CN102803494A - Rna介导的植物中基因表达的诱导 - Google Patents

Rna介导的植物中基因表达的诱导 Download PDF

Info

Publication number
CN102803494A
CN102803494A CN2010800273704A CN201080027370A CN102803494A CN 102803494 A CN102803494 A CN 102803494A CN 2010800273704 A CN2010800273704 A CN 2010800273704A CN 201080027370 A CN201080027370 A CN 201080027370A CN 102803494 A CN102803494 A CN 102803494A
Authority
CN
China
Prior art keywords
plant
nucleic acid
expression
promotor
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800273704A
Other languages
English (en)
Inventor
V·J·卡多萨
P·任
L·W·塔尔顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Plant Science Co GmbH
Original Assignee
BASF Plant Science Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Plant Science Co GmbH filed Critical BASF Plant Science Co GmbH
Publication of CN102803494A publication Critical patent/CN102803494A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8291Hormone-influenced development
    • C12N15/8293Abscisic acid [ABA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8291Hormone-influenced development
    • C12N15/8294Auxins

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Endocrinology (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于植物遗传学领域,并提供了在植物或其部分中提高靶基因的基因表达的方法。另外,本发明涉及修饰植物特异性启动子的特异性和改造非编码小活化RNA(sncaRNA)以在植物或其部分中提高靶基因表达的方法。本发明也提供在植物中鉴定能够在植物或其部分中提高基因表达的sncaRNA及其初级转录物的方法。

