zh) * 2013-12-20 2014-03-26 华为技术有限公司 谐振式双向变换器及不间断电源装置、及控制方法
CN105743356A (zh) * 2014-12-09 2016-07-06 比亚迪股份有限公司 一种llc谐振变换器
CN106469984A (zh) * 2015-08-21 2017-03-01 艾默生网络能源有限公司 一种功率变换器
CN106469985A (zh) * 2015-08-21 2017-03-01 艾默生网络能源有限公司 一种功率变换器
CN109874380A (zh) * 2016-07-07 2019-06-11 华为技术有限公司 四开关三相dc-dc谐振转换器
CN110417267A (zh) * 2018-04-26 2019-11-05 比亚迪股份有限公司 Dcdc变换器、车载充电机和电动车辆

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476278A (en) 2009-12-17 2011-06-22 Eltek Valere As Resonant circuit with transformer having three sets of windings
WO2012159663A1 (de) * 2011-05-24 2012-11-29 Siemens Aktiengesellschaft Elektrische speiseeinrichtung
DK2670041T3 (en) * 2012-06-01 2015-04-20 Aeg Power Solutions Gmbh Power supply device with an inverter for generating N-phase alternating current
CN103490636B (zh) * 2012-06-11 2016-06-22 比亚迪股份有限公司 用于开关电源的准谐振控制方法、***及装置
US8824179B2 (en) * 2012-08-14 2014-09-02 Rudolf Limpaecher Soft-switching high voltage power converter
EP2770623B1 (en) * 2013-02-20 2020-04-15 Nxp B.V. Resonant converter
KR101333586B1 (ko) * 2013-06-14 2013-12-02 한국전기연구원 광범위한 부하 범위를 가지는 고정밀 직류/직류 공진형 컨버터
CN105099230B (zh) 2014-04-16 2018-07-31 华为技术有限公司 谐振变换器和其同步整流变换电路
CN106329928B (zh) * 2015-06-26 2018-11-02 光宝科技股份有限公司 谐振转换器
CN104953881B (zh) * 2015-07-17 2018-12-25 南京矽力杰半导体技术有限公司 驱动电路及应用其的无线电能发射端
JP6512064B2 (ja) * 2015-10-29 2019-05-15 Tdk株式会社 スイッチング電源装置
JP6617588B2 (ja) * 2016-02-02 2019-12-11 Tdk株式会社 スイッチング電源装置
GB201602044D0 (en) 2016-02-04 2016-03-23 Eltek As Bidirectional DC-DC resonant converter
US9871450B2 (en) * 2016-04-25 2018-01-16 Vanner, Inc. Isolated step-up converter
CN107078642B (zh) * 2016-05-13 2020-04-03 华为技术有限公司 谐振dc-dc转换器
JP6844253B2 (ja) * 2016-12-27 2021-03-17 富士電機株式会社 電源装置、一次ブロックおよび二次ブロック
US10186949B1 (en) * 2017-11-09 2019-01-22 International Business Machines Corporation Coupled-inductor DC-DC power converter
US10790081B2 (en) 2018-05-21 2020-09-29 Virginia Tech Intellectual Properties, Inc. Interleaved converters with integrated magnetics
US11404967B2 (en) 2018-06-12 2022-08-02 Virginia Tech Intellectual Properties, Inc. Interleaved converters with integrated magnetics
US10873265B2 (en) 2018-06-12 2020-12-22 Virginia Tech Intellectual Properties, Inc. Bidirectional three-phase direct current (DC)/DC converters
TWI670923B (zh) * 2018-09-12 2019-09-01 國立臺灣科技大學 三相多階式串聯-串聯諧振式轉換器
CN109444524B (zh) * 2018-09-30 2021-06-08 广州金升阳科技有限公司 一种原边绕组谐振波谷采样电路及采样方法
US10483862B1 (en) 2018-10-25 2019-11-19 Vanner, Inc. Bi-directional isolated DC-DC converter for the electrification of transportation
TWI685187B (zh) * 2018-11-15 2020-02-11 亞力電機股份有限公司 雙向直流對直流轉換器
TWI685169B (zh) * 2018-11-15 2020-02-11 亞力電機股份有限公司 雙向儲能系統
CN110401352A (zh) * 2019-07-12 2019-11-01 国创新能源汽车能源与信息创新中心(江苏)有限公司 一种双向谐振变换器
CN111030152B (zh) * 2019-12-18 2021-10-12 山东鲁软数字科技有限公司智慧能源分公司 一种储能变流器***及其控制方法
US11018589B1 (en) * 2020-02-05 2021-05-25 Smpc Technologies Ltd Systems, methods, and apparatus for balanced current sharing in paralleled resonant converters
US11404966B2 (en) * 2020-07-02 2022-08-02 Delta Electronics, Inc. Isolated multi-phase DC/DC converter with reduced quantity of blocking capacitors
CN114070076B (zh) * 2020-08-04 2023-08-08 明纬(广州)电子有限公司 直流电压转换装置
CN115589149A (zh) * 2021-07-06 2023-01-10 光宝电子(广州)有限公司 三相交错谐振变换器和电源电路
US20230122794A1 (en) * 2021-10-20 2023-04-20 Virginia Tech Intellectual Properties, Inc. Three-phase llc converters with integrated magnetics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268767A (ja) * 1992-03-17 1993-10-15 Toyota Autom Loom Works Ltd プッシュプルdc−dcコンバータ
US20080012538A1 (en) * 2006-07-13 2008-01-17 Ocean Power Technologies, Inc. Coil switching of an electric generator
CN101821931A (zh) * 2007-12-18 2010-09-01 三垦电气株式会社 Dc/dc转换器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573112A (en) * 1980-06-04 1982-01-08 Fujitsu Ltd Output voltage switching system
JPS6116498A (ja) 1984-07-03 1986-01-24 Toshiba Corp X線高電圧発生装置
JPH0739152A (ja) * 1993-07-23 1995-02-07 Victor Co Of Japan Ltd 電源装置
JP4406967B2 (ja) * 1999-09-03 2010-02-03 サンケン電気株式会社 直流電源装置
US7116080B2 (en) * 2004-07-07 2006-10-03 Visteon Global Technologies, Inc. Alternator rectifier with coil-sensor controlled MOSFETs
US7830685B2 (en) * 2005-01-28 2010-11-09 Koninklijke Philips Electronics N.V. Method modular power supply for x-ray tubes and method thereof
KR100547289B1 (ko) * 2005-05-18 2006-01-26 주식회사 피에스텍 간헐 모드로 동작하는 동기 정류형 직렬 공진 컨버터
US8259477B2 (en) * 2007-05-30 2012-09-04 The Regents Of The University Of California Multiphase resonant converter for DC-DC applications
KR20100054846A (ko) * 2007-09-28 2010-05-25 액세스 비지니스 그룹 인터내셔날 엘엘씨 다중 위상 유도 전력 공급 시스템
EP2299580A3 (en) * 2009-06-24 2011-07-27 STMicroelectronics S.r.l. Multi-phase resonant converter and method of controlling it
GB2476278A (en) 2009-12-17 2011-06-22 Eltek Valere As Resonant circuit with transformer having three sets of windings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268767A (ja) * 1992-03-17 1993-10-15 Toyota Autom Loom Works Ltd プッシュプルdc−dcコンバータ
US20080012538A1 (en) * 2006-07-13 2008-01-17 Ocean Power Technologies, Inc. Coil switching of an electric generator
CN101821931A (zh) * 2007-12-18 2010-09-01 三垦电气株式会社 Dc/dc转换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DRUMMOND, G ET AL: "three-phase resonant DC converter for TWTs", 《VACUUM ELECTRONICS CONFERENCE》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337961A (zh) * 2013-06-19 2013-10-02 南京航空航天大学 一种高电压变比双向直流变换器及其控制方法
CN103337961B (zh) * 2013-06-19 2015-10-28 南京航空航天大学 一种高电压变比双向直流变换器的控制方法
CN103683964A (zh) * 2013-12-20 2014-03-26 华为技术有限公司 谐振式双向变换器及不间断电源装置、及控制方法
CN105743356A (zh) * 2014-12-09 2016-07-06 比亚迪股份有限公司 一种llc谐振变换器
CN105743356B (zh) * 2014-12-09 2019-01-11 比亚迪股份有限公司 一种llc谐振变换器
CN106469984A (zh) * 2015-08-21 2017-03-01 艾默生网络能源有限公司 一种功率变换器
CN106469985A (zh) * 2015-08-21 2017-03-01 艾默生网络能源有限公司 一种功率变换器
CN106469984B (zh) * 2015-08-21 2019-06-04 维谛技术有限公司 一种功率变换器
CN109874380A (zh) * 2016-07-07 2019-06-11 华为技术有限公司 四开关三相dc-dc谐振转换器
US10715050B2 (en) 2016-07-07 2020-07-14 Huawei Technologies Co., Ltd. Four-switch three phase DC-DC resonant converter
CN110417267A (zh) * 2018-04-26 2019-11-05 比亚迪股份有限公司 Dcdc变换器、车载充电机和电动车辆
US11404965B2 (en) 2018-04-26 2022-08-02 Byd Company Limited DC-DC converter, on-board charger, and electric vehicle

Also Published As

Publication number Publication date
CN103004074B (zh) 2015-05-27
US20130201725A1 (en) 2013-08-08