Description

RNA介导的植物中基因表达的诱导
发明描述
在植物和其他真核生物中有许多因素影响基因表达。最近,发现21-26个核苷酸的小RNA是真核基因表达的重要抑制物。已知的小调控RNA分为2个基本的种类:短干扰RNA(siRNA)和微小RNA(microRNA)。
微小RNA作为进化上保守的、基于RNA的基因表达调控物出现在动物和植物中。微小RNA(约18-25nt)由从非蛋白质编码基因转录而来的具有茎环结构的较大前体,微小RNA前体产生。
目前已知的植物微小RNA抑制大量在发育过程中发挥功能的基因的表达,表明基于微小RNA的调控是在控制生长和发育的途径中不可或缺的。抑制基因表达的植物微小RNA通常包含与靶位点近乎完全的互补性,靶位点最常出现在mRNA的蛋白质编码区(Llave C等人(2002)Science 297,2053 2056;Rhoades MW等人(2002)Cell 110,513 520)。因此,在植物中大多数抑制基因表达的植物微小RNA的功能是引导靶RNA的切割(Jones-Rhoades MW和Bartel DP(2004)Mol.Cell 14,787 799;Kasschau KD等人(2003)Dev.Cell 4,205 217)。与之相对,大多数动物微小RNA的功能是在翻译或共翻译水平上抑制表达(Ambros V(2003)Cell 113,673 676;Aukerman MJ和Sakai H(2003)Plant Cell 15,27302741;Olsen PH和Ambros V(1999)Dev.Biol.216,671 680;Seggerson K等人(2002)Dev.Biol.243,215225)。尽管许多动物靶mRNA编码发育控制因子,微小RNA或靶在植物和动物之间不保守(Ambros V(2003)Cell 113,673 676)。
除了抑制基因表达的微小RNA以外,植物也产生第二类表达调控RNA,它们是不同的内源siRNA组。siRNA与微小RNA的区别在于siRNA由双链RNA产生,其中需要RNA依赖性RNA聚合酶(RDR)的活性。
直到最近一直认为微小RNA和siRNA在植物和动物中充当转录后负调控物的功能(Bartel D(2004)Cell 116,281 297;He L和Hannon GJ(2004)Nat.Rev.Genet.5,522 531)。
最近已在人细胞中证明,靶向基因启动子区的小siRNA和微小RNA能够诱导或提高相应基因的表达(Li L-C等人(2006)PNAS 103(46),17337-17342;Janowski B A等人(2007)nature chemical biology 3,166-173;Place RF等人(2008)PNAS 105(5),1608-1613)。
仅有少量公开的专利提及小RNA在提高基因表达中的用途。US2005/0226848公开了dsRNA分子在哺乳动物体外细胞***中调节基因表达的用途,其中调节包括提高基因表达;WO 07/086990描述了在哺乳动物细胞中提高靶基因的表达,通过使细胞接触与所述靶基因启动子区互补的12-28bp寡聚物进行;WO 06/113246描述了小活化RNA分子及其在哺乳动物细胞中的用途。所有提到的申请提及小活化RNA分子在动物细胞中的用途。在植物中没有提及这样的应用。
小RNA介导的基因表达活化(提高和/或诱导)(RNAa)机制尚不清楚。Place等人(2008)显示,对哺乳动物而言,小RNA序列与靶向的DNA序列的互补性是发挥功能所必需的,且RNAa导致染色质中的变化。他们推测,小RNA和相应的互补DNA序列的结合是RNAa所必需的,且就此点而言,小RNA的功能类似靶向基因启动子中的互补基序的转录因子。作者讨论的另一个模型是,细胞可能产生抑制基因表达的靶启动子区的RNA拷贝。通过互补微小RNA与启动子转录物的相互作用诱导或提高基因表达。
Shibuya等人(2009)已证明植物基因pMADS3的表达提高,这是通过使用针对所述基因的内含子的100-1000bp dsRNAi构建体进行打靶实现的。DsRNAi分子诱发了一种机制,其导致从前体产生21-24个siRNA核苷酸分子,其涉及一组与例如微小RNA的加工中涉及的蛋白质截然不同的蛋白质。来源于较大的dsRNA分子的siRNA分子是随机产生的且因此从1个dsRNA分子产生一批在其核苷酸序列中有差异的siRNA。Shibuya及同事显示,在dsRNA分子靶向的内含子中存在pCG元件的甲基化并推测来源于dsRNA分子的siRNA分子触发了同源DNA序列中的甲基化,其导致pMADS3基因表达的诱导。作者声称,他们观察到的机制与在人细胞中观察到的RNAa机制不同,因为在后者中发现组蛋白修饰而不是DNA甲基化。他们推断,在植物中dsRNAi分子调控基因表达的机制和在人细胞中观察到的RNAa机制不同。
相对于在植物中观察到的使用dsRNA分子靶向调控性内含子提高基因表达,Aufsatz等人(2002)证明,当在植物中通过dsRNA分子靶向启动子序列时的基因沉默。他们显示,在此机制中涉及DNA甲基化且在启动子区中与dsRNA序列同一的所有C残基都被甲基化。
小RNA调控基因表达的机制在微小RNA和siRNA中截然不同。它们涉及不同的蛋白质并导致对DNA、组蛋白和染色质的不同影响。此外,在动物和植物之间涉及的蛋白质和观察到的机制的差异使得不可能从在一个物种中发现的观察结果推论到另一个物种上。
在植物生物技术中始终需要在植物中精确地提高、诱导和/或活化基因表达。目前可使用的方法例如启动子和增强子的使用经常缺乏特异性和/或表达不足以用于特定应用。本申请满足了此需求。
令人惊讶地,我们观察到将与植物特异性启动子具有同源性的小双链核酸分子,例如ta-siRNA或微小RNA,引入植物细胞可导致与所述启动子有效连接的相应基因的基因表达提高。Shibuya等人(2009)显示,在植物中靶向内含子的100-1000bp dsRNA分子导致基因表达的提高,这是通过涉及所述内含子的甲基化的机制。通过引入针对启动子的小RNA分子至植物或其部分提高基因表达是以前的研究没有显示的。
本发明的第一个实施方案包含在植物或其部分中提高靶基因的表达的方法,其包括对所述植物或其部分引入在相应的野生型植物或其部分中不存在的重组核酸分子,其中所述重组核酸分子的至少一部分与在所述植物或其部分中调控靶基因表达的植物特异性启动子的至少一部分互补,且其中与不包含所述重组核酸分子的相应植物或其部分相比,所述重组核酸分子赋予所述靶基因表达的提高。应当理解,所述重组核酸分子可与所述植物特异性启动子的至少一部分的正义或反义链互补。
与靶基因启动子的一部分互补的所述重组核酸分子的一部分可为完全互补的或可包含错配。优选地,所述互补区包含5个或更少、4个或更少、3个或更少、2个或更少或1个错配。在特别优选的实施方案中,所述互补区不包含错配且与靶基因启动子的一部分完全互补。在本发明的优选实施方案中错配不位于核酸分子的第4、5、6、16、17和/或18位中的任意位置。
当使用与所述启动子同源的重组核酸分子靶向相应的启动子时在植物中观察到的基因表达的提高和以前发表的发现相反,其中仅显示当通过重组核酸分子靶向启动子时植物中基因表达的抑制(Aufsatz等人(2002))。尽管以前曾报导当在人细胞中使用重组核酸靶向相应的启动子时基因表达提高,此发现是意料之外的,因为通过小RNA调控基因的机制在动物和植物***中不同(Vaucheret,2006)。目前通过小RNA介导的在植物中基因表达提高的唯一发现是在矮牵牛花中靶向调控内含子(Shibuya等人(2009))。内含子是基因的转录部分的一部分且在转录后从mRNA前体中被剪接以产生不含内含子的mRNA。与之相对,启动子调控基因表达且自身不被转录。
在植物或其部分中提高靶基因表达的本发明的方法包括将与靶基因的启动子同源的RNA分子引入所述植物或其部分。例如,可通过从已引入所述植物的载体瞬时表达所述RNA分子,通过将合成的RNA分子引入植物细胞、或通过将表达这样的RNA分子或其前体的重组构建体稳定转化至植物细胞的基因组实现所述引入。
可通过应用本发明的方法实现靶基因表达的提高,包括例如在与不包含本发明的重组核酸分子的植物或其部分中由相应的启动子调控的相应靶基因的表达相同的组织、发育阶段中和/或在相同条件下提高靶基因的表达。这样,可提高例如在野生型植物中仅微弱表达的基因的表达。此提高的表达可具有预期的效果,例如改进的植物健康,增加的产量,提高的对生物或非生物胁迫的抗性或改进的收获的植物或其部分的质量。提高的表达也可表示靶基因在野生型植物中不表达的组织、发育阶段中或条件下表达。例如,通过应用本发明的方法,可能组成型地表达仅在被病原体感染后才表达的内源基因,由此赋予植物对所述病原体的抗性。本发明的方法也可用于在野生型植物不表达的组织或发育阶段中诱导内源基因的表达。
也可应用本发明的方法在植物中更精确地表达转基因靶基因。本领域可利用的植物特异性启动子的数量和特异性是有限的且不是总能获得具有特定特异性和强度的启动子。鉴定具有这样的特异性例如组织特异性的启动子是耗时的且技术人员不是总能鉴定得到这样的启动子。可能需要本领域已知的不同启动子特异性的组合。本发明允许在所有组织、发育阶段中和/或条件下在引入重组核酸分子的植物中提高靶基因的表达。在一个实施方案中,这样的重组核酸分子可在瞬时或稳定转化后在植物或其部分中表达。取决于调控所述重组核酸分子的表达的启动子的特异性,在表达重组核酸的这些组织、发育阶段中或条件下提高靶基因的表达。因此可组合2种启动子的特异性,一种调控靶基因的表达和另一种调控靶向靶基因启动子的本发明的重组核酸的表达。所述方法不限于2种启动子的特异性的组合,因为可将靶向调控靶基因表达的同一启动子的多于1种重组核酸引入植物或其部分。
在本发明的一个实施方案中,与调控靶基因表达的启动子的至少一部分完全或部分互补的重组核酸分子可与离转录起始位点100bp或更少的所述启动子的部分互补。重组核酸可例如与启动子的转录起始位点的不超过上游100bp或下游100bp的启动子的一部分完全或部分互补。优选地重组核酸分子与离启动子的转录起始位点不超过50bp,更优选不超过20bp,甚至更优选不超过10bp的启动子的部分完全或部分互补。在本发明的方法的最优选的实施方案中,与调控靶基因表达的启动子的至少一部分完全或部分互补的重组核酸包含所述启动子的转录起始位点的互补物。
本发明的另一个实施方案是,与调控靶基因表达的启动子的至少一部分完全或部分互补的重组核酸分子与离所述启动子的调控盒至少100bp的启动子的部分完全或部分互补。优选地重组核酸与离所述启动子的调控盒至少50bp,更优选至少20bp,甚至更优选至少10bp或5bp的启动子的部分完全或部分互补。在本发明的方法的最优选的实施方案中,重组核酸与包含这样的调控盒的至少一部分的启动子的部分完全或部分互补。在以下实施例中提供了可如何实施本发明的实例。例如,可将提高靶基因表达的21bp的合成的小dsRNA分子引入植物原生质体。如实施例中显示的如何实施本发明的方法的另一个实例是克隆重组miRNA前体或ta-siRNA,其中微小RNA或相区分别与靶基因的启动子同源,所述微小RNA或相区在引入的前体分子被加工后提高靶基因的表达。本发明也可通过引入长的,例如100-1000bp的dsRNA分子实施,所述dsRNA分子在其双链茎上包含与靶基因启动子同源的区域且其在被加工后释放非编码的小的活化RNA。另一个方法可为从处于Pol III RNA基因启动子控制下的构建体上表达短发夹RNA,如例如在Lu等人(2004)中描述的。可将这些重组构建体瞬时或稳定转化进植物或其部分,在表达后产生和加工与靶基因启动子同源的、提高靶基因表达的RNA分子。本领域技术人员知道实施本发明的多种其他策略。
可使用技术人员已知的多种技术将重组核酸分子引入植物或其部分。例如,可稳定或瞬时引入重组核酸分子。可通过转化使用例如农杆菌介导的转化或粒子轰击进行稳定引入。后者也可用于重组核酸分子的瞬时引入。本发明的重组核酸分子的瞬时引入的其他方法是例如真空渗入、电穿孔、化学诱导的引入、使用病毒或来源于病毒的载体。本领域技术人员知道可用于本发明的其他方法。
将重组核酸分子引入植物或其部分的优选方法是农杆菌介导的转化、粒子轰击、电穿孔或使用例如聚乙二醇的化学诱导的引入。
特别优选农杆菌介导的转化。
本发明的另一个实施方案是如上所述的在植物或其部分中提高靶基因表达的方法,其包括以下步骤:
a)产生一种或多种与靶基因的启动子互补的小核酸分子,
b)体内和/或体外检测所述一种或多种小核酸分子提高其靶基因表达的性能,
c)鉴定小核酸分子是否提高靶基因的表达和
d)将所述一种或多种活化小核酸分子引入植物。
与靶基因启动子的一部分互补的核酸分子可为完全互补的或可包含错配。优选地,所述互补区包含5个或更少,4个或更少,3个或更少,2个或更少或1个错配。在特别优选的实施方案中,所述互补区不包含错配且与靶基因启动子的一部分完全互补。错配在本发明的优选实施方案中不位于核酸分子的第4、5、6、16、17和/或18位中的任意位置。
如上定义的本发明的方法在第一步中包括根据其提高所述靶基因的基因表达的能力,筛选与靶基因的启动子同源的小核酸分子。所述小核酸分子可以合成的小RNA分子,例如21bp的双链RNA分子的形式,或在另一个实例中通过包含至少一个与靶基因的启动子同源的微小RNA的重组miRNA前体的形式递送至植物或其部分。在将小核酸分子引入植物或其部分后,可使用技术人员已知的方法分析相应靶基因的表达。可将表达与递送小核酸分子前在所述植物或其部分中的靶基因的表达比较,或与相应的野生型植物或其部分比较。例如,可分析目的基因的表达。在另一个实施方案中可分离靶基因的启动子,将其与报告基因融合并引入植物或其部分,然后筛选能够提高由所述启动子引导的表达的小核酸分子。
在如上所述的本发明的方法中,能够提高靶基因表达的一种或多种小核酸分子可用于相应靶基因的基因表达的靶向提高。
小核酸分子可为双链或单链;它们可由例如DNA和/或RNA寡核苷酸组成。它们还可包含其功能衍生物(例如PNA)或由其功能衍生物组成。在优选的实施方案中,小核酸分子是RNA寡核苷酸。在更优选的实施方案中,RNA寡核苷酸是双链的。这样的寡核苷酸的长度可为例如在约15至约30bp之间,例如15至约30bp之间,更优选地在约19至约26bp之间,例如19至26bp之间,甚至更优选在约20至约25bp之间,例如20至25bp之间。在特别优选的实施方案中,寡核苷酸在约21至约24bp之间,例如21至24bp之间。在最优选的实施方案中,寡核苷酸为约21bp和约24bp,例如21bp和24bp。
小核酸分子的序列可与启动子序列的单或双链完全或部分互补。优选地,其与靶基因的启动子序列的正义链完全或部分互补。小核酸分子的序列可覆盖启动子的全序列或其部分。小核酸分子的序列可有重叠,其中序列可偏移至少1bp或可与另一个相邻但没有序列重叠。在优选的实施方案中,小核酸分子具有偏移5个或更多,更优选3个或更多和甚至更优选1bp或更多的重叠序列。
可将小核酸分子分别或合并引入植物或其部分。它们可通过例如电穿孔或化学介导的转化引入原生质体。可选地,可在体外无细胞体系中检测小核酸分子。可通过例如在将小核酸分子引入细胞或无细胞体系之前和之后,使用技术人员已知的方法分析所述靶基因的表达鉴定提高相应靶基因的表达的小核酸分子。一旦鉴定了提高相应靶基因的小核酸分子,通过将所述小核酸分子引入植物或其部分,此小核酸分子可用于引导相应靶基因的表达提高。
本发明的另一个实施方案是如上所述的提高植物或其部分中靶基因表达的方法,其中通过将提高靶基因的小核酸分子克隆至包含植物特异性调控元件的植物转化载体,用所述载体转化植物或其部分和回收包含所述载体或所述载体的一部分例如T-DNA区的转基因植物将提高靶基因的所述小核酸分子引入所述植物。
如上所述,可将小活化核酸分子瞬时引入植物或其部分,或从稳定整合进植物或其部分的基因组中的核酸构建体表达小活化核酸分子。在后一种情况下,技术人员知道如何产生在植物或其部分中引导表达的嵌合重组构建体的方法。例如,可通过重组DNA技术将小核酸分子克隆进植物转化载体。例如,可将激活靶基因的基因表达的小核酸分子引入微小RNA基因或ta-siRNA基因,替换ta-siRNA基因中的至少一个相区。本文提及的替换指在相应的基因中加入相区或微小RNA,用另一种微小RNA或相区取代内源微小RNA或相区。其也可指通过例如交换、缺失或***1个碱基对突变微小RNA或相区的序列。当在植物细胞或其部分中表达时,这样的基因形成包含与植物特异性启动子同源的重组区的RNA前体分子。前体分子可随后被加工,释放与靶基因启动子同源的重组小RNA分子。在所述载体上可存在另外的基因元件,例如控制小核酸分子或相应的前体分子的表达的启动子。在所述载体中可能包含的其他基因元件可为终止子。将包含这样的表达构建体(其包含例如启动子、所述小核酸分子和终止子)的这样的载体引入植物基因组和从转化的细胞中回收转基因植物的方法也是本领域已知的。取决于转化植物或其部分所使用的方法,可将整个载体整合进所述植物或其部分的基因组,或可将载体的某些成分,例如T-DNA,整合进基因组。
本发明的另一个实施方案涉及在植物或其部分中提高靶基因的表达的方法,其包括将编码经修饰的非编码小RNA(sncRNA)的重组核酸分子引入所述植物或其部分,其中所述sncRNA的序列相对天然sncRNA序列经修饰,这是通过用与调控靶基因表达的植物特异性启动子互补的且对于所述天然sncRNA而言是异源的序列替换与其相应的天然靶序列互补的所述天然sncRNA的至少一个区域。
与靶基因启动子的一部分互补的所述重组核酸分子的一部分可为完全互补的或可包含错配。优选地,所述互补区包含5个或更少,4个或更少,3个或更少,2个或更少或1个错配。在特别优选的实施方案中,所述互补区不包含错配且与靶基因启动子的一部分完全互补。错配在本发明的优选实施方案中不位于核酸分子的第4、5、6、16、17和/或18位中的任意位置。
可通过例如分离sncRNA基因实施本发明。可用于本发明的方法的sncRNA基因是技术人员已知的。sncRNA基因可包含与所述sncRNA基因的天然靶基因同源的区域。可用与靶基因的启动子同源的序列替换这样的区域,其中当在植物细胞中引入相应序列的核酸分子时,已知替换序列可提高靶基因的基因表达。在分离的核酸分子中替换区域的方法是技术人员已知的。在引入植物或其部分后,这样的经修饰的sncRNA基因被表达为包含与靶基因启动子同源的区域的前体RNA分子。前体分子随后被加工,由此释放一种或多种例如与靶基因的启动子同源的21或24bp长度的双链调控RNA小分子。这些小双链调控RNA分子触发所述靶基因的表达的提高。
天然的非编码调控小RNA可例如被包含在基因组中编码的前体分子中。这样的非编码调控小RNA为例如微小RNA或ta-siRNA。其他sncRNA可为例如shRNA、snRNA、nat-siRNA和/或snoRNA。优选的sncRNA为ta-siRNA,nat-siRNA和微小RNA。特别优选的是微小RNA。
这些前体分子在植物细胞中被加工这些前体分子的特异性蛋白质组识别,由此释放小调控RNA例如miRNA或siRNA。这些前体分子的加工释放例如21或24bp长度的确定序列的单链或双链RNA分子。其他前体分子例如大发夹dsRNA分子被蛋白质加工后释放例如21或24bp的随机序列的dsRNA分子。加工sncRNA前体的不同的植物途径在例如Vaucheret(2006)中描述。
本领域技术人员知道如何修饰或合成释放与靶基因的启动子同源的非编码小活化RNA分子的这些前体分子基因的方法。
可通过本领域已知的方法替换包含在ta-siRNA中的在ta-siRNA被加工后从所述ta-siRNA中释放的相区,例如克隆技术或重组或可体外合成包含针对启动子的相区的整个ta-siRNA。在优选的实施方案中,用与调控靶基因表达的植物特异性启动子完全或部分互补的序列替换天然ta-siRNA的所有相区。例如,替换天然ta-siRNA中的相区的序列可与相同的调控靶基因表达的植物特异性启动子完全或部分互补。可选地,替换天然ta-siRNA中的相区的序列可与不同的调控一种靶基因表达的植物特异性启动子、或与不同的调控不同的靶基因表达的植物特异性启动子完全或部分互补。
在另一个实施方案中,可应用miRNA前体在植物或其部分中激活靶基因的表达。替换miRNA前体分子中包含的微小RNA的方法是本领域已知的且例如在Schwab R等人(2006)Highly Specific Gene Silencing byArtificial MicroRNAs in Arabidopsis Plant Cell 18:1121-113中描述。
本发明的另一个实施方案是在植物或其部分中鉴定非编码小活化RNA(sncaRNA)分子的方法,其包括以下步骤:从所述植物或其部分获得小RNA分子,鉴定所述小RNA分子的序列,通过生物信息分析选择包含与内源基因的至少一个启动子互补的区域的小RNA分子,并在植物或其部分中检测小RNA候选者,以检验由小RNA分子触发的基因表达增加。
现有技术已描述了从生物材料例如植物或其部分获得小RNA分子和相应序列的方法(Sunkar R和Zhu J(2004)Novel and stress-regulatedmicroRNAs and other small RNAs from Arabidopsis.The Plant Cell16:2001-2019;Lu C et al(2005)Elucidation of the small RNAcomponents of the transcriptome.Science 309:1567-1569).
本发明可例如应用这些方法。可以用生物信息工具分析这些序列与内源基因的至少一个启动子的同源性,,如Jones-Rhoades M and Bartel D(2004)Computational identification of plant microRNAs and theirtargets,including a stress-induced miRNA.Molecular Cell 14:787-799;Zhang Y(2005)miRU:an automated plant miRNA targetprediction server;Griffiths-Jones S et al(2006)miRBase:microRNAsequences,targets and gene nomenclature  Nucleic Acids Research34:D14--D144或例如Johnson C et al(2006)CSRDB:a small RNAintegrated database and browser resource for cereals D1-D5中所描述。
可以分析如上述所获得的序列与植物的任意启动子序列信息的同源性,所述植物为从中获取小RNA序列的植物。还可以检索所鉴定的小RNA序列与一个或多个特异靶基因启动子序列的同源性。对于与内源基因启动子序列有同源性的小RNA序列,可进一步进行对其调控基因表达增加的能力的检验。用于进行这类检验的方法为例如上文所述的方法,并包含将所鉴定的小RNA序列引入体内或体外检验***,在所述检验***中分析相应靶基因、一组潜在靶基因的表达或所有基因的表达。例如,可用northernP迹或qPCR检验特定基因或一组基因的表达。植物或其部分的大量或所有基因的表达可用芯片杂交或技术人员已知的等同方法进行检验。
本发明的另一个实施方案是在植物或其部分中鉴定活化微小RNA分子的方法,其包括以下步骤:鉴定植物或其部分中与相应植物中的启动子序列同源的微小RNA,从所述植物或其部分克隆所述微小RNA,将所述微小RNA引入植物,和在包含所述微小RNA的所述植物和相应的野生型植物中比较潜在的靶基因的基因表达。
如本文提及的微小RNA是长度为18-24个核苷酸的调控基因表达的RNA分子。微小RNA由非蛋白质编码基因编码,所述基因被转录为形成茎环结构的初级转录物,其被称为miRNA前体。从所述miRNA前体加工得到微小RNA并以双链RNA分子释放。
从生物材料例如植物中鉴定微小RNA的方法是本领域有描述的(Sunkar R和Zhu J(2004)Novel and stress-regulated microRNAs andother small RNAs from Arabidopsis.The Plant Cell 16:2001-2019和Lu C等人(2005)Elucidation of the small RNA components of thetranscriptome.Science 309:1567-1569)。在本发明的此实施方案中可应用例如这些方法。可如本领域描述的确定这些miRNA前体的微小RNA区并使用生物信息学工具检测其与微小RNA来源的植物中的植物特异性启动子的同源性。在该分析中可应用的生物信息学工具是本领域已知的且已在上文中举例。为了检测鉴定的微小RNA提高基因表达的活性,可合成所述微小RNA并引入例如植物细胞、原生质体或无细胞***。也可通过克隆和过表达相应的微小RNA编码基因检测所述微小RNA提高基因表达的活性。克隆和过表达微小RNA的方法在例如Schwab R等人(2006)Highly SpecificGene Silencing by Artificial MicroRNAs in Arabidopsis Plant Cell 18:1121-1133或Warthmann N等人(2008)Highly Specific Gene Silencingby Artificial miRNAs in Rice PLoS ONE 3(3):e1829中描述。
本发明的又一个实施方案是分离这样的sncaRNA编码基因,例如活化微小RNA编码基因并将其引入植物或其部分以提高相应靶基因的表达。sncaRNA编码基因,例如活化微小RNA编码基因可例如与异源启动子有效连接。这样的重组构建体可包含于载体中并转化进植物或其部分。调控所述sncaRNA编码基因表达的异源启动子可赋予sncaRNA在组织、发育阶段中和/或例如胁迫条件如干旱或寒冷的条件下的表达,所述sncaRNA在不包含相应构建体的参考植物,例如野生型植物中不表达。由此提高或诱导相应靶基因在所述组织、发育阶段中和/或条件下在植物中的表达。
通过在所述植物特异性启动子中修饰sncRNA靶向区替换植物特异性启动子的调控特异性的方法是本发明的另一个实施方案,所述sncRNA赋予由所述启动子控制的基因表达的提高。
如本文理解的“替换调控特异性”指根据本发明改造的启动子的调控特异性与应用本发明的方法之前所述启动子的调控特异性不同。调控特异性可在表达强度上不同,即改造的启动子赋予例如在相同的组织、发育阶段中和/或条件下的表达,但和对所述启动子应用本发明的方法之前的启动子相比表达较高。其也可指和应用本发明的方法之前的启动子相比,所述启动子赋予在另外的或其他的植物组织、细胞、区室,另外的或其他的植物发育阶段或在另外的或不同的条件例如环境条件下的表达。
启动子的特异性特别取决于其DNA序列与多种蛋白质和RNA分子的相互作用。与所述RNA分子的相互作用也取决于启动子的序列。因此,有可能通过改变启动子上与调控RNA相互作用所必需的这些区域中的至少一个的序列改变启动子的特异性。可通过例如序列变换、缺失或***修饰这些区域,以使与所述区域相互作用的内源sncRNA不能再与之相互作用。这可例如导致在相互作用RNA为sncaRNA的情况下,启动子在特定组织或发育阶段中的下调。也可以下述方式改造区域序列,即使另一种sncRNA与该区域相互作用从而导致启动子特异性的变化。
本发明也涉及替换植物特异性启动子的调控特异性的方法,通过在所述植物特异性启动子中引入重组sncaRNA靶向区,所述重组sncaRNA赋予由所述启动子控制的基因表达的提高,且其中重组sncaRNA处于赋予靶基因表达提高的植物特异性启动子的控制之下,所述靶基因取决于控制sncaRNA的植物特异性启动子的特异性。
根据本发明可通过在启动子序列中引入新的区域改变启动子的特异性,所述区域与包含所述启动子的植物或其部分中将要引入的重组sncaRNA相互作用。引入可为导致启动子长度增加的***、或替换与引入的区域相似或相同大小的序列以维持启动子的序列长度基本不改变。
如本文使用的修饰区域指例如将sncRNA靶向区替换为另一个sncaRNA靶向区或以下述方式突变区域的序列,即使sncaRNA靶向所述区域或使所述区域不再被以前靶向所述区域的内源调控小RNA靶向。其也可指从植物特异性启动子缺失区域。缺失区域可指缺失区域并融合与所述区域相邻的DNA链,或通过用与区域约相同大小的随机DNA分子替换区域,所述DNA分子不被sncRNA靶向。在第一种情况下,启动子序列在缺失区域后较短,在后一种情况下,启动子序列与缺失区域前的大小具有约相同的大小。不管如何进行区域的缺失,sncRNA不能再与这样修饰的植物特异性启动子相互作用。
本发明的又一个实施方案是通过将内源sncaRNA靶向区引入所述植物特异性启动子替换植物特异性启动子的调控特异性,所述内源sncaRNA赋予由所述启动子控制的基因表达的提高。
例如,可这样应用修饰植物特异性启动子的调控特异性的方法使引入植物特异性启动子的至少一个区域替换内源sncRNA靶向区。替换所述内源sncaRNA靶向的所述内源区域的至少一个区域自身可被另一种与靶向内源区域的sncRNA具有不同特异性的内源sncaRNA或被引入相应植物或其部分的重组sncaRNA靶向。
植物特异性启动子的修饰在本发明的一个实施方案中可通过例如应用重组技术在体内进行。在此实施方案中的植物特异性启动子可在当其处于活细胞或完整的细胞区室的基因组时被修饰。在应用这些技术时和之后,待修饰的植物特异性启动子被保留在其原来的基因组环境中。在本发明的另一个实施方案中,植物特异性启动子可从其天然环境分离,可在体外通过本领域已知的技术修饰调控区,例如重组DNA技术,如克隆技术、重组或合成。在植物特异性启动子中待修饰的至少一个区域也可通过突变其原来的序列被修饰。例如,可在区域的序列中替换至少1个碱基对,或可缺失或引入至少1个碱基对。这样的突变的结果是,至少一个区域可不再被以前靶向所述区域的sncRNA靶向,因此其可完全不再被sncRNA靶向或可被另一种sncaRNA靶向,另一种sncaRNA可为内源或重组的。
植物特异性启动子的调控特异性也可通过从所述调控序列缺失至少一个内源sncaRNA靶向区被修饰。可完全或部分,在体外或体内缺失区域,如上所述。
可通过以下方法实现重组sncaRNA靶向的区域至植物特异性启动子的引入:通过将区域***所述启动子由此延伸所述调控区的长度,通过替换所述调控区的一部分,例如替换内源sncaRNA靶向的内源区域或通过突变所述调控区的序列。如上文指出的,相应的方法可在体内或体外应用。可选地,可通过本领域已知的方法合成整个植物特异性启动子分子。
引入植物的重组sncaRNA可特异性靶向1个靶基因或几个应当在植物或其部分中协同激活的靶基因。
替换植物特异性启动子的调控特异性包括例如激活植物特异性启动子,例如具有预期特异性但不能按需产生表达率的植物组织特异性启动子。可如下特异性激活这样的启动子,通过在所述启动子中引入重组sncaRNA靶向区,所述重组sncaRNA处于导致在期望靶基因活性提高的组织中表达所述重组sncaRNA的启动子控制下。替换植物特异性启动子的调控特异性也可指在例如在其通常没有活性的组织或发育阶段中激活启动子。此外,所述方法可用于例如在组织或发育阶段中通过提高靶向目的基因的抑制基因抑制启动子的活性,由此改进给定调控序列的特异性。
包含重组核酸分子的用于在植物中表达的核酸构建体也是本发明的一个实施方案,所述重组核酸分子包含编码经修饰的非编码小RNA(sncaRNA)序列的序列,其中所述序列相对野生型sncaRNA序列被修饰,通过至少将所述野生型sncaRNA的与其野生型靶序列互补的1个区域替换为下述序列,其与调控靶基因表达的植物特异性启动子互补、且其相对所述野生型sncRNA是异源的、且其在引入所述植物或其部分后赋予所述靶基因表达的提高。
与植物特异性启动子互补的序列可为完全互补的或可包含错配。优选地,所述互补序列包含5个或更少,4个或更少,3个或更少,2个或更少或1个错配。在特别优选的实施方案中,所述互补序列不包含错配且与靶基因启动子的一部分完全互补。错配在本发明的优选实施方案中不位于互补序列的第4、5、6、16、17和/或18位中的任意位置。
在另一个实施方案中,如上所述的核酸构建体中包含的重组核酸分子的转录物能够形成双链结构,其中所述双链结构包含与调控靶基因表达的植物特异性启动子互补的序列。
在优选的实施方案中,双链结构是发夹结构。
本发明的又一个实施方案是,如上所述的与调控靶基因表达的植物特异性启动子互补的重组核酸分子的部分具有例如从约15至约30bp的长度,例如从15至30bp,优选约19至约26bp,例如从19至26bp,更优选地从约21至约25bp,例如从21至25bp,甚至更优选地21或24bp。
如上所述的核酸构建体中包含的与调控靶基因表达的植物特异性启动子互补的重组核酸分子的部分可具有60%或更高,优选70%或更高,更优选75%或更高,甚至更优选80%或更高,最优选90%或更高的同一性。
与调控靶基因表达的植物特异性启动子互补的所述重组核酸分子可还包含至少约7至约11,例如7至11,优选约8至约10,例如8至10,更优选约9,例如9个与所述靶基因调控元件同源的连续的碱基对。
所述连续的碱基对与所述靶基因调控元件具有至少80%同一性,优选90%同一性,更优选95%同一性,最优选100%同一性。
与植物特异性启动子的一部分互补的所述重组核酸分子的一部分可为完全互补的或可包含错配。优选地,所述互补区包含5个或更少,4个或更少,3个或更少,2个或更少或1个错配。在特别优选的实施方案中,所述互补区不包含错配且与靶基因启动子的一部分完全互补。错配在本发明的优选实施方案中不位于核酸分子的第4、5、6、16、17和/或18位中的任意位置。
与植物特异性启动子互补的重组核酸分子可包含于例如miRNA前体基因、编码ta-siRNA的基因或任意其他在植物或其部分表达后能够释放小RNA分子的基因中。
本发明的另一个实施方案是包含如上定义的核酸构建体的载体。
本发明还提供了在植物或其部分中提高基因表达的***,其包括
a)植物特异性启动子,其包含对所述植物特异性启动子为异源的小活化RNA靶向的区域,和
b)处于植物特异性启动子控制下的构建体,其包含靶向如a)中定义的区域的小活化RNA。
如上所述的***允许靶基因在植物或其部分中的精确表达。靶基因表达的特异性取决于相应应用想要实现的目的。例如,在植物的2种不同组织中或在相同组织的不同发育阶段中表达靶基因可能是有利的。具有这样的特异性的内源启动子经常是无法得到的或甚至可能不存在。如上所述的***可用于组合不同启动子的特异性,通过将特异性区域引入重组sncaRNA靶向的给定启动子。这样可组合2个不同启动子的表达模式,因为在与由具有不同特异性的不同启动子表达的sncaRNA的相互作用下,提高了重组启动子的表达。同样地,sncaRNA可在与靶基因相同的启动子的控制下表达,这导致在靶组织中提高靶基因的表达而不改变启动子的表达模式。
因此,可根据使用者的需要改造靶基因的表达特异性。
如上定义的***可例如应用于提高内源基因的基因表达。为此,可将sncaRNA引入靶向的植物并提高靶基因的内源启动子的表达。也可以在内源基因的启动子中引入sncRNA靶向区,所述sncRNA当与给定启动子相互作用时已知可提高表达。可通过技术人员已知的重组DNA技术在体外或体内在内源启动子中引入区域。
所述***也可用于提高转基因的基因表达。为此,可在控制转基因靶基因的表达的启动子的序列中引入sncaRNA靶向区。可在与编码相应sncaRNA的基因相同的构建体上将包含重组启动子和靶基因的构建体引入植物或其部分;这2个元件可位于不同的构建体上并同时或在相继的转化和/或杂交(crossing)步骤中引入植物或其部分。
在本发明中也包括包含如上定义的重组核酸构建体的植物或其部分,例如植物细胞,其中与不包含所述重组核酸分子的相应植物或其部分相比,所述重组核酸分子在所述植物或其部分中导致靶基因表达的提高。
在一个实施方案中,将所述核酸分子整合进所述植物或其部分的基因组。如这里表示的基因组包括核基因组,植物的质体中包含的基因组,又称质体基因组,以及植物的线粒体中包含的基因组。
本发明的另一个实施方案是如上定义的方法,其包括如上定义的核酸构建体,如上定义的植物和/或如上定义的植物细胞。
本发明的另一个实施方案是能够将核酸转移至植物或植物部分的微生物,其中所述微生物包含如上定义的重组核酸构建体,其中所述重组核酸分子在所述重组核酸构建体转移进植物或植物部分后,相比不包含所述重组核酸分子的相应植物或植物部分,赋予在所述植物或植物部分中靶基因表达的提高。这样的微生物优选为农杆菌属,优选根癌农杆菌(Agrobacterium tumefaciens)或发根农杆菌(Agrobacteriumrhizogenes)。在最优选的实施方案中,微生物是根癌农杆菌。
产生如上定义的核酸构建体、如上定义的载体、如上定义的植物和或如上定义的植物部分或植物细胞的方法是本发明的另外的实施方案。
本发明的另外的实施方案是赋予在植物或其部分中基因表达提高的sncaRNA,其包含SEQ ID 6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30和/或31中的任一序列。
如上定义的非编码小活化RNA在植物中提高靶基因表达的用途也是本发明的实施方案。sncaRNA分子在该实施方案中可例如用于提高内源靶基因的表达或用于提高转基因靶基因的表达。
定义
缩写:BAP——6-苄氨基嘌呤;2,4-D——2,4-二氯苯氧基乙酸;MS——Murashige & Skoog培养基;NAA——1-萘乙酸;MES,2-吗啉乙磺酸,IAA吲哚乙酸;Kan:硫酸卡那霉素;GA3——赤霉酸;TimentinTM:替卡西林钠/克拉维酸钾。
应当理解,本发明不受限于如这样描述的特定的方法、方案、细胞系、植物物种或属、构建体和试剂。也应当理解,本文使用的术语仅是为了描述特定实施方案的目的而不旨在限制本发明的范围,本发明的范围仅受限于随附的权利要求。必须注意,如本文和随附的权利要求中使用的,单数形式“一(a)”、“一(an)”和“这(the)”包括复数参考,除非上下文明确地另外指出。因此,例如,提及“一种载体”涉及一种或多种载体并包括本领域技术人员已知的其等同物,等等。术语“约”如本文使用的指大概、粗略地、大约或在所述范围中。当术语“约”与数值范围结合使用时,其通过扩展高于或低于陈述的数值的界限修饰该范围。大体上,本文使用术语″约”修饰高于和低于陈述值20%,优选10%上下(更高或更低)变化的数值。如本文使用的,词语“或”指特定列表中的任意一个成员并也包括该列表的成员的任意组合。词语“包含”和“包括”当在此说明书和以下权利要求中使用时,旨在详细说明一种或多种陈述的特征、整数、成分或步骤的存在,但其不排除一种或多种其他特征、整数、成分、步骤或其组的存在或加入。为了清楚地说明,如下定义和使用在本说明书中使用的特定术语:
活化:在植物细胞中“活化”、“诱导”或“提高”核苷酸序列的表达指在应用本发明的方法后,在植物细胞中核苷酸序列的表达水平比应用所述方法以前其在植物、植物部分或植物细胞中的表达要高,或相比缺乏本发明的嵌合RNA分子的参考植物要高。如本文使用的术语“经活化”、“经诱导”或“经提高”是同义的并在本文中指更高,优选显著更高的核苷酸序列的表达。“更高的表达”也可指,在应用本发明的方法以前,核苷酸序列的表达是检测不到的。如本文使用的,“活化”、“诱导”或“提高”活性剂例如蛋白质或mRNA的水平指,相比在基本相同的条件下生长的、缺乏本发明的能够活化活性剂的嵌合RNA分子的基本相同的植物、植物部分或植物细胞,所述水平被提高。如本文使用的,“活化”、“诱导”或“提高”活性剂(例如由靶基因表达的前体RNA、mRNA、rRNA、tRNA、snoRNA、snRNA和/或由其编码的蛋白质产物)的水平指,相比缺乏本发明的能够诱导所述活性剂的嵌合RNA分子的细胞或生物,所述水平被提高10%或更多,例如50%或更多,优选100%或更多,更优选5倍或更多,最优选10倍或更多,例如20倍。其也可指在应用本发明的方法后,可以检测到基因的表达,而在所述方法的所述应用以前检测不到基因的表达。可通过技术工人熟悉的方法测定活化、提高或诱导。因此,可通过例如蛋白质的免疫学检测测定蛋白质量的活化、提高或诱导。此外,可应用生物化学技术测量植物或植物细胞中的特定蛋白质或RNA,例如Northern杂交、核酸酶保护试验、逆转录(定量RT-PCR)、ELISA(酶联免疫吸附测定)、蛋白质印迹、放射免疫测定(RIA)或其他免疫测定和荧光激活细胞分析(FACS)。取决于诱导的蛋白质产物的种类,也可测定其活性或对生物或细胞表型的影响。测定蛋白质量的方法是技术工人已知的。可能提及的实例为:微双缩脲(micro-Biuret)法(Goa J(1953)Scand J Clin Lab Invest 5:218-222),Folin-Ciocalteau法(Lowry OH等人(1951)J Biol Chem 193:265-275)或测量CBB G-250的吸收(Bradford MM(1976)Analyt Biochem72:248-254)。
有价值的农艺性状:术语“有价值的农艺性状”指在植物中对食物生产或食物产品,包括植物部分和植物产品有用处或有益的任意表型。也包括非食物农业产品,例如纸,等等。价值的农艺性状的不完全列表包括害虫抗性、活力、发育时间(至收获的时间)、增加的营养含量、新的生长模式、味道或颜色、盐、热、干旱和寒冷耐受性,等等。优选地,有价值的农艺性状不包括可选择的标记基因(例如,仅用于便于检测或选择转化细胞的编码除草剂或抗生素抗性的基因),导致植物激素产生的激素生物合成基因(例如,仅用于选择的植物生长素、赤霉素、细胞***素、脱落酸和乙烯),或报告基因(例如,荧光素酶、葡糖醛酸酶、氯霉素乙酰转移酶(CAT),等等)。这样的有价值的重要的农艺性状可包括害虫抗性(例如Melchers等人(2000)Curr Opin Plant Biol 3(2):147-52)、活力、发育时间(至收获的时间)、增加的营养含量、新的生长模式、味道或颜色、盐、热、干旱和寒冷耐受性(例如Sakamoto等人(2000)J Exp Bot51(342):81-8;Saijo等人(2000)Plant J 23(3):319-327;Yeo等人(2000)Mol Cells 10(3):263-8;Cushman等人(2000)Curr Opin PlantBiol 3(2):117-24)的改进,等等。技术人员将认可,存在大量可供选择的赋予这些和其他有价值的农艺性状的多核苷酸。
氨基酸序列:如本文使用的,术语“氨基酸序列”指代表氨基酸残基的缩写、字母、字符或单词的列表。氨基酸在本文中可以其众所周知的由IUPAC-IUB生物化学命名委员会推荐的三字母符号或单字母符号提及。核苷酸类似地可以其普遍接受的单字母编码提及。
反平行:“反平行”在本文中指通过互补碱基残基之间的氢键配对的2条核苷酸序列,其中在1条核苷酸序列中磷酸二酯键以5’至3’的方向延续和在另一条核苷酸序列中以3’至5’的方向延续。
反义:术语“反义”指相对其用于转录或功能的正常方向反向的核苷酸序列,并因此表达与宿主细胞中表达的靶基因mRNA分子互补的(例如,其可与靶基因mRNA分子或单链基因组DNA通过Watson-Crick碱基配对杂交)、或与靶DNA分子(例如宿主细胞中存在的基因组DNA)互补的RNA转录物。
编码区:如本文使用的,术语“编码区”当在提及结构基因时使用时,指编码氨基酸的核苷酸序列,所述氨基酸在mRNA分子翻译得到的新生多肽中发现。在真核生物中,编码区在5’-侧被编码起始密码子甲硫氨酸的核苷酸三联子“ATG”和在3’-侧被指定终止密码子的3个三联子(即,TAA、TAG和TGA)之一限制。除了包含内含子以外,基因的基因组形式可也包括位于RNA转录物上存在的序列5’-和3’-端的序列。这些序列被称为“侧翼”序列或区域(这些侧翼序列位于在mRNA转录物上存在的非翻译序列的5’或3’)。5’-侧翼序列区可包含调控序列,例如启动子和增强子,其控制或影响基因的转录。3’-侧翼区可包含引导转录终止、转录后切割和多聚腺苷酸化的序列。
互补:“互补”或“互补性”指包含反平行的核苷酸序列的2条核苷酸序列,其能够通过在反平行的核苷酸序列中的互补碱基残基之间的氢键的形成彼此配对(通过碱基配对规则)。例如,序列5′-AGT-3′与序列5′-ACT-3′互补。互补性可为“部分的”或“完全的”。“部分的”互补性指其中一个或多个核酸碱基不根据碱基配对规则匹配。核酸分子之间“完全的”或“完整的”互补性指在碱基配对规则下,其中各个核酸碱基与另一个碱基匹配。核酸分子链之间的互补性程度对核酸分子链之间杂交的效率和强度具有显著影响。如本文使用的,核酸序列的“互补物”指下述核苷酸序列,其核酸分子与所述核酸序列的核酸分子具有完全的互补性。
如本文使用的,赋予表达的活化指,在肽、蛋白质和/或核酸分子(例如RNA分子)与基因的启动子的相互作用后,相比所述基因的启动子与所述肽、蛋白质和/或核酸分子的相互作用前的所述基因的表达,所述基因的表达被提高、诱导或活化。启动子与肽、蛋白质和/或核酸分子(例如RNA分子)的相互作用可为直接的相互作用(例如结合),或间接的相互作用,其中所述肽、蛋白质和/或核酸分子涉及其它元件以赋予表达的活化。
双链RNA:“双链RNA”分子或“dsRNA”分子包含核苷酸序列的正义RNA片段和核苷酸序列的反义RNA片段,二者包含彼此互补的核苷酸序列,因此允许正义和反义RNA片段配对并形成双链RNA分子。优选地,所述术语指下述双链RNA分子,当其被引入细胞或生物时能够引起或提高在细胞或生物的细胞中存在的mRNA的水平。
如本文使用的,“RNA活化”、“RNAa”和“dsRNAa”指由RNA分子,例如双链RNA分子诱导的基因特异性表达提高。所述RNA分子可为内源RNA分子,或例如以dsRNA分子的形式引入植物或其部分,或包含在表达后产生所述RNAa分子的构建体中。双链RNA分子可为例如微小RNA或ta-siRNA。
内源:“内源”核苷酸序列指在未转化的植物细胞的基因组中存在的核苷酸序列。
必需:“必需”基因是编码植物或植物细胞的生长或存活所必需的的蛋白质,例如生物合成酶、受体、信号转导蛋白、结构基因产物或转运蛋白的基因。
表达:“表达”指基因产物的生物合成,优选地指细胞中核苷酸序列例如内源基因或异源基因的转录和/或翻译。例如,在结构基因的情况下,表达涉及结构基因转录为mRNA和任选地,mRNA随后翻译为一种或多种多肽。在其他情况下,表达可仅指编码(harboring)RNA分子的DNA的转录。
表达构建体:如本文使用的,“表达构建体”指能够引导特定核苷酸序列在植物或植物细胞的适当部分表达的DNA序列,其包含在其将引入的植物或植物细胞的所述部分中有功能的启动子,所述启动子与目的核苷酸序列有效连接,所述目的核苷酸序列任选地与终止信号有效连接。如果需要翻译,表达构建体一般也包含核苷酸序列的正确翻译所需要的序列。编码区可编码目的蛋白质但也可编码功能性目的RNA,例如RNAa,或任意其他非编码调控RNA,在正义或反义方向上。包含目的核苷酸序列的表达构建体可为嵌合的,这是指至少一个其成分相对至少一个其其他成分是异源的。表达构建体可也为天然存在的序列,但是以用于异源表达的重组形式得到。然而,一般来说,表达构建体相对宿主是异源的,即表达构建体的特定DNA序列不天然存在于宿主细胞中并必须通过转化事件引入宿主细胞或宿主细胞的祖先中。表达构建体中的核苷酸序列的表达可处于组成型启动子或诱导型启动子的控制之下,诱导型启动子仅在宿主细胞暴露于某些特定的外部刺激时才起始转录。在植物的情况下,启动子也可对特定组织或器官或发育阶段是特异性的。
外源:术语“外源”指通过实验操纵引入细胞基因组的任意核酸分子(例如基因序列),并可包括在该细胞中发现的序列,只要引入的序列包含某些修饰(例如点突变,可选择的标记基因的存在,等等)并因此相对天然存在的序列是不同的。
基因:术语“基因”指与能够以一定方式调控基因产物(例如多肽或功能性RNA)表达的合适调控序列有效相连的区域。基因包括在编码区(开放阅读框,ORF)之前(上游)和之后(下游)的DNA的非翻译调控区(例如,启动子、增强子、抑制子,等等),以及在适用的情况下,在各个编码区(即外显子)之间的间插序列(即内含子)。如本文使用的,术语“结构基因”旨在指下述DNA序列,其被转录为mRNA,然后所述mRNA被翻译为特定多肽的特征氨基酸序列。
基因组和基因组DNA:术语“基因组”或“基因组DNA”指宿主生物的可遗传的遗传信息。所述基因组DNA包含核DNA(又称染色体DNA),以及质体(例如叶绿体)和其他细胞器(例如线粒体)的DNA。优选地,术语基因组或基因组DNA指核的染色体DNA。
发夹:如本文使用的,“发夹RNA”或“发夹结构”指任意自身退火的双链RNA或DNA分子。在其最简单的表现形式中,发夹结构包含通过退火的核酸链形成的双链茎,其通过单链核酸环连接,并也被称为“锅柄核酸”。然而,术语“发夹RNA”或“发夹结构”也旨在包含更复杂的二级核酸结构,其包含自身退火的双链序列,以及内部凸起和环。采用的特定二级结构将由核酸分子的自由能决定,并可使用合适的软件例如FOLDRNA(Zuker和Stiegler(1981)Nucleic Acids Res 9(1):133-48;Zuker,M.(1989)Methods Enzymol.180:262288)对不同情况进行预测。
异源:有关核酸分子或DNA的术语“异源”指下述核苷酸序列,其与其在天然情况下不有效连接的,或在天然情况下在不同位置有效连接的核酸分子序列有效连接,或经操纵变为有效连接的。包含核酸序列和与其连接的至少一种调控序列(例如启动子或转录终止信号)的异源表达构建体为例如通过实验操纵产生的构建体,其中a)所述核酸序列,或b)所述调控序列,或c)以上二者(即(a)和(b))不位于其天然的(本来的)遗传环境或已通过实验操纵被修饰,例如一个或多个核苷酸残基的取代、加入、缺失、反转或***的修饰。天然的遗传环境指在原来的生物中的天然染色体基因座,或在基因组文库中存在。在基因组文库的情况下,核酸序列的天然遗传环境优选地被维持,至少部分维持。所述环境位于核酸序列的至少一侧并具有至少50bp,优选至少500bp,特别优选至少1000bp,最特别优选至少5000bp的长度。天然存在的表达构建体——例如天然存在的启动子和对应基因的组合——当其被非天然的合成“人工”方法例如诱变修饰时变为转基因表达构建体。这样的方法已有描述(US 5,565,350;WO 00/15815)。例如,认为下述蛋白质编码核酸序列相对启动子是异源的,其与不是此序列的天然启动子的启动子有效连接。优选地,异源DNA对其引入的细胞不是内源的或不是天然相关的,而是从另一种细胞得到或被合成。异源DNA也包括包含一些修饰的内源DNA序列,内源DNA序列的非天然存在的多拷贝形式,或与另一个与其物理连接的DNA序列不天然相关的DNA序列。通常,但不是必需地,异源DNA编码细胞(在所述细胞中表达异源DNA)通常不产生的RNA和蛋白质。
同源DNA序列:当有关2种或多个核酸或氨基酸分子的比较时,使用的“同源”指所述分子的序列共有一定程度的序列相似性,序列部分相同。
杂交:如本文使用的,术语“杂交”包括“通过碱基配对使核酸分子的一条链与互补链结合的任意方法。”(J.Coombs(1994)Dictionary ofBiotechnology,Stockton Press,New York)。这些因素影响杂交和杂交强度(即核酸分子之间结合的强度),如核酸分子之间的互补性程度,有关的条件的严格度,形成的杂交物的Tm,核酸分子中的G∶C比例。如本文使用的,使用术语“Tm”指“解链温度”。解链温度是这样的温度,在此温度上双链核酸分子群的一半离解为单链。计算核酸分子的Tm的方程是本领域熟知的。如标准参考指示的,当核酸分子在1M NaCl的水溶液中时,可通过以下方程简单估计Tm值:Tm=81.5+0.41(%G+C)[见例如,Anderson和Young,Quantitative Filter Hybridization,in Nucleic AcidHybridization(1985)]。其他参考包括更复杂的计算,其在计算Tm中将结构以及序列特征考虑在内。严格的杂交条件是本领域技术人员已知的并可在Current Protocols in Molecular Biology,John Wiley & Sons,N.Y.(1989),6.3.1-6.3.6中找到。
当有关核酸杂交中使用低严格度条件时,其包括与下述条件等同的条件:当使用优选约100至约1000核苷酸长度的DNA探针时,在68℃下,在由5x SSPE(43.8g/L NaCl,6.9g/L NaH2PO4.H2O和1.85g/L EDTA,使用NaOH将pH调节至7.4),1%SDS,5x Denhardt试剂[每500mL 50xDenhardt包含以下试剂:5g聚蔗糖(400型,Pharmacia),5g BSA(Fraction V;Sigma)]和100μg/mL变性的鲑精DNA组成的溶液中结合或杂交,然后在室温或——优选37℃下——在包含1xSSC(1×SSC是0.15MNaCl和0.015M柠檬酸钠)和0.1%SDS的溶液中洗涤(优选1次15分钟,更优选2次15分钟,更优选3次15分钟)。
当有关核酸杂交中使用中严格度条件时,其包括与下述条件等同的条件:当使用优选约100至约1000核苷酸长度的DNA探针时,在68℃下,在由5x SSPE(43.8g/L NaCl,6.9g/L NaH2PO4.H2O和1.85g/L EDTA,使用NaOH将pH调节至7.4),1%SDS,5x Denhardt试剂[每500mL 50xDenhardt包含以下试剂:5g聚蔗糖(400型,Pharmacia),5g BSA(Fraction V;Sigma)]和100μg/mL变性的鲑精DNA组成的溶液中结合或杂交,然后在室温或——优选37℃下——在包含0.1xSSC(1×SSC是0.15M NaCl和0.015M柠檬酸钠)和1%SDS的溶液中洗涤(优选1次15分钟,更优选2次15分钟,更优选3次15分钟)。
当有关核酸杂交中使用高严格度条件时,其包括与下述条件等同的条件:当使用优选约100至约1000核苷酸长度的DNA探针时,在68℃下,在由5x SSPE,1%SDS,5x Denhardt试剂和100μg/mL变性的鲑精DNA组成的溶液中结合或杂交,然后在68℃下,在包含0.1xSSC和1%SDS的溶液中洗涤(优选1次15分钟,更优选2次15分钟,更优选3次15分钟)。
当有关涉及目的杂交条件的杂交条件时,采用的术语“等同的”指所述杂交条件和目的杂交条件导致具有相同的百分比(%)同源性范围的核酸序列的杂交。例如,如果目的杂交条件导致第一核酸序列与和第一核酸序列具有80%至90%同源性的其他核酸序列杂交,那么将另一种杂交条件称为与目的杂交条件等同的,如果此另一种杂交条件也导致第一核酸序列与和第一核酸序列具有80%至90%同源性的其他核酸序列杂交。当有关核酸杂交中使用时,本领域人员熟知,可使用大量等同的条件,包括低或高严格度的条件;考虑到例如探针的长度和性质(DNA、RNA、碱基组成)和靶的性质(DNA、RNA、碱基组成,存在于溶液中或固定的,等等)和盐浓度以及其他成分(例如,存在或缺乏甲酰胺、硫酸葡聚糖、聚乙二醇)的因素且可改变杂交溶液以产生与上面列出的条件不同的,但等同的低或高严格度杂交。本领域技术人员知道,尽管可优选较高的严格度以降低或消除非特异性结合,也可优选较低的严格度以检测具有不同同源性的大量核酸序列。
″同一性″:术语“同一性”是2种或多种多肽序列或2种或多种核酸分子序列之间的关系,通过比较序列测定。在本领域中,“同一性”也指多肽或核酸分子序列之间序列相关性的程度,通过这些序列串之间的匹配测定。可在相同核糖核酸类型的核酸序列之间(例如DNA和DNA序列之间)或不同类型的核酸序列之间(例如RNA和DNA序列之间)测量如本文使用的“同一性”。应当理解在比较RNA序列和DNA序列时,“同一的”RNA序列在DNA序列包含脱氧核糖核苷酸的地方将包含核糖核苷酸,且另外所述RNA序列在DNA序列包含胸腺嘧啶的位置上将包含尿嘧啶。在RNA和DNA序列之间测量同一性的情况下,认为RNA序列的尿嘧啶碱基与DNA序列的胸腺嘧啶碱基是同一的。可通过已知的方法容易地计算“同一性”,所述方法包括但不限于在Computational Molecular Biology,Lesk,A.M.,编,Oxford University Press,New York(1988);Biocomputing:Informaticsand Genome Projects,Smith,D.W.,编,Academic Press,New York,1993;Computer Analysis of Sequence Data,Part I,Griffin,A.M.和Griffin,H.G.,编,Humana Press,New Jersey(1994);Sequence Analysis inMolecular Biology,von Heinje,G.,Academic Press(1987);SequenceAnalysis Primer,Gribskov,M.和Devereux,J.,编,Stockton Press,NewYork(1991);以及Carillo,H.,和Lipman,D.,SIAM J.Applied Math,48:1073(1988)中描述的那些。将测定同一性的方法设计为在检测的序列之间产生最大匹配。此外,在可公开获得的程序中编码了测定同一性的方法。可用于测定2条序列之间的同一性的计算机程序包括但不限于,GCG(Devereux,J.,等人,Nucleic Acids Research 12(1):387(1984);5种BLAST的一套程序,3种被设计用于核苷酸序列查询(BLASTN,BLASTX和TBLASTX)和2种被设计用于蛋白质序列查询(BLASTP和TBLASTN)(Coulson,Trends in Biotechnology,12:76-80(1994);Birren等人,GenomeAnalysis,1:543-559(1997))。BLASTX程序可从NCBI或其他来源(BLASTManual,Altschul,S.,等人,NCBI NLM NIH,Bethesda,Md.20894;Altschul,S.,等人,J.Mol.Biol.,215:403-410(1990))公开地获得。众所周知的Smith Waterman算法也可用于测定同一性。用于多肽序列比较的参数一般包括以下内容:
——算法:Needleman和Wunsch,J.Mol.Biol.,48:443-453(1970)
——比较矩阵:BLOSUM62,来自Hentikoff和Hentikoff,Proc.Natl.Acad.Sci.USA,89:10915-10919(1992)
——空位罚分:12
——空位长度罚分:4
可使用这些参数的程序是可公开获得的,如来自Genetics ComputerGroup,Madison,Wis的“gap”程序。上述参数连同对末端空位没有罚分是用于肽比较的默认参数。用于核酸分子序列比较的参数包括以下内容:
——算法:Needleman和Wunsch,J.Mol.Bio.48:443-453(1970)
——比较矩阵:匹配-+10;错配=0
——空位罚分:50
——空位长度罚分:3
如本文使用的,使用上述参数作为用于核酸分子序列比较的默认参数和来自GCG,版本10.2的“gap”程序测定“%同一性”。
“内含子”:如本文使用的,术语“内含子”指此术语的通常含义,即表示不编码表达的蛋白质的部分或全部的核酸分子(一般为DNA)的区段,且在内源条件下,其被转录为RNA分子,但在RNA被翻译为蛋白质之前其从内源RNA中被剪接掉。剪接,即内含子的去除,发生在确定的剪接位点,例如,通常在DNA和内含子序列之间至少有约4个核苷酸。例如(不是限制),本文例举这样的正义和反义内含子区段,其形成不含剪接位点的双链RNA。内含子可固有调控功能,调控基因表达,例如内含子可调控表达特异性或强度,或其可影响RNA剪接的效率或RNA稳定性。
“提高”:如本文使用的,有关基因表达的术语“活化”、“提高”和“诱导”可用作同义词。见上文用于“活化”的定义。
同基因的:遗传上相同的生物(例如植物),只是其可具有存在或缺乏异源DNA序列的差异。
分离的:如本文使用的,术语“分离的”指,通过人工移除的存在于其原来、天然环境之外的材料并因此不是天然产物。分离的材料或分子(例如DNA分子或酶)可以纯化的形式存在,或可存在于非天然的环境中,例如在转基因宿主细胞中。例如,在活植物中存在的天然存在的多核苷酸或多肽不是分离的,但与天然***中的一些或全部共存材料中分开的相同的多核苷酸或多肽是分离的。这样的多核苷酸可为载体的一部分和/或这样的多核苷酸或多肽可为组合物的一部分,并可为分离的,因为这样的载体或组合物不是其原来环境中的一部分。优选地,当涉及核酸分子,如在“分离的核酸序列”中使用术语“分离的”时,指从在其天然来源中通常相关的至少一种杂质核酸分子中鉴定和分离的核酸序列。分离的核酸分子是这样的核酸分子,其在不同于其天然发现的形式或环境中存在。相对地,未分离的核酸分子是这样的核酸分子,例如DNA或RNA,其在其天然存在的状态中被发现。例如,在宿主细胞染色体上发现与相邻基因邻近的给定DNA序列(例如基因);在细胞中发现RNA序列,例如编码特定蛋白质的特定mRNA序列,其与编码多种蛋白质的大量其他mRNA形成混合物。然而,包含例如SEQ ID NO:1的分离的核酸序列包括,例如通常包含SEQ ID NO:1的细胞中的这样的核酸序列,其中所述核酸序列处于与天然细胞不同的染色体或染色体外位置,或另外地,其两侧为与在天然中发现的不同的核酸序列。分离的核酸序列可以单链或双链形式存在。当利用分离的核酸序列用于表达蛋白质时,核酸序列将最少包含正义或编码链的至少一部分(即,核酸序列可为单链的)。可选地,其可包含正义和反义链二者(即,核酸序列可为双链的)。
最小启动子:启动子元件,特别是TATA元件,其为无活性的或在缺乏上游活化的情况下具有显著降低的启动子活性。在存在合适的转录因子时,最小启动子发挥功能从而允许转录。
非编码:术语“非编码”指不编码表达的蛋白质的部分或全部的核酸分子的序列。非编码序列包括但不限于,内含子、增强子、启动子区、3’非翻译区和5’非翻译区。
核酸和核苷酸:术语“核酸”和“核苷酸”指天然存在的或合成的或人工的核酸或核苷酸。术语“核酸”和“核苷酸”包含以单或双链、正义或反义形式的脱氧核糖核苷酸或核糖核苷酸或任意核苷酸类似物和聚合物或其杂交物。除非另外指出,特定的核酸序列也暗含保守修饰的其变体(例如,简并密码子取代)和互补序列,以及明确指示的序列。术语“核酸”与“基因”、“cDNA”、“mRNA”、“寡核苷酸”和“多核苷酸”在本文中可互换使用。核苷酸类似物包括在碱基、糖和/或磷酸的化学结构中具有修饰的核苷酸,其包括但不限于,5-位嘧啶修饰,8-位嘌呤修饰,胞嘧啶环外胺类的修饰,5-溴-尿嘧啶的取代,等等;和2’-位糖修饰,包括但不限于糖修饰的核糖核酸,其中2′-OH被替换为选自H,OR,R,卤素(halo),SH,SR,NH2,NHR,NR2或CN的基团。短发夹RNA(shRNA)也可包含非天然元件,例如,非天然碱基,例如ionosin和黄嘌呤,非天然糖,例如2-甲氧基核糖或非天然磷酸二酯键,例如甲基磷酸酯、硫代磷酸酯和肽。
核酸序列:短语“核酸序列”指从5’-至3’-端阅读的脱氧核糖核苷酸或核糖核苷酸碱基的单或双链聚合物。其包括染色体DNA、自我复制质粒、DNA或RNA的感染性聚合物和发挥基本结构作用的DNA或RNA。“核酸序列”也指代表核苷酸的缩写、字母、字符或单词的连续列表。在一个实施方案中,核酸可为“探针”,其为相对短的核酸,通常为小于100个核苷酸的长度。核酸探针通常为从约50个核苷酸的长度至约10个核苷酸的长度。核酸的“靶区域”是被鉴定为研究目的的核酸部分。核酸的“编码区”是这样的核酸的部分,当被置于合适调控序列的控制下时,其以序列特异性的方式被转录和翻译以产生特定的多肽或蛋白质。编码区编码这样的多肽或蛋白质。
寡核苷酸:术语“寡核苷酸”指核糖核酸(RNA)或脱氧核糖核酸(DNA)或其类似物的寡聚物或聚合物,以及具有功能类似的非天然存在部分的寡核苷酸。经常优选这样修饰的或取代的寡核苷酸而不是天然形式,因为前者的理想性能,例如增强的细胞摄取,对靶核酸的增强的亲和力和在核酸酶存在下提高的稳定性。寡核苷酸优选地包括通过键(例如磷酸二酯键)或替代键彼此共价连接的2个或多个核苷酸单体。
有效连接:术语“有效连接”或“有效连接的”应被理解为表示,例如调控元件(例如启动子)和待表达的核酸序列以及(如果有的话)另外的调控元件(例如终止子)以这样的方式顺序排列,使得每一个调控元件可实现其预期的功能,从而允许、修饰、便于或影响所述核酸序列的表达。取决于有关正义或反义RNA的核酸序列的排列产生表达。为此,不一定需要在化学意义上的直接连接。基因控制序列例如增强子也可在相距很远的位置上,或甚至在其他DNA分子上对靶序列施加其作用。优选的排列是这样的,其中待重组表达的核酸序列位于作为启动子的序列之后,从而使2种序列彼此共价连接。启动子序列和待重组表达的核酸序列之间的距离优选小于200bp,特别优选小于100bp,最特别优选小于50bp。在优选的实施方案中,待转录的核酸序列以这样的方式位于启动子之后,使得转录起点与本发明的嵌合RNA的预期起点相同。可通过常规的重组和克隆技术产生有效连接和表达构建体,如(例如,在Maniatis T,Fritsch EF和Sambrook J(1989)Molecular Cloning:A Laboratory Manual,第二版,Cold Spring Harbor Laboratory,Cold Spring Harbor(NY);Silhavy等人(1984)Experiments with Gene Fusions,Cold Spring HarborLaboratory,Cold Spring Harbor(NY);Ausubel等人(1987)CurrentProtocols in Molecular Biology,Greene Publishing Assoc.and WileyInterscience;Gelvin等人(编)(1990)Plant Molecular Biology Manual;Kluwer Academic Publisher,Dordrecht,The Netherlands中)描述的。然而,其他序列,例如作为具有限制酶的特异性切割位点的接头,或作为信号肽的序列也可位于所述2种序列之间。序列的***也可导致融合蛋白的表达。优选地,由启动子和待表达的核酸序列的连接组成的表达构建体可以载体整合的形式存在并可***植物基因组中,例如通过转化。
器官:有关植物的术语“器官”(或“植物器官”)指植物的部分并可包括(但不应局限于)例如根、果、枝、茎、叶、花药、萼片、花瓣、花粉、种子等等。
突出端:“突出端”是在双链寡核苷酸分子的5’-或3’-羟基端上相对短的单链核苷酸序列(又称“延伸”、“突出末端”或“黏性末端”)。
植物的部分:术语“植物的部分”包含植物的任意部分,例如植物器官或植物组织或一种或多种可能分化的或不会分化的植物细胞。
相区:如本文表示的,相区是ta-siRNA分子上包含的区域,其与靶区域同源,且当所述ta-siRNA分子在植物细胞中被加工后释放为21至24bp的小dsRNA分子。这样的来源于ta-siRNA分子的小dsRNA分子的靶区域为例如靶基因的编码区,非编码基因的转录区或靶基因的启动子。ta-siRNA的加工和相区的预测在例如Allen等人(2005)中描述。
植物:术语“植物”或“植物有机体”指能够进行光合作用的任意真核生物,和来源于其的细胞、组织、部分或繁殖材料(例如种子或果)。在本发明范围内包含植物界的高等和低等植物的所有属和物种,以及藻类。优选一年生、多年生、单子叶和双子叶植物和裸子植物。“植物”指处于任意发育阶段的任意植物或植物部分。成熟的植物指处于苗期之后的任意发育阶段的植物。包含成熟的植物、种子、枝条和幼苗,和来源于其的部分、繁殖材料(例如块茎、种子或果)和培养物(例如细胞培养物或愈伤组织培养物)。幼苗指处于早期发育阶段的年幼、未成熟的植物。其中也包括插条、细胞或组织培养物和种子。如结合本发明使用的,术语“植物组织”包括但不限于,完整的植物、植物细胞、植物器官、植物种子、原生质体、愈伤组织、细胞培养物和组织成结构和/或功能单元的任意植物细胞群。优选地,术语“植物”如本文使用的指复数的植物细胞,其大幅分化为在植物发育的任意阶段存在的结构。这样的结构包括一种或多种植物器官,包括但不限于果、枝条、茎、叶、花瓣等等。更优选地,术语“植物”包括完整的植物、苗营养器官/结构(例如叶、茎和块茎)、根、花和花器官/机构(例如苞片、萼片、花瓣、雄蕊、心皮、花药和胚珠)、种子(包括胚、胚乳和种皮)和果(成熟的子房)、植物组织(例如维管组织、基本组织等等)和细胞(例如保卫细胞、***、毛状体等等)及其后代。在本发明的方法中可使用的植物类别通常与可用于转化技术的高等和低等植物的类别一样广泛,包括被子植物(单子叶和双子叶植物)、裸子植物、蕨类和多细胞藻类。在本发明范围内包含植物界的高等和低等植物的所有属和物种。包含成熟的植物、种子、枝条和幼苗,和来源于其的部分、繁殖材料(例如种子和果)和培养物,例如细胞培养物。优选以下植物科的植物和植物材料:苋科(Amaranthaceae)、十字花科(Brassicaceae)、石竹科(Brassicaceae)、藜科(Chenopodiaceae)、菊科(Compositae)、葫芦科(Cucurbitaceae)、唇形科(Labiatae)、豆科(Leguminosae)、蝶形花亚科(Papilionoideae)、百合科(Liliaceae,Linaceae)、锦葵科(Malvaceae)、蔷薇科(Rosaceae)、虎耳草科(Saxifragaceae)、玄参科(Scrophulariaceae)、茄科(Solanaceae)、番杏科(Tetragoniaceae)。一年生、多年生、单子叶和双子叶植物是用于产生转基因植物的优选宿主生物。在所有观赏植物、林业、果或观赏树、花、切花、灌木或草皮中使用根据本发明的方法是特别有优势的。所述植物可包括——但不应局限于——苔藓植物,例如苔纲(Hepaticae)(地钱属植物)和藓纲(Musci)(藓类);蕨类植物,例如羊齿、马尾和石松;裸子植物,例如松柏类、苏铁类、银杏和买麻藤科;藻类,例如绿藻纲(Chlorophyceae)、褐藻纲(Phaeophpyceae)、红藻纲(Rhodophyceae)、蓝藻纲(Myxophyceae)、黄藻纲(Xanthophyceae)、硅藻纲(Bacillariophyceae)(硅藻类)和裸藻纲(Euglenophyceae)。为了本发明的目的,植物可包括以下科:蔷薇科例如玫瑰,杜鹃花科(Ericaceae)例如烈香杜鹃(rhododendron)和杜鹃(azalea),大戟科(Euphorbiaceae)例如猩猩木和巴豆,石竹科例如石竹花,茄科例如矮牵牛花,苦苣苔科(Gesneriaceae)例如非洲堇,凤仙花科(Balsaminaceae)例如含羞草,兰科(Compositae)例如兰花,鸢尾科(Iridaceae)例如剑兰、鸢尾花、小苍兰和番红花,菊科例如金盏花,牻牛儿科(Geraniaceae)例如天竺葵,百合科例如Drachaena,桑科(Moraceae)例如无花果,天南星科(Araceae)例如喜林芋等等。根据本发明的转基因植物还特别选自双子叶作物,例如选自豆科例如豌豆、苜蓿和大豆;伞形科(Umbelliferae),特别是胡萝卜属(Daucus)(最特别地是物种carota(胡萝卜))和芹属(Apium)(最特别地是物种graveolens var.dulce(芹菜))等等;茄科,特别是番茄属(Lycopersicon),最特别地是物种esculentum(番茄)和茄属(Solanum),最特别地是物种tuberosum(马铃薯)和melongena(茄子),烟草等等;和辣椒属(Capsicum),最特别地是物种annum(胡椒)等等;豆科,特别是大豆属,最特别地是物种max(大豆)等等;和十字花科,特别是芸苔属(Brassica),最特别地是物种napus(油菜)、campestris(甜菜)、oleracea cv Tastie(卷心菜)、oleracea cv Snowball Y(白花菜)和oleracea cv Emperor(花椰菜);和拟南芥属,最特别地是物种thaliana(拟南芥)等等;菊科,特别是莴苣属(Lactuca),最特别地是物种sativa(莴苣)等等。根据本发明的转基因植物特别选自以下单子叶作物,例如谷类,例如小麦、大麦、高粱和小米、黑麦、黑小麦、玉蜀黍、稻或燕麦,和甘蔗。进一步优选树,例如苹果、梨、柑橘、梅子、樱桃、桃、油桃、杏、木瓜、芒果和其他木本物种包括针叶树和阔叶树,例如白杨、松树、红杉、雪松、橡树等等。特别优选的是拟南芥(Arabidopsisthaliana)、烟草(Nicotiana tabacum)、油菜(oilseed rape)、大豆、玉米(玉蜀黍)、小麦、棉花、马铃薯和万寿菊。
多肽:术语“多肽”、“肽”、“寡肽”、“多肽”、“基因产物”、“表达产物”和“蛋白质”在本文中可互换使用,指连续的氨基酸残基的聚合物或寡聚物。
蛋白质前体:通常靶向细胞器例如叶绿体,并仍然包含其转运肽的蛋白质。
初级转录物:如本文使用的,术语“初级转录物”指基因的不成熟的mRNA转录物。例如,“初级转录物”仍然包含内含子和/或还不包含多聚腺苷酸尾巴或帽子结构和/或缺乏其作为转录物的正确功能所必需的其他修饰,例如修剪或剪接。
启动子:术语“启动子”或“启动子序列”是等同物,且如本文使用的指下述DNA序列,当其连接目的核苷酸序列时能够控制所述目的核苷酸序列转录为mRNA。这样的启动子可例如在以下公共数据库中找到:http://www.grassius.org/grasspromdb.html,http://mendel.cs.rhul.ac.uk/mendel.php?topic=plantprom,http://ppdb.gene.nagoya-u.ac.jp/cgi-bin/index.cgi。在那里列出的启动子可用于本发明的方法并因此包括在本文中作为参考。启动子位于由其控制转录为mRNA的目的核苷酸序列的转录起始位点附近的5’(即上游),并提供用于RNA聚合酶和其他转录因子特异性结合的位点以起始转录。所述启动子包含转录起始位点附近的例如至少10kb,例如5kb或2kb。其也可包含转录起始位点附近的至少1500bp,优选至少1000bp,更优选至少500bp,甚至更优选至少400bp,至少300bp,至少200bp或至少100bp。在更优选的实施方案中,启动子包含转录起始位点附近的至少50bp,例如至少25bp。启动子不包含外显子和/或内含子区或5’非翻译区。启动子可例如相对相应的植物是异源的或同源的。如果多核苷酸序列相对生物或第二种核苷酸序列来源于不同的物种,或来源于相同的物种但在其原来的形式上进行了修饰,则其“相对”生物或第二种核苷酸序列是“异源的”。例如,与异源编码序列有效连接的启动子指,编码序列来自与启动子来源的物种不同的物种,或如果来自相同的物种,编码序列不天然与所述启动子相关(例如,基因改造的编码序列或来自不同生态型或品种的等位基因)。合适的启动子可来源于应当发生表达的宿主细胞的基因或来源于此宿主细胞的病原体(例如,植物病原体,如植物病毒)。植物特异性启动子是适于在植物中调节表达的启动子。其可来源于植物但也可来源于植物病原体,或其可为人为设计的合成的启动子。如果启动子是诱导型启动子,那么转录率响应诱导剂提高。另外,可以组织特异性或组织偏好的方式调控启动子,从而其仅在或主要在特定组织类型例如叶、根或分生组织中具有转录相关编码区的活性。术语“组织特异性”当应用于启动子时指能够引导目的核苷酸序列在特定类型的组织(例如花瓣)中选择性的表达,而在不同类型的组织(例如根)中相对缺乏相同的目的核苷酸序列的表达的启动子。可通过例如以下方法评估启动子的组织特异性:将报告基因有效连接至启动子以产生报告构建体,将报告构建体引入植物的基因组从而使报告构建体整合进得到的转基因植物的每一种组织,并检测报告基因(例如,检测报告基因编码的mRNA、蛋白质或蛋白质的活性)在转基因植物的不同组织中的表达。检测到报告基因在一种或多种组织中的表达水平相对报告基因在其他组织中的表达水平较高显示启动子对检测到较高表达水平的组织是特异性的。术语“细胞类型特异性”当应用于启动子时指能够引导目的核苷酸序列在特定类型的细胞中选择性的表达,而在相同组织的不同类型的细胞中相对缺乏相同的目的核苷酸序列的表达的启动子。术语“细胞类型特异性”当应用于启动子时也表示能够引导目的核苷酸序列在单个组织的区域中选择性的表达的启动子。可使用本领域熟知的方法评估启动子的细胞类型特异性,例如GUS活性染色、GFP蛋白或免疫组化染色。术语“组成型”当有关启动子使用时,表示所述启动子在缺乏刺激(例如,热休克,化学药品,光,等等)时能够在大多数植物组织和细胞中引导有效连接的核酸序列的转录。通常,组成型启动子能够在基本任意细胞和任意组织中引导转基因的表达。
纯化的:如本文使用的,术语“纯化的”指从其天然环境移除的,分离或分开的分子,或为核酸或为氨基酸序列。“基本纯化的”分子是至少60%不含,优选至少75%不含,和更优选至少90%不含其他与其天然相关的成分的分子。纯化的核酸序列可为分离的核酸序列。
重组的:有关核酸分子的术语“重组的”指通过重组DNA技术产生的核酸分子。重组的核酸分子可也包含这样的分子,其本来在自然界不存在但被人为修饰、改变、突变或被另外操纵。优选地,“重组的核酸分子”是非天然存在的核酸分子,其与来自天然存在的核酸分子的序列具有至少1个核酸的差异。“重组的核酸分子”可也包含“重组的构建体”,所述重组的构建体包含,优选有效连接的不天然以该顺序存在的核酸分子的序列。产生所述重组核酸分子的方法可包括克隆技术、定向或非定向诱变、合成或重组技术。
参考植物:“参考植物”是用作基因改造的植物(例如转基因或诱变植物)的参考的任意植物。参考植物优选地与用于如上定义的转化或诱变的相应方法中使用的起始植物基本上相同,更优选地是所述起始植物的克隆。
调控区的调控盒:如本文使用的“调控区的调控盒”指,在调控区的序列中包含的序列元件或基序,其与调控蛋白和/或核酸相互作用,由此影响调控区的特异性。调控区的调控盒可例如为22bp或更短,优选16bp或更短,更优选12bp或更短,甚至更优选8bp或更短。调控区的调控盒至少由4bp组成。例如,在transfac数据库http://www.biobase-international.com/pages/index.php?id=transfac中列出了这样的调控盒。
调控区:“调控区”或“调控元件”可为在基因组上和/或转录物上编码的影响基因表达的任意区域。例如,影响可表示引导或阻止表达,调控表达的量或特异性。调控区可影响的过程为例如转录、翻译或转录物稳定性。例如,“调控区”为启动子、增强子、抑制子、内含子、5’和3’UTR。此列表是非排他性列表。植物特异性调控区是在植物中有功能的调控区。其可来源于植物但也可来源于植物病原体或其可为人为设计的合成的调控区。
“sncRNA靶向区”,包括sncaRNA或“区域”指与sncRNA相互作用的启动子的区域或部分,由此调控所述启动子赋予的表达例如提高或降低表达。所述相互作用可为sncRNA与启动子之间的直接的相互作用,例如sncRNA和启动子的同源区之间的碱基配对。所述相互作用也可为不涉及2个分子之间的碱基配对的sncRNA至启动子的吸附或附着。其可另外表示间接的相互作用,例如所述sncRNA与一种或多种蛋白质相互作用,然后所述蛋白质与启动子相互作用。
如本文使用的,“sncaRNA靶向区”指与sncaRNA相互作用的启动子部分的核酸序列。这样的区域可为植物特异性启动子中的任意区域,其可完全包含或部分包含启动子的调控盒或启动子的转录起始位点。所述区域与sncaRNA同源,例如70%或更同源,优选80%或更同源,更优选90%或更同源,最优选100%同源,当与sncaRNA相互作用,例如结合后,其赋予所述启动子调控的基因的提高。
正义:术语“正义”应被理解为指具有与靶序列互补或相同的序列的核酸分子,例如结合蛋白质转录因子并涉及给定基因的表达的序列。根据优选的实施方案,所述核酸分子包含目的基因和允许所述目的基因表达的元件。
短发夹RNA:如本文使用的“短发夹RNA”指包含发夹结构的,在约16bp至约26bp,例如16至26bp之间的部分为双链的RNA分子。这些短发夹RNA来源于重组构建体的表达,所述重组构建体在5’至3’的方向上包含16至26bp,接着是约5-50bp的短接头,接着是与开始的16至26bp至少部分互补的16至26bp,接着是3’非转录区。此构建体被有效连接至Pol III RNA基因启动子,例如植物特异性Pol III RNA基因启动子。在此构建体表达后,相应的互补的16至26bp形成双链结构,其中接头形成发夹。这样的构建体例如在Lu等人(2004)中描述。本领域技术人员知道在设计这样的构建体中的可能变化。
显著的提高或降低:大于测量技术中的固有误差限度的,例如在酶活性或在基因表达中的提高或降低,优选比对照酶的活性或在对照细胞中的表达提高或降低约2倍或更高,更优选提高或降低约5倍或更高,和最优选提高或降低约10倍或更高。
小核酸分子:将“小核酸分子”理解为由核酸或其衍生物组成的分子,例如RNA或DNA。其可为双链或单链的并在约15和约30bp之间,例如15和30bp之间,更优选约19和约26bp之间,例如19和26bp之间,甚至更优选约20和约25bp之间,例如20和25bp之间。在特别优选的实施方案中,寡核苷酸在约21和约24bp之间,例如21和24bp之间。在最优选的实施方案中,小核酸分子为约21bp和约24bp,例如21bp和24bp。
非编码小RNA:如在此文件中使用的“非编码小RNA”或“sncRNA”指来源于植物或其部分的RNA,其不编码蛋白质或肽并具有作为RNA分子本身的生物学功能。其例如涉及调控基因表达,例如转录、翻译、mRNA前体和mRNA的加工和/或RNA降解。已鉴定了大量不同的、在来源和功能上有差异的“sncRNA”。“sncRNA”为例如ta-siRNA,shRNA,siRNA,微小RNA,snRNA,nat-siRNA和/或snoRNA。其可为双链或单链的并在约10和约80bp之间,例如10和80bp之间,约10和约50bp之间,例如10和50bp之间,15和约30bp之间,例如15和30bp之间,更优选约19和约26bp之间,例如19和26bp之间,甚至更优选约20和约25bp之间,例如20和25bp之间。在特别优选的实施方案中,寡核苷酸在约21和约24bp之间,例如21和24bp之间。在最优选的实施方案中,sncRNA为约21bp和约24bp,例如21bp和24bp。
非编码小活化RNA:如在此文件中使用的“非编码小活化RNA”或“scnaRNA”是sncRNA的亚类。其涉及调控基因表达。当与启动子相互作用后,其导致来源于这些启动子的表达的提高。
稳定:在植物细胞中“稳定”核苷酸序列的表达指,在应用本发明的方法后,当在相同或相当的条件下培养植物时,核苷酸序列的表达水平在同一代或多代的不同植物中的相同组织的细胞中大约相同。
基本互补:在其最广泛的意义上,当有关核苷酸序列与参考或靶核苷酸序列相比时使用术语“基本互补”时,指在基本互补的核苷酸序列与所述参考或靶核苷酸序列的确切的互补序列之间具有如下的百分比同一性的核苷酸序列,至少60%,更理想地至少70%,更理想地至少80%或85%,优选至少90%,更优选至少93%,更优选至少95%或96%,更优选至少97%或98%,更优选至少99%或最优选100%(在此上下文中后者与术语“同一”等同)。优选地在核酸序列的至少19个核苷酸,优选至少50个核苷酸的长度,更优选在全长上相对所述参考序列评估同一性(如果下文没有另外说明)。使用基于Needleman和Wunsch算法(Needleman和Wunsch(1970)JMol.Biol.48:443-453;如上定义)的威斯康辛大学GCG,GAP的SEQWEB应用中的默认GAP分析进行序列比较。与参考核苷酸序列“基本互补”的核苷酸序列在低严格度条件,优选中严格度条件,最优选高严格度条件下(如上定义)与参考核苷酸序列杂交。
基本同一:在其最广泛的意义上,当在本文中有关核苷酸序列使用术语“基本同一”时,指对应参考或靶核苷酸序列的核苷酸序列,其中基本同一的核苷酸序列和参考或靶核苷酸序列之间的同一性百分比理想地为至少60%,更理想地至少70%,更理想地至少80%或85%,优选至少90%,更优选至少93%,更优选至少95%或96%,更优选至少97%或98%,更优选至少99%或最优选100%(在此上下文中后者与术语“同一”等同)。优选地在相对所述参考序列的核酸序列的至少19个核苷酸,优选至少50个核苷酸的长度,更优选在全长上评估同一性(如果下文没有另外说明)。使用基于Needleman和Wunsch算法(Needleman和Wunsch(1970)J Mol.Biol.48:443-453;如上定义)的威斯康辛大学GCG,GAP的SEQWEB应用中的默认GAP分析进行序列比较。与参考核苷酸序列“基本同一”的核苷酸序列在低严格度条件,优选中严格度条件,最优选高严格度条件下(如上定义)与参考核苷酸序列的精确互补序列(即,其在双链分子中的对应链)杂交。特定核苷酸序列的同源物包括编码与参考氨基酸序列至少24%同一,更优选至少35%同一,更优选至少50%同一,更优选至少65%同一的氨基酸序列的核苷酸序列,如使用上文描述的参数测量,其中同源物编码的氨基酸序列与特定核苷酸编码的蛋白质具有相同的生物学活性。当在本文中有关多肽使用术语“基本同一”时,指对应参考多肽的蛋白质,其中所述多肽与参考蛋白质基本具有相同的结构和功能,例如在氨基酸序列中仅存在不影响多肽功能的改变。当用于多肽或氨基酸序列时,基本相似的和参考多肽或氨基酸序列之间的同一性百分比理想地为至少24%,更理想地至少30%,更理想地至少45%,优选至少60%,更优选至少75%,更优选至少90%,更优选至少95%,更优选至少99%,使用如上描述的默认GAP分析参数。同源物是与参考多肽或氨基酸序列至少24%同一,更优选至少35%同一,更优选至少50%同一,更优选至少65%同一的氨基酸序列,如使用上文描述的参数测量,其中同源物编码的氨基酸序列与参考多肽具有相同的生物学活性。当本文中有关植物使用术语“基本同一”时,在其最广泛的意义上指同属的2种植物。当有关转基因植物和参考植物使用时,基本同一指除了转基因植物携带的重组构建体以外,参考植物的基因组序列与转基因植物基本同一。
术语“靶”、“靶基因”和“靶核苷酸序列”是等同地使用的。如本文使用的,靶基因可为植物中存在的任意目的基因。靶基因可为内源的或引入的。例如,靶基因是功能已知的基因或功能未知的基因,但其全部或部分核苷酸序列是已知的。靶基因是植物细胞的天然基因或以前引入植物细胞或所述植物细胞(例如通过遗传转化)的亲本细胞的异源基因。异源靶基因稳定地整合进植物细胞的基因组,或以染色体外分子存在于植物细胞中,例如作为自主复制的染色体外分子。靶基因可包括包含编码多肽的区域或调控复制、转录、翻译或其他靶蛋白表达中的重要过程的多核苷酸区域的多核苷酸;或包含编码靶多肽的区域和调控靶多肽表达的区域的多核苷酸;或非编码区,例如5’或3’UTR或内含子。靶基因可指,例如通过目的基因的转录产生的RNA分子。靶基因也可为在重组细胞或遗传改变的植物中表达的异源基因。在优选的实施方案中,靶基因是改进重要的农艺性状例如产量或稳产性,胁迫抗性(包含生物和非生物胁迫二者,例如真菌或干旱抗性)的基因。其他重要的农艺性状为例如维生素、氨基酸、PUFA或其他目的代谢物的含量。
组织:有关植物的术语“组织”指多种细胞的排列,包括生物的分化和未分化的组织。组织可构成器官的一部分(例如植物叶的表皮),但也可构成肿瘤组织(例如愈伤组织)和多种培养细胞类型(例如,单细胞、原生质体、胚胎、愈伤组织等等)。组织可在体内(例如在植物中),在器官培养物、组织培养物或细胞培养物中。
转化:如本文使用的,术语“转化”指将遗传物质(例如转基因或异源核酸分子)引入植物细胞、植物组织或植物。细胞的转化可为稳定的或瞬时的。术语“瞬时转化”或“瞬时转化的”指将一种或多种转基因引入细胞但没有整合转基因至宿主细胞基因组。瞬时转化可通过例如酶联免疫吸附测定(ELISA)检测,其检测由一种或多种转基因编码的多肽的存在。可选地,瞬时转化可通过检测转基因(例如uid A基因)编码的蛋白质(例如β-葡糖醛酸酶)的活性检测。术语“瞬时转化体”指瞬时掺入了一种或多种转基因的细胞。相对地,术语“稳定转化”或“稳定转化的”指将一种或多种转基因引入和整合至细胞的基因组,优选地导致染色体整合和通过减数***稳定的遗传。细胞的稳定转化可通过细胞基因组DNA的DNA印迹杂交,使用能够结合一种或多种转基因的核酸序列。可选地,细胞的稳定转化也可通过扩增转基因序列的细胞基因组DNA的聚合酶链式反应检测。术语“稳定转化体”指稳定整合了一种或多种转基因至基因组DNA的细胞。因此,稳定转化体与瞬时转化体的区别在于,稳定转化体的基因组DNA包含一种或多种转基因,而瞬时转化体的基因组DNA不包含转基因。转化也包括以涉及染色体外复制和基因表达的植物病毒载体的形式将遗传物质引入植物细胞,就减数***稳定性而言其可展示多变的性质。认为转化的细胞、组织或植物不仅包含转化过程的终产物,也包含其转基因后代。
转基因:如本文使用的术语“转基因”指通过实验操纵引入细胞基因组的任意核酸序列。转基因可为“内源DNA序列”或“异源DNA序列”(即,“外源DNA”)。术语“内源DNA序列”指在其引入的细胞中可天然发现的核苷酸序列,只要其不包含相对天然存在序列的某些修饰(例如,点突变,可选择的标记基因的存在,等等)。
转基因的:术语转基因的当涉及植物细胞、植物组织或植物时,指用重组DNA分子转化的,优选稳定转化的,所述DNA分子优选地包含与目的DNA序列有效连接的合适的启动子。
载体:如本文使用的,术语“载体”指能够运输与其连接的另一个核酸分子的核酸分子。载体的一种类型是基因组整合载体,或“整合载体”,其可整合进宿主细胞的染色体DNA。载体的另一种类型是附加型载体,即能够在染色体外复制的核酸分子。能够引导与其有效连接的基因的表达的载体在本文中被称为“表达载体”。在本说明书中,“质粒”和“载体”是互换使用的,除非另外在上下文中明确指出。被设计为在体外或体内产生如本文描述的RNA的表达载体可包含任意RNA聚合酶(包括线粒体RNA聚合酶、RNA聚合酶I、RNA聚合酶II和RNA聚合酶III)可识别的序列。根据本发明,这些载体可用于在细胞中转录预期的RNA分子。植物转化载体应被理解为在植物转化过程中合适的载体。
野生型:有关生物、多肽或核酸序列的术语“野生型”、“天然”或“天然来源”指,所述生物是天然存在的或可从至少一种天然存在的生物中得到的,其未被人为改变、突变或被另外操纵。
实施例
实施例1拟南芥原生质体的转化和激素诱导型启动子报告基因的测定
材料和方法
植物材料:使用4周龄col-0生态型的拟南芥植物用于本实验。
质粒构建体:
使用2种不同的启动子::报告基因构建体进行实验。从拟南芥生物资源中心(www.biosci.ohio-state.edu/plantbio/Facilities/abrc/abrccontactus.htm)得到IAA诱导的GH3-LUC和ABA诱导的RD29A-LUC(Kovtun等人,2000,.Por.Natl.acad.Sci.USA 97:2940-2945)。
原生质体的分离:
使用充分展开的健康叶用于原生质体的分离。如Yoo等人,(2007,Nature protocols 2(7):1565-1572)描述的分离原生质体,并略加修改。在10ml包含1.5%纤维素和0.3%离析酶的酶溶液中消化约10-20片叶。将叶切成0.5-1mm的叶细条并浸入酶溶液,然后真空渗透3分钟。3分钟结束后,快速断开真空以促使酶溶液渗入叶切片。重复此程序3次。将叶置于酶溶液中过夜。
原生质体转化:
使用PEG(聚乙二醇)用10μg质粒DNA转化1x104原生质体。转化的原生质体在黑暗中与1μM IAA(对用GH3-LUC转化的原生质体)和100μMABA(对用RD29A-LUC转化的原生质体)孵育16h。对照是模拟转化的原生质体和用相应的质粒转化的但未用IAA或ABA处理的原生质体。
对使用siRNA的实验,使用10μg报告质粒和5μg siRNA共转化1x104原生质体。
荧光素酶测定
使用荧光素酶测定***(Promega)根据制造商的说明书进行荧光素酶测定。沉淀原生质体,对沉淀加入100μl细胞裂解缓冲液,涡旋和离心。对20μl上清加入100μl测定缓冲液并使用光度计(Lmax)阅读荧光。显示的结果显示为来自一式三份样品的相对LUC活性的平均值以及误差条。所有实验重复3次并具有类似的结果。在IAA和ABA的存在下,我们能够在加入1μM IAA或100μM ABA后诱导荧光素酶的表达,如Hwang & Sheen(2001)以前报导的。
实施例2设计靶向激素诱导的启动子的siRNA
为了检测小RNA活化的基因表达,我们设计了大量siRNA,其序列对应ABA和IAA启动子序列的片段。设计了21个核苷酸的合成的双链体RNA,其中在正义和反义链上具有19个核苷酸的重叠和2个核苷酸的3’突出端。将siRNA设计为对应TATA盒上游100个核苷酸至启动子3’端的启动子序列。
ABA诱导型启动子
将ABA启动子(SEQ ID NO:1)siRNA设计为覆盖跨度从TATA盒上游100个核苷酸至启动子3’端的216bp的区域(SEQ ID NO:1的第141至356位)。设计了21个核苷酸的siRNA,从SEQ ID NO:1的第141位开始沿着启动子剩余的长度,以5’至3’的方向每次前进5个核苷酸。设计了总共40个siRNA以覆盖从SEQ ID NO:1的第141至356位的区域。
例如,针对ABA启动子设计的第一个siRNA,名为A-1,其包含对应SEQ ID NO:1的第141至161位的正义链。siRNA A-1的反义链与SEQ IDNO:1的第139至159位反向互补。正义和反义siRNA退火形成具有3’2nt突出端的siRNA双链体。例如,A-1 siRNA双链体包含A1小活化RNA的正义(SEQ ID NO:22)和反义(SEQ ID NO:23)链。针对ABA启动子设计的第二个siRNA名为A-2,其包含对应SEQ ID NO:1的第146至166位的正义链。siRNA A-2的反义链与SEQ ID NO:1的第144至164位反向互补。使用如siRNA A-1和A-2相同的设计,设计siRNA以覆盖剩余的ABA启动子序列。
IAA诱导型启动子
IAA启动子(SEQ ID NO:2)包含2个潜在的TATA盒。将IAA启动子(SEQID NO:2)siRNA设计为覆盖跨度从第一个TATA盒上游的100个核苷酸至启动子末端的761bp的区域(SEQ ID NO:2的第2753至3513位)。设计了21个核苷酸的siRNA,从SEQ ID NO:2的第2753位开始沿着启动子剩余的长度,以5’至3’的方向每次前进5个核苷酸。设计了总共149个siRNA以覆盖从SEQ ID NO:2的第2753至3513位的区域。
例如,针对IAA启动子设计的第一个siRNA,名为I-1,其包含对应SEQ ID NO:2的第2753至2773位的正义链。siRNA I-1的反义链与SEQ IDNO:2的第2751至2771位反向互补。正义和反义siRNA退火形成具有3’2nt突出端的siRNA双链体。例如,I-24siRNA双链体包含I-24小活化RNA的正义(SEQ ID NO:6)和反义(SEQ ID NO:7)链。针对IAA启动子设计的第二个siRNA名为I-2,其包含对应SEQ ID NO:2的第2758至2778位的正义链。siRNA I-2的反义链与SEQ ID NO:2的第2756至2776位反向互补。使用如siRNA I-1和I-2相同的设计,设计siRNA以覆盖剩余的IAA启动子序列。
ACC诱导型启动子
将ACC诱导的启动子(SEQ ID NO:3)siRNA设计为覆盖整个启动子区(SEQ ID NO:3的第1至146位)。设计了21个核苷酸的siRNA,从SEQID NO:3的第1位开始沿着启动子剩余的长度,以5’至3’的方向每次前进5个核苷酸。设计了总共26个siRNA以覆盖此区域。
玉米素诱导型启动子
将ABA诱导型启动子(SEQ ID NO:4)siRNA设计为覆盖跨度从TATA盒上游200个核苷酸至启动子末端的411bp的区域(SEQ ID NO:4的第1987至2397位)。设计了21个核苷酸的siRNA,从SEQ ID NO:4的第1987位开始沿着启动子剩余的长度,以5’至3’的方向每次前进5个核苷酸。设计了总共79个siRNA以覆盖从SEQ ID NO:4的第1987至2397位的区域。
实施例3在拟南芥原生质体***中检测siRNA对激素诱导型启动子的活化
在靶向GH3-LUC启动子的149个siRNA中,其中8个在缺乏IAA时活化荧光素酶基因的表达(图1A)。对RD29A-LUC启动子,检测的40个siRNA中的9个在缺乏ABA时显示提高荧光素酶的表达(图1B)。
我们使用Genomatix表征GH3-LUC和RD29A-LUC启动子的转录因子结合位点。有趣的是,我们发现我们的击中在TATA盒区或调控元件,包括转录抑制子BELLRINGER,不同的糖应答基因的启动子,Ellicitor应答元件,ABA诱导型转录激活子,稻转录激活子-1,TCP II类转录因子,植物生长素应答元件和富含CA的元件附近。
阴性对照:激素诱导型启动子::LUC报告基因,无激素
阳性对照:激素诱导型启动子::LUC报告基因,有激素
表1:活化荧光素酶表达的针对GH3-LUC启动子的siRNA(及其SEQ IDNO)及其周围的siRNA
Figure BDA0000122409100000471
Figure BDA0000122409100000481
表2:活化荧光素酶表达的针对RD29A启动子的siRNA(及其SEQ ID NO)及其周围的siRNA
Figure BDA0000122409100000482
Figure BDA0000122409100000491
实施例4电脑模拟鉴定在调控区中被内源miRNA靶向的候选基因
从Mirbase(http://microrna.sanger.ac.uk)中提取了超过100个已知的拟南芥微小RNA并在由拟南芥中每一个基因上游多达3kb的区域组成的TAIR数据库(www.arabidopsis.org/)上检索。我们在两种模式下检索了这些可能包含5’非翻译区的假定的启动子区,用已知的拟南芥微小RNA作为查询项,使用无空位的BLAST和减少的字长7作为预过滤,并且然后使用Smith-Waterman算法重新比对所述区域。然后我们需要以下条件用于被称为潜在靶的排列。所有这些要求从已知微小RNA的最5’端碱基开始索引。
首先,总共不超过4个错配。
其次,在碱基10或11处没有错配。
第三,在碱基2和9之间允许不超过1个错配。
第四,如果在碱基2和9之间有错配,则在比对中其他错配不超过2个。
第五,从碱基12至21连续错配不超过2个。
认为满足上述条件的所有排列是微小RNA的靶启动子。
我们进一步将miRNA击中限制在假定的启动子上游2kb区,并发现853个基因的正义链和651个基因的反义链被107个已知miRNA靶向。然后我们挑选出1个miRNA家族并因此鉴定出214个靶向正义链的miRNA和171个靶向反义链的miRNA。
实施例5检测启动子被内源miRNA靶向的基因的活化和上调
我们使用PCR从拟南芥中分离表1中列出的miRNA的前体。前体的长度为800-1000bp。首先将PCR产物TA克隆至Gateway 5’入门载体ENTR 5’-TOPO(Invitrogen#K591-20)。通过多位点Gateway克隆在LR反应中(Invitrogen#K591-10)组合3个包含启动子、目的基因和终止子的入门载体和1个目标载体构建植物二元表达载体。因此,每一种miRNA前体的表达处于欧芹泛素启动子和来自胭脂碱合酶的终止子的控制下。最终的二元载体通过测序确认。使用花浸方法(Clough和Bent,1998,Plant J16:735-43)用所述构建体转化拟南芥植物col-0以产生转基因系。
我们使用qRT-PCR在过表达miRNA的转基因拟南芥植物中测定启动子被miRNA靶向的基因的活化和上调。种子在补充10mg/l膦丝菌素(PPT)的MS培养基上萌发。使用RNeasy plant Mini试剂盒(Qiagen)从3个独立事件的3周龄植物中提取RNA。将每个事件中的5株植物合并在一起。使用sybr Green进行qRT-PCR。检测了总共43个基因。在qRT-PCR中包括预测在编码区被相同的miRNA靶向的基因。使用拟南芥微管蛋白或肌动蛋白基因作为内源对照以标准化相对表达。通过TaqMan进一步确认被上调的基因。
在分别靶向假定的启动子的正义和反义链的214和172个miRNA中,我们检测了12个miRNA以观察这些启动子控制的基因的任何上调。使用qRT-PCR方法,我们鉴定出通过分别靶向其启动子上调基因(AT3G50830)的miR159b和上调基因(AT3G15500)的miR398a。
实施例6靶向激素诱导型启动子的siRNA的进一步分析
突变的siRNA
从最初的实验中发现9个对应ABA诱导型启动子区的siRNA活化基因表达。8个对应IAA诱导型启动子区的siRNA活化基因表达。在最初的ABA和IAA诱导型启动子的实验中发现的具有活化基因表达能力的siRNA中进行突变。在siRNA双链体中将改变特定的核苷酸以研究具有基因活化作用的特异性位点。
第9、10和11位
设计siRNA以检测与其启动子靶区域具有完全匹配的第9、10和11位对RNA诱导的基因活化的必要性。突变功能性siRNA A-23,A-25,A-27,A-28,A-29,A-33和I-24,I-25,I-113,I-114,I-115的正义链的第9、10和11位。在双链体siRNA的反义链中进行相应的突变。当进行突变时维持与功能性siRNA相同的G/C含量。在下表中以大写字母表示突变的核苷酸。在第9、10和11位具有突变的siRNA产生与和启动子靶区域完全同源的原始siRNA差不多的结果。在siRNA和靶向的启动子区之间第9、10和11位的错配不显著影响RNAa活性。
表3:在第9、10和11位突变的siRNA
Figure BDA0000122409100000511
第4、5和6位
设计siRNA以检测在siRNA5’端和启动子靶区域的错配是否对基因活化具有影响。分别突变功能性siRNA双链体的正义和反义链的第4、5和6位。在双链体siRNA的反义链中进行相应的突变。突变以前鉴定的功能性siRNA A-27,A-28,I-113和I-114。当进行突变时维持与功能性siRNA相同的G/C含量。在下表中以大写字母表示突变的核苷酸。在第4、5和6位具有突变的siRNA失去RNAa活性。当与原始的、以前鉴定的功能性siRNA相比时,在siRNA和靶向的启动子区域之间的第4、5和6位上的错配显著降低RNAa活性。
表4:在第4、5和6位突变的siRNA
Figure BDA0000122409100000522
第16、17和18位
设计siRNA以检测在siRNA3’端和启动子靶区域的错配是否对基因活化具有影响。分别突变功能性siRNA双链体的正义和反义链的第16、17和18位。在双链体siRNA的反义链中进行相应的突变。突变以前鉴定的功能性siRNA A-27,A-28,I-113和I-114。当进行突变时维持与功能性siRNA相同的G/C含量。在下表中以大写字母表示突变的核苷酸。在第16、17和18位具有突变的siRNA失去RNAa活性。当与原始的、以前鉴定的功能性siRNA相比时,在siRNA和靶向的启动子区域之间的第16、17和18位上的错配显著降低RNAa活性。
表5:在第16、17和18位突变的siRNA
Figure BDA0000122409100000531
第1位
设计siRNA以检测siRNA的第一个核苷酸对RNA活化的影响。以前的研究显示,改变在最初的ABA和IAA诱导型启动子实验中上调基因表达的siRNA的第一个核苷酸。对ABA和IAA诱导型启动子分别选择2个基因活化siRNA。在siRNA双链体的每条链的第一位上检测所有可能的核苷酸。分别突变正义和反义链的第一个核苷酸并检测对RNA活化的效果。突变功能性siRNA A-27,A-28,I-113和I-114的第一位。在双链体siRNA的反义链中进行相应的突变。在下表中以大写字母表示突变的核苷酸。在第一个核苷酸上具有突变的siRNA产生与和启动子靶区域完全同源的原始siRNA差不多的结果。
表6:在第一位具有核苷酸改变的siRNA
Figure BDA0000122409100000541
Figure BDA0000122409100000551
将第20和21位突变为TT
设计siRNA以检测同时改变siRNA双链体的正义和反义链的第20和21位对基因活化的影响。突变功能性siRNA A-27,A-28,I-113和I-114的双链的第20和21位。在下表中以大写字母表示突变的核苷酸。在第20和21位上具有脱氧核糖核苷酸TT的siRNA产生与和启动子靶区域完全同源的原始siRNA差不多的结果。
表7:在第20和21位上变为TT的siRNA
Figure BDA0000122409100000552
基于基序的siRNA
设计对应ABA和IAA诱导型启动子中的特定启动子基序的siRNA以测定其对基因活化的效果。对靶向的每个启动子基序设计2个siRNA。设计为靶向给定基序的第一个siRNA将在双链体siRNA的合适的正义或反义链的5’端包含基序序列。设计为靶向给定基序的第二个siRNA将在双链体siRNA的合适的正义或反义链的中间包含基序序列。在下表中以下划线表示基序。基于基序的siRNA没有显示显著的活化基因表达的能力。
表8:具有来自ABA诱导型启动子的基序的siRNA
Figure BDA0000122409100000561
表9:具有来自IAA诱导型启动子的基序的siRNA
Figure BDA0000122409100000562
Figure BDA0000122409100000571
基于热点的siRNA
在最初的ABA和IAA诱导型启动子实验中,当用siRNA靶向时,启动子的特定区域可能显示活化基因表达的更高的能力。设计沿着目的启动子区移动的siRNA,以5’至3’的方向每次前进2个核苷酸。
当用siRNA靶向时,在ABA诱导型启动子中的一个区域可能显示更高的活性。设计ABA诱导型启动子(SEQ ID NO:1)siRNA以覆盖跨度从SEQ IDNO:1的第251至321位的71bp的区域。设计了总共26个siRNA以覆盖此区域。
当用siRNA靶向时,在IAA诱导型启动子中的2个区域可能显示更高的活性。IAA诱导型启动子(SEQ ID NO:2)热点#1是跨度从SEQ ID NO:2的第2868至2916位的49bp的区域。设计了15个siRNA以覆盖IAA诱导型启动子热点#1区。IAA诱导型启动子(SEQ ID NO:2)热点#2是跨度从SEQID NO:2的第3313至3343位的31bp的区域。设计了6个siRNA以覆盖IAA诱导型启动子热点#2区。
实施例7使用微小RNA前体将小活化RNA递送进植物
在最初的实验中发现9个对应ABA诱导型启动子区的siRNA活化基因表达。发现8个对应IAA诱导型启动子区的siRNA活化基因表达。将这17个siRNA改造进ath-miR164b的272bp片段的拟南芥微小RNA前体(SEQ IDNO:5)。将野生型微小RNA序列(SEQ ID NO:5的第33-53位)替换为在最初的实验中发现的活化基因表达的siRNA的正义链序列。将野生型微小RNA星(star)序列(SEQ ID NO:5的第163-183位)替换为在最初的实验中发现的活化基因表达的siRNA的反义链序列。
合成包含替换的正义和反义siRNA序列的改造的ath-pri-miR164b并克隆至欧芹泛素启动子下游。使用的终止子是来自根癌农杆菌T-DNA的胭脂碱合酶的3’UTR。
在来自ABA诱导型启动子(SEQ ID NO:1)区的至少4个构建体的改造的siRNA构建体中观察到荧光素酶基因的活化,所述4个构建体对应siRNAA-16(RTP3362-1SEQ ID NO:40),A-23(RTP3363-1SEQ ID NO:41),A-25(RTP3364-1,SEQ ID NO:42)和A-27(RTP3365-1,SEQ ID NO:43)。在来自IAA诱导型启动子(SEQ ID NO:2)区的构建体中,其中3个显示了活化,其对应siRNA I-114(RTP3374-1,SEQ ID NO:45),I-115(RTP3375-1,SEQID NO:46)和I-146(RTP3376,SEQ ID NO:47)。活化的水平与使用其相应的合成s iRNA时观察到的类似。没有观察到RTP3377-1(SEQ ID NO:44)引起的显著活化,其产生随机siRNA作为阴性对照。
RTP3362-1产生靶向ABA诱导型启动子RD29A的小活化RNA,以活化其基因表达。
实施例8使用ta-siRNA前体将小活化RNA递送进植物
使用引物MW-P11F(5’CCATATCGCAACGATGACGT 3’)和MW-P12R(5’GCCAGTCCCCTTGATAGCGA 3’)从拟南芥基因组DNA通过PCR扩增拟南芥ta-siRNA基因At3g17185,接着TA克隆至PCR8/GW/TOPO载体(Invitrogen#K2500-20)。1200bp的At3g17185基因包含178bp ta-siRNA区,865bpta-siRNA上游区(潜在的启动子区)和156bp ta-siRNA下游区(潜在的终止子区)。在从miR390的第11位开始的8个21-nt ta-siRNA中,2个非常相似的相5’D7(+)和5’D8(+)被替换为相同的2个来自A-16(SEQ IDNO:16)的21-nt片段。使用这样改造的ta-siRNA前体作为入门载体用于产生二元表达载体,其中ta-siRNA前体的表达处于欧芹泛素启动子和来自根癌农杆菌T-DNA的胭脂碱合酶的3’UTR的控制下(RWT384,SEQ ID NO:48)。RWT 384产生靶向RD29A启动子(一种ABA诱导型启动子)的小活化RNA,从而活化RD29A基因的表达。以类似的方式构建RWT385(SEQ ID NO:49)并产生靶向GH3基因5’UTR的小活化RNA以活化其表达。可以类似的方式将其他小活化RNA改造进ta-siRNA前体(miR390或miR173来源的)。
实施例9:
全植物转化
为了在全植物中检测RNAa,将具有来自IAA和ABA激素诱导型启动子的siRNA击中的构建体转化进拟南芥幼苗。在拟南芥col-0和ABA2-1突变体中进行转化。从拟南芥储存中心得到ABA2-1突变体。使用如实施例7中描述的siRNA设计构建体。使用花浸法(Clough和Bent,1998,Plant J16:735-43)用这些构建体转化6周龄的col-0和ABA2-1拟南芥幼苗以产生转基因系。
在温室中培养转基因系并从这些转基因系中收获种子。收集这些T1系的叶,提取RNA并使用TaqMan进行qRT-PCR。使用来自每种构建体的10株植物用于qRT-PCR。通过在使用IAA siRNA构建体转化的植物中的GH3(AT2G23170)和使用ABA siRNA构建体转化的植物中的RD29A(AT5G52310)的上调确认在全植物中的RNAa效应。使用肌动蛋白作为用于标准化的内部对照。使用SAS混合模型检验在统计学上分析结果在0.05置信水平上的显著性,根据此检验,RTP3361,62,63,65和68显示了RD29A的显著上调。在ABA构建体中观察到3-11倍的AT5G52310的上调(表10)。在IAA siRNA构建体中,RTP3369,75和76显示显著的上调(表11)。
表10:在使用ABA siRNA构建体转化的植物中,RD29A(AT5G52310)的相对表达
Figure BDA0000122409100000601
*在p<0.05时显著
表11:在使用IAA siRNA构建体转化的植物中,GH3(AT2G23170)的相对表达
Figure BDA0000122409100000602
Figure BDA0000122409100000611
*在p<0.05时显著
实施例10:在非激素启动子中的RNAa
使用原生质体RNA用affymetric芯片测定了拟南芥表达谱以选择用于使用非激素启动子的RNAa实验的候选基因。基于在微阵列实验中的低至中度表达将范围缩小至10个候选基因。使用PCR分离这些基因上游2kb的假定的启动子区并与荧光素酶报告基因和nos终止子共同克隆。将所述构建体转化进拟南芥原生质体并进行如实施例1中说明的荧光素酶测定。基于低至中度荧光素酶表达,选择了对应RTP号4044和4050的2个启动子(AT4G36930和AT2G37590)(表12)。我们然后设计了用于这2个启动子的siRNA,从这些启动子的预测的转录起始位点上游50bp至基因的起始密码子。共设计了14和41个siRNA,分别用于AT4G36930和AT2G37590。使用启动子::报告基因构建体和相应的siRNA转化拟南芥原生质体,并进行如实施例1中说明的荧光素酶测定。基于荧光素酶的表达,我们能够显示在2种启动子中的RNA活化。在检测的AT4G36930启动子(构建体RTP4044)的14个siRNA中,6个显示了RNAa效应(表13),和在AT2G 37590启动子(构建体RTP 4050)的41个siRNA中,6个显示了RNAa效应(表14)。
表12:拟南芥RNAa候选基因的相对荧光素酶表达
  构建体   启动子的基因ID   RLU   标准偏差
  无DNA   无   0.23   0.18
  DNA无ABA   AT5G52310   11.3   2.67
  DNA+ABA   AT5G52310   36.09   5.11
  RTP 4042   AT5G15710   304.697   142.86
  RTP4043   AT4G37480   0.97   0.078
  RTP4044   AT4G36930   58.05   12.79
  RTP4045   AT4G26150   264.14   114.9
  RTP4046   AT3G55170   0.79   0.72
  RTP4047   AT3G53090   2.62   1.73
  RTP 4049   AT2G47260   298.19   44.11
  RTP4050   AT2G37590   144.19   42.96
  RTP4051   AT2G18350   691.45   22.67
  RTP4052   AT1G68590   7.9   1.12
表13:通过siRNA活化的非激素启动子AT4G36930的相对荧光素酶表达
Figure BDA0000122409100000621
Figure BDA0000122409100000631
Figure BDA0000122409100000632
表14:通过siRNA活化的非激素启动子AT2G37590的相对荧光素酶表达
Figure BDA0000122409100000633
Figure BDA0000122409100000641
Figure BDA0000122409100000642
实施例11对靶向激素诱导型启动子的siRNA的进一步分析
突变的siRNA
从最初的实验中发现9个对应ABA诱导型启动子区的siRNA活化基因表达。8个对应IAA诱导型启动子区的siRNA活化基因表达。在最初的ABA和IAA诱导型启动子的实验中发现的具有活化基因表达能力的siRNA中进行突变。在siRNA双链体中将改变特定的核苷酸以研究具有基因活化作用的特异性位点。
第2和3位
设计siRNA以检测与其启动子靶区域具有完全匹配的第2和3位对RNA诱导的基因活化的必要性。分别突变功能性siRNA A-29和A-33的正义和反义链的第2和3位。在双链体siRNA的相反链中进行对应的突变。当进行突变时维持与功能性siRNA相同的G/C含量。在下表中以大写字母表示突变的核苷酸。
表15:在正义和反义链上的第2和3位分别突变的siRNA
Figure BDA0000122409100000651
第19和20位
设计siRNA以检测与其启动子靶区域具有完全匹配的第19和20位对RNA诱导的基因活化的必要性。分别突变功能性siRNA A-29和A-33的正义和反义链的第19和20位。在双链体siRNA的相反链中进行对应的突变。当进行突变时维持与功能性siRNA相同的G/C含量。在下表中以大写字母表示突变的核苷酸。
表16:在正义和反义链上的第19和20位分别突变的siRNA
Figure BDA0000122409100000652
Figure BDA0000122409100000661
在siRNA的仅一条链上突变
在最初的ABA和IAA诱导型启动子的实验中发现的具有活化基因表达能力的siRNA中进行突变。在siRNA双链体中将改变特定的核苷酸以研究对基因活化有影响的特异性位点。在前面的实验中(见实施例6)我们证明了,当第4、5和6或16、17和18位与其互补碱基一起突变时,siRNA失去了活化转录的能力。设计在双链体siRNA的仅一条链上包含突变的siRNA。在下表中以大写字母表示突变的核苷酸。
表17:在siRNA的仅一条链上突变,在第4、5和6位
Figure BDA0000122409100000662
表18:在siRNA的仅一条链上突变,在第16、17和18位
  A-29   A29-7   aauaugcaaacuagaUUUcaa   gAAAucuaguuugcauauuug
  A-29   A29-8   aauaugcaaacuagaUUUcaa   guuuucuaguuugcauauuug
  A-29   A29-9   aauaugcaaacuagaaaacaa   gAAAucuaguuugcauauuug
  A-29   A29-10   aUAUugcaaacuagaaaacaa   guuuucuaguuugcaAUAuug
  A-29   A29-11   aauaugcaaacuagaaaacaa   guuuucuaguuugcaAUAuug
  A-29   A29-12   aUAUugcaaacuagaaaacaa   guuuucuaguuugcauauuug
  A-33   A33-7   aucaucaggaauaaaCCCuuu   aGGGuuuauuccugaugauug
  A-33   A33-8   aucaucaggaauaaaCCCuuu   acccuuuauuccugaugauug
  A-33   A33-9   aucaucaggaauaaaggguuu   aGGGuuuauuccugaugauug
  A-33   A33-10   aAGUucaggaauaaaggguuu   acccuuuauuccugaACUuug
  A-33   A33-11   aucaucaggaauaaaggguuu   acccuuuauuccugaACUuug
  A-33   A33-12   aAGUucaggaauaaaggguuu   acccuuuauuccugaugauug
不同长度的siRNA
小RNA,包括siRNA和微小RNA的长度范围可从18至24个核苷酸。从最初的实验中发现9个对应ABA诱导型启动子区的siRNA活化基因表达。基于ABA-29和ABA-33设计18和24个核苷酸的siRNA。
表19:18个核苷酸的siRNA
  A-29   A29-17   aauaugcaaacuagaaaa   uucuaguuugcauauuug
  A-29   A29-18   auaugcaaacuagaaaac   uuucuaguuugcauauuu
  A-29   A29-19   uaugcaaacuagaaaaca   uuuucuaguuugcauauu
  A-29   A29-20   augcaaacuagaaaacaa   guuuucuaguuugcauau
  A-33   A33-17   aucaucaggaauaaaggg   cuuuauuccugaugauug
  A-33   A33-18   ucaucaggaauaaagggu   ccuuuauuccugaugauu
  A-33   A33-19   caucaggaauaaaggguu   cccuuuauuccugaugau
  A-33   A33-20   aucaggaauaaaggguuu   acccuuuauuccugauga
表20:24个核苷酸的siRNA
  A-29   A29-21   aauaugcaaacuagaaaacaauca   auuguuuucuaguuugcauauuug
  A-29   A29-22   acaaauaugcaaacuagaaaacaa   guuuucuaguuugcauauuuguga
  A-33   A33-21   aucaucaggaauaaaggguuugau   caaacccuuuauuccugaugauug
  A-33   A33-22   acaaucaucaggaauaaaggguuu   acccuuuauuccugaugauuguuu
实施例12:在单子叶植物中的RNAa
PCR扩增基因GRMZM2G140653的上游2kb假定的启动子区并与荧光素酶报告基因和NOS终止子一起克隆。将构建体命名为RTP 4962。
如Hwang和Sheen(2001)以前描述的将此构建体转化进玉蜀黍原生质体。RTP4962在原生质体测定中显示了荧光素酶的表达。针对此启动子(GRMZM2G140653)设计了总共63个siRNA且在玉蜀黍原生质体中检测了其中34个。在检测的34个siRNA中,4个显示了1.5至2倍的活化(表21)。
表21:通过siRNA活化的玉蜀黍GRMZM2G140653启动子的相对荧光素酶表达
 siRNA   RLU   标准误
 RTP4962   9.59   1.52
 NF-3   18.09   2.46
 NF-5   16.01   2.2
 NF-6   15.54   5.21
 NF-34   16.38   3.44
表22:针对GRMZM2G140653-LUC启动子的活化荧光素酶表达的siRNA(及其SEQ ID NO)
Figure IDA0000122409160000011
Figure IDA0000122409160000021
Figure IDA0000122409160000031
Figure IDA0000122409160000041
Figure IDA0000122409160000051
Figure IDA0000122409160000061
Figure IDA0000122409160000081
Figure IDA0000122409160000091
Figure IDA0000122409160000101
Figure IDA0000122409160000111
Figure IDA0000122409160000121
Figure IDA0000122409160000131
Figure IDA0000122409160000141
Figure IDA0000122409160000151
Figure IDA0000122409160000161
Figure IDA0000122409160000171
Figure IDA0000122409160000181
Figure IDA0000122409160000201
Figure IDA0000122409160000211
Figure IDA0000122409160000221
Figure IDA0000122409160000231
Figure IDA0000122409160000241
Figure IDA0000122409160000251
Figure IDA0000122409160000261
Figure IDA0000122409160000271
Figure IDA0000122409160000281
Figure IDA0000122409160000291
Figure IDA0000122409160000301
Figure IDA0000122409160000311
Figure IDA0000122409160000331
Figure IDA0000122409160000341
Figure IDA0000122409160000351
Figure IDA0000122409160000361
Figure IDA0000122409160000381
Figure IDA0000122409160000391
Figure IDA0000122409160000411
Figure IDA0000122409160000421
Figure IDA0000122409160000431
Figure IDA0000122409160000441
Figure IDA0000122409160000451
Figure IDA0000122409160000461
Figure IDA0000122409160000471
Figure IDA0000122409160000481
Figure IDA0000122409160000491
Figure IDA0000122409160000501
Figure IDA0000122409160000511
Figure IDA0000122409160000521
Figure IDA0000122409160000531
Figure IDA0000122409160000541
Figure IDA0000122409160000551
Figure IDA0000122409160000571
Figure IDA0000122409160000581
Figure IDA0000122409160000611
Figure IDA0000122409160000621
Figure IDA0000122409160000631
Figure IDA0000122409160000641
Figure IDA0000122409160000661
Figure IDA0000122409160000671
Figure IDA0000122409160000681
Figure IDA0000122409160000691
Figure IDA0000122409160000701
Figure IDA0000122409160000711
Figure IDA0000122409160000721
Figure IDA0000122409160000731
Figure IDA0000122409160000741
Figure IDA0000122409160000751
Figure IDA0000122409160000761
Figure IDA0000122409160000771
Figure IDA0000122409160000781
Figure IDA0000122409160000791
Figure IDA0000122409160000801
Figure IDA0000122409160000811
Figure IDA0000122409160000821
Figure IDA0000122409160000831
Figure IDA0000122409160000841
Figure IDA0000122409160000861
Figure IDA0000122409160000871
Figure IDA0000122409160000881
Figure IDA0000122409160000891
Figure IDA0000122409160000901
Figure IDA0000122409160000911
Figure IDA0000122409160000921
Figure IDA0000122409160000931
Figure IDA0000122409160000941
Figure IDA0000122409160000951
Figure IDA0000122409160000961
Figure IDA0000122409160000971
Figure IDA0000122409160000981
Figure IDA0000122409160000991
Figure IDA0000122409160001001
Figure IDA0000122409160001011
Figure IDA0000122409160001021
Figure IDA0000122409160001041
Figure IDA0000122409160001051
Figure IDA0000122409160001061
Figure IDA0000122409160001071
Figure IDA0000122409160001081
Figure IDA0000122409160001091
Figure IDA0000122409160001111
Figure IDA0000122409160001121
Figure IDA0000122409160001131
Figure IDA0000122409160001141
Figure IDA0000122409160001151
Figure IDA0000122409160001171
Figure IDA0000122409160001181
Figure IDA0000122409160001191
Figure IDA0000122409160001201
Figure IDA0000122409160001211
Figure IDA0000122409160001221
Figure IDA0000122409160001231
Figure IDA0000122409160001241
Figure IDA0000122409160001251
Figure IDA0000122409160001261
Figure IDA0000122409160001271
Figure IDA0000122409160001291
Figure IDA0000122409160001301
Figure IDA0000122409160001311
Figure IDA0000122409160001321
Figure IDA0000122409160001341
Figure IDA0000122409160001361
Figure IDA0000122409160001371
Figure IDA0000122409160001391
Figure IDA0000122409160001401
Figure IDA0000122409160001421
Figure IDA0000122409160001431
Figure IDA0000122409160001441
Figure IDA0000122409160001451
Figure IDA0000122409160001461
Figure IDA0000122409160001471
Figure IDA0000122409160001491
Figure IDA0000122409160001501
Figure IDA0000122409160001511
Figure IDA0000122409160001521
Figure IDA0000122409160001531
Figure IDA0000122409160001541
Figure IDA0000122409160001551
Figure IDA0000122409160001561
Figure IDA0000122409160001571
Figure IDA0000122409160001581
Figure IDA0000122409160001591
Figure IDA0000122409160001611
Figure IDA0000122409160001621
Figure IDA0000122409160001641
Figure IDA0000122409160001651
Figure IDA0000122409160001661
Figure IDA0000122409160001671
Figure IDA0000122409160001681
Figure IDA0000122409160001691
Figure IDA0000122409160001701
Figure IDA0000122409160001721
Figure IDA0000122409160001731
Figure IDA0000122409160001751
Figure IDA0000122409160001771
Figure IDA0000122409160001781
Figure IDA0000122409160001791
Figure IDA0000122409160001821
Figure IDA0000122409160001831
Figure IDA0000122409160001841
Figure IDA0000122409160001851
Figure IDA0000122409160001861
Figure IDA0000122409160001871
Figure IDA0000122409160001881
Figure IDA0000122409160001891
Figure IDA0000122409160001901
Figure IDA0000122409160001921
Figure IDA0000122409160001931
Figure IDA0000122409160001941
Figure IDA0000122409160001961
Figure IDA0000122409160001971
Figure IDA0000122409160001981
Figure IDA0000122409160001991
Figure IDA0000122409160002001
Figure IDA0000122409160002011
Figure IDA0000122409160002021
Figure IDA0000122409160002041
Figure IDA0000122409160002051
Figure IDA0000122409160002061
Figure IDA0000122409160002081
Figure IDA0000122409160002091
Figure IDA0000122409160002101
Figure IDA0000122409160002111
Figure IDA0000122409160002121
Figure IDA0000122409160002131
Figure IDA0000122409160002141

Claims (39)

1.与相应的野生型或其部分相比,在植物或其部分中提高靶基因表达的方法,其包括将在相应的野生型或其部分中不存在的重组核酸分子引入所述植物或其部分,其中所述重组核酸分子的至少一部分与在所述植物或其部分中调控靶基因表达的启动子的至少一部分互补。
2.如权利要求1所述的方法,其中与调控靶基因表达的启动子的至少一部分互补的所述重组核酸分子与所述启动子相距转录起始位点100bp或更少的部分互补,优选地其与所述启动子的转录起始位点互补。
3.如权利要求1所述的方法,其中与调控靶基因表达的启动子的至少一部分互补的所述重组核酸分子与所述启动子的下述部分互补,所述部分包含所述启动子的调控盒的至少一部分或与这样的调控盒相距不超过100bp。
4.如在权利要求1-3中任一项中所述的方法,其包括以下步骤
a)产生一种或多种与靶基因的启动子互补的小核酸分子,
b)在体内或体外检测所述一种或多种小核酸分子提高其靶基因表达的性能,
c)鉴定小核酸分子是否提高靶基因表达,和
d)将所述一种或多种小核酸分子引入植物。
5.根据权利要求1-4中任一项的方法,其中通过将提高靶基因表达的小核酸分子克隆进包含植物特异性调控元件的植物转化载体,使用所述载体转化植物或其部分,和回收包含所述载体或所述载体的部分的转基因植物将提高靶基因表达的所述小核酸分子引入所述植物。
6.根据权利要求1-4中任一项的方法,其中通过合成提高靶基因表达的小核酸分子并用所述合成的小核酸分子转化植物或其部分将提高靶基因表达的所述小核酸分子引入所述植物。
7.在植物或其部分中提高靶基因表达的方法,其包括将包含经修饰的非编码小RNA的重组核酸分子引入所述植物或其部分,其中所述经修饰的非编码小RNA的序列相对野生型非编码小RNA序列经修饰,这是通过用与调控靶基因表达的启动子互补的且对于所述天然非编码小RNA而言是异源的序列至少替换所述天然非编码小RNA的与其相应的同源靶序列互补的一个区域。
8.在植物或其部分中鉴定非编码小活化RNA的方法,其包括以下步骤
-从所述植物或其部分中得到小RNA分子,
-鉴定所述小RNA分子的序列,
-通过生物信息学分析选择包含与至少一个内源基因启动子互补的区域的小RNA分子,和
-在植物或其部分中检测小RNA候选分子以确定其是否提高靶基因的表达。
9.在植物或其部分中鉴定活化微小RNA(microRNA)的方法,其包括以下步骤
-在所述植物或其部分中鉴定与相应植物中的启动子同源的微小RNA,
-从所述植物或其部分克隆所述微小RNA,
-在植物中过表达所述微小RNA,和
-在所述转基因植物和相应的野生型植物中比较基因表达。
10.替换植物特异性启动子的调控特异性的方法,通过在所述植物特异性启动子中修饰非编码小活化RNA靶向区,所述非编码小活化RNA赋予由所述启动子控制的基因表达的活化。
11.替换植物特异性启动子的调控特异性的方法,通过在所述植物特异性启动子中引入与非编码小活化RNA同源的区域,所述非编码小活化RNA赋予由所述启动子控制的基因表达的活化。
12.如权利要求11中定义的替换植物特异性启动子的调控特异性的方法,其中所述区域替换了与内源非编码小活化RNA同源的区域。
13.如权利要求11或12中定义的替换植物特异性启动子的调控特异性的方法,其中所述区域与内源非编码小活化RNA同源。
14.如权利要求11或12中定义的替换植物特异性启动子的调控特异性的方法,其中所述区域与重组非编码小活化RNA同源。
15.如权利要求11-14中定义的替换植物特异性启动子的调控特异性的方法,其中在体内修饰所述植物特异性启动子。
16.如权利要求11-14中定义的替换植物特异性启动子的调控特异性的方法,其中在体外修饰所述植物特异性启动子。
17.包含重组核酸分子的用于在植物中表达的核酸构建体,所述重组核酸分子包含编码经修饰的非编码小RNA序列的序列,其中所述序列相对野生型非编码小RNA序列被修饰,通过至少将所述野生型非编码小RNA的与其野生型靶序列互补的1个区域替换为下述序列,其与调控靶基因表达的启动子互补、且其相对所述天然非编码小RNA是异源的、且其在引入所述植物或其部分后赋予所述靶基因表达的提高。
18.根据权利要求17的核酸构建体,其中所述重组核酸分子的转录物能够形成双链结构,其中所述双链结构包含与调控靶基因表达的启动子互补的序列。
19.根据权利要求18的核酸构建体,其中所述双链结构是发夹结构。
20.根据权利要求18或19的核酸构建体,其中与调控靶基因表达的启动子互补的所述重组核酸分子的一部分具有从15至30bp的长度。
21.根据权利要求20的核酸构建体,其中与调控靶基因表达的启动子互补的所述重组核酸分子的一部分具有19至26bp,优选20至25,更优选21至24bp,甚至更优选21bp或24bp的长度。
22.根据权利要求17至21中任一项的核酸构建体,其中与调控靶基因表达的启动子互补的所述重组核酸分子的部分具有60%或更高,优选70%或更高,更优选75%或更高,甚至更优选80%或更高,特别优选85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,99%或更高,例如100%的同一性。
23.根据权利要求21或22的核酸构建体,其中与调控靶基因表达的启动子互补的所述重组核酸分子的部分包含与所述靶基因启动子同源的7至11个,优选8至10个,更优选9个连续的碱基对。
24.根据权利要求23的核酸构建体,其中所述重组核酸分子的一部分与调控靶基因表达的启动子互补,其中所述连续的碱基对与所述靶基因启动子至少80%同一,优选90%同一,更优选95%同一,最优选100%同一。
25.包含如权利要求17至24中任一项定义的核酸构建体的载体。
26.在植物或其部分中活化基因表达的***,其包括a)植物特异性启动子,其包含与对所述启动子为异源的非编码小活化RNA同源的区域和b)处于植物特异性启动子控制下的构建体,其包含与如a)中定义的区域同源的非编码小活化RNA。
27.如权利要求26中定义的***,用于活化内源基因的基因表达。
28.如权利要求26中定义的***,用于提高转基因的基因表达。
29.包含如权利要求17至24中任一项定义的重组核酸构建体的植物或其部分,其中相比不包含所述重组核酸分子的相应植物或其部分,所述重组核酸分子赋予在所述植物或其部分中靶基因表达的提高。
30.根据权利要求29的植物或其部分,其中所述重组核酸分子被整合进所述植物或其部分的基因组。
31.包含如权利要求17至24中任一项定义的重组核酸构建体的植物细胞,其中相比不包含所述重组核酸分子的相应植物细胞,所述重组核酸分子赋予在所述植物细胞中靶基因表达的提高。
32.根据权利要求31的植物细胞,其中所述重组核酸分子被整合进所述植物或其部分的基因组。
33.能够将核酸转移至植物或植物部分的微生物,其中所述微生物包含如权利要求17至24中任一项定义的重组核酸构建体,其中所述重组核酸分子在所述重组核酸构建体被转移后,相比不包含所述重组核酸分子的相应植物或植物部分,赋予在所述植物或植物部分中靶基因表达的提高。
34.如权利要求1至16中定义的方法,其包括如权利要求17至24中任一项定义的核酸构建体,如权利要求29至30中任一项定义的植物,如权利要求31至32中任一项定义的植物细胞和/或如权利要求33中定义的微生物。
35.产生如权利要求17至24中任一项定义的核酸构建体,如权利要求25中定义的载体,如权利要求29至30中任一项定义的植物,如权利要求31至32中任一项定义的植物细胞和/或如权利要求33中定义的微生物的方法。
36.赋予在植物或其部分中基因表达提高的非编码小活化RNA,其包含SEQ ID 6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30和/或31中的任一序列。
37.如权利要求1至16或36中任一项定义的非编码小活化RNA在植物中提高靶基因表达的用途。
38.权利要求37的用途,用于提高内源靶基因的表达。
39.权利要求37的用途,用于提高转基因靶基因的表达。
CN2010800273704A 2009-04-21 2010-04-16 Rna介导的植物中基因表达的诱导 Pending CN102803494A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17109709P 2009-04-21 2009-04-21
US61/171,097 2009-04-21
PCT/EP2010/055009 WO2010121952A1 (en) 2009-04-21 2010-04-16 Rna-mediated induction of gene expression in plants

Publications (1)

Publication Number Publication Date
CN102803494A true CN102803494A (zh) 2012-11-28

Family

ID=42555917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800273704A Pending CN102803494A (zh) 2009-04-21 2010-04-16 Rna介导的植物中基因表达的诱导

Country Status (8)

Country Link
US (1) US20120047602A1 (zh)
EP (1) EP2421974A1 (zh)
CN (1) CN102803494A (zh)
AR (1) AR076330A1 (zh)
AU (1) AU2010241030A1 (zh)
CA (1) CA2758999A1 (zh)
DE (1) DE112010001705T5 (zh)
WO (1) WO2010121952A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106032532A (zh) * 2015-03-17 2016-10-19 中国医学科学院北京协和医院 一种小激活rna及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040268441A1 (en) * 2002-07-19 2004-12-30 University Of South Carolina Compositions and methods for the modulation of gene expression in plants
US20070016976A1 (en) * 2000-06-23 2007-01-18 Fumiaki Katagiri Plant genes involved in defense against pathogens

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733059B1 (en) 1993-12-09 2000-09-13 Thomas Jefferson University Compounds and methods for site-directed mutations in eukaryotic cells
US6555732B1 (en) 1998-09-14 2003-04-29 Pioneer Hi-Bred International, Inc. Rac-like genes and methods of use
WO2005001110A2 (en) 2003-05-29 2005-01-06 The Salk Institute For Biological Studies Transcriptional regulation of gene expression by small double-stranded modulatory rna
US8877721B2 (en) 2005-04-15 2014-11-04 The Regents Of The University Of California Small activating RNA molecules and methods of use
WO2007086990A2 (en) 2005-11-17 2007-08-02 Board Of Regents, The University Of Texas System Modulation of gene expression by oligomers targeted to chromosomal dna
CA2759100A1 (en) * 2009-04-21 2010-10-28 Basf Plant Science Company Gmbh Rna-mediated induction of gene expression in plants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016976A1 (en) * 2000-06-23 2007-01-18 Fumiaki Katagiri Plant genes involved in defense against pathogens
US20040268441A1 (en) * 2002-07-19 2004-12-30 University Of South Carolina Compositions and methods for the modulation of gene expression in plants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LONG-CHENG LI等: "Small dsRNAs induce transcriptional activation in human cells", 《PNAS》 *
WERNER AUFSATZ等: "RNA-directed DNA methylation in Arabidopsis", 《PNAS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106032532A (zh) * 2015-03-17 2016-10-19 中国医学科学院北京协和医院 一种小激活rna及其制备方法和应用

Also Published As

Publication number Publication date
EP2421974A1 (en) 2012-02-29
AR076330A1 (es) 2011-06-01
DE112010001705T5 (de) 2013-01-24
WO2010121952A1 (en) 2010-10-28
US20120047602A1 (en) 2012-02-23
CA2758999A1 (en) 2010-10-28
AU2010241030A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
CN102459612A (zh) Rna介导的植物中基因表达的诱导
EP1931789B1 (en) Methods for controlling gene expression using ta-siran
AU2004212630B2 (en) Efficient gene silencing in plants using short dsRNA sequences
CN106995819B (zh) 用于调控靶基因表达的重组dna构建体和方法
Eamens et al. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana
Cantó‐Pastor et al. Efficient transformation and artificial mi RNA gene silencing in L emna minor
US7414125B2 (en) Cloning and characterization of microRNAs from rice
WO2011132127A1 (en) Enhanced methods for gene regulation in plants
CN101600798A (zh) 相位型小rna
CN102985545A (zh) 新型微小rna前体及其在调控靶基因表达中的用途
CN103339257A (zh) 用于生产具有定义的特异性的合成的启动子的方法
WO2021048316A1 (en) Regulatory nucleic acid molecules for enhancing gene expression in plants
US20140250546A1 (en) Method for Identification and Isolation of Terminator Sequences Causing Enhanced Transcription
US20170159064A1 (en) Generation of artificial micrornas
CN102803494A (zh) Rna介导的植物中基因表达的诱导
WO2021069387A1 (en) Regulatory nucleic acid molecules for enhancing gene expression in plants
EP2820132A1 (en) Expression cassettes for stress-induced gene expression in plants
KR101730071B1 (ko) 식물 종자의 호분층 또는 배 특이적 OsDOG1L2 프로모터 및 이의 용도
AU2014369235A1 (en) Isolation of terminator sequences causing enhanced transcription

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121128