IN2012DN05063A (zh) 2015-10-09
AU2010330953A2 (en) 2013-11-28
IN2012DN05064A (zh) 2015-10-09
GB2476278A (en) 2011-06-22
WO2011074977A3 (en) 2012-03-15
CA2783557A1 (en) 2011-06-23
AU2010330952A1 (en) 2012-08-09
WO2011074976A3 (en) 2012-03-08
EP2517346A2 (en) 2012-10-31
US20120320638A1 (en) 2012-12-20
GB0922081D0 (en) 2010-02-03
EP2517346B1 (en) 2016-04-13
CA2783800A1 (en) 2011-06-23
WO2011074977A2 (en) 2011-06-23
US9240723B2 (en) 2016-01-19
WO2011074976A2 (en) 2011-06-23
EP2514086A2 (en) 2012-10-24
CN102812628B (zh) 2015-06-03
CN103004074A (zh) 2013-03-27
AU2010330953A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
CN102812628B (zh) 谐振电路和谐振dc/dc转换器
Falcones et al. Topology comparison for solid state transformer implementation
Jovcic et al. Lcl dc/dc converter for dc grids
EP2571154B1 (en) PV inverter with input parallel output series connected flyback converters feeding a fullbridge grid converter
US20130336013A1 (en) DC-to-DC Converter and Method for Operating a DC-to-DC Converter
Cao et al. A scalable electronic-embedded transformer, a new concept toward ultra-high-frequency high-power transformer in DC–DC converters
Oliveira et al. A bidirectional single stage AC-DC converter with high frequency isolation feasible to DC distributed power systems
CN104601003A (zh) 一种基于模块化多电平变换器的电力电子变压器
Sedaghati et al. Analysis and implementation of a modular isolated zero‐voltage switching bidirectional dc–dc converter
Lee et al. Reduction of input voltage/current ripples of boost half-bridge DC-DC converter for photovoltaic micro-inverter
US11611220B2 (en) Systems and methods for connecting energy sources to power distribution network
Viktor et al. Intelligent transformer: Possibilities and challenges
CN104541443B (zh) 用于非平衡的两相dc电网的整流电路和方法
Kado et al. Implementation and performance of three-way isolated DC/DC converter using SiC-MOSFETs for power flow control
Tatusch et al. Hardware and control design considerations for a mobile 1 MW Input-Series Output-Parallel (ISOP) DC-DC converter in Medium Voltage range
US11463011B1 (en) High voltage converter with switch modules parallel driving a single transformer primary
Hong et al. Common mode current minimization of capacitor-coupled dual-active-bridge for SIPO MVDC-LVDC distribution converter
Kasashima et al. Implementation and power-loss characteristics of 400-V, 10-kW, 20-kHz three-way isolated DC/DC converter as a power routing unit for constructing microgrid systems
CN109194147B (zh) 一种具有冗余功能的智能微网用电力电子变压器
Honorio et al. Modular transformer in isolated multiport power converters
Mishra et al. Design of Bipolar Interface Converter for Purely DC Microgrid with Minimally Processed Maximum Power Point Operation of Photovoltaics
Naveen et al. An Intelligent Bidirectional Solid State Transformer with Bidirectional Power Flow for Smart Grid Application
Guo et al. A full-bridge current-source isolated DC/DC converter with reduced number of switches and voltage stresses for photovoltaic applications
CN103141020A (zh) 双开关变流器
Oliveira Júnior et al. A bidirectional single stage AC-DC converter with high frequency isolation feasible to DC distributed power systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